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Abstract
We study the typical behaviour of strongly monoHölder functions from the
prevalence point of view. To this end we first prove wavelet-based criteria
for strongly monoHölder functions. We then use the notion of prevalence to
show that the functions of Cα(Rd) are almost surely strongly monoHölder with
Hölder exponent α. Finally, we prove that for any α ∈ (0, 1) on a prevalent set
of Cα(Rd) the Hausdorff dimension of the graph is equal to d + 1 − α.

Mathematics Subject Classification: 26A16, 42C40

1. Introduction

The most popular concept for uniform regularity is uniform Hölder regularity defined from
Hölder spaces Cα(Rd). For any α ∈ (0, 1), a bounded function f belongs to Cα(Rd) if there
exist C0, r0 > 0 such that

∀r � r0, sup
|x−y|�r

|f (x) − f (y)| � C0r
α.

This notion can be generalized to exponents greater than one (see section 2). It has been used to
study smoothness properties of classical models as trigonometric series (see [16, 28]), sample
paths properties of processes as Brownian motion (see [17]) or fractional Brownian motion.
The pointwise counterparts of spaces Cα(Rd) are the spaces Cα(x0). A locally bounded

3 Author to whom any correspondence should be addressed.

0951-7715/10/092101+16$30.00 © 2010 IOP Publishing Ltd & London Mathematical Society Printed in the UK & the USA 2101

http://dx.doi.org/10.1088/0951-7715/23/9/004
mailto: S.Nicolay@ulg.ac.be
http://stacks.iop.org/no/23/2101


2102 M Clausel and S Nicolay

function f belongs to Cα(x0) with α ∈ (0, 1) (see section 2 for the general case) if there exist
C, R > 0 such that

sup
|x−x0|�r

|f (x) − f (x0)| � Crα, ∀r � R.

In [27], a very natural notion for the pointwise irregularity of a function is obtained by reversing
the inequality sign in the definition of the Hölder regularity, when the regularity exponent is
lower than 1. This definition is generalized in [5, 6] for any positive exponent. The spaces
Iα(x0) and Iα(Rd) are the irregular analogues of the usual Hölder spaces Cα(x0) and Cα(Rd),
respectively.

In [15], it is showed that most of the historical space-filling functions share the same
property: the associated regularity and irregularity exponents are the same, i.e. f ∈ Cα(Rd)∩
Iα(Rd). Such mappings are said to be strongly monoHölder with exponent α, which is denoted
by f ∈ SMα(Rd). Increasing interest has been paid to such functions in the case where α ∈
(0, 1) since the box-counting dimension of their graph on Rd , �(f ) = {(x, f (x)), x ∈ Rd} is
equal to d + 1 − α (see, e.g., [11]). Let us point out that concerning the Hausdorff dimension
of �(f ), it has been proved that the following relationship,

dimH�(f ) = d + 1 − α, (1)

is not true. In [22], McMullen proposed an example of self-affine set which is the graph of a
strongly monoHölder function and whose Hausdorff dimension is lower than its box dimension.
There are examples where equality (1) holds (see, e.g., [19]). However, even for the case of
the classical Weierstraß function Wα (α ∈ (0, 1)) defined on R by

Wα(x) =
+∞∑
k=0

2−αk cos(2π2kx)

equality (1) remains as a conjecture (see, e.g., [3, 21]), although estimates are known. For
example, in the more general case of Weierstraß type functions of the form

f (x) =
+∞∑
k=0

2−kαg(2kx),

where g is a continuously differentiable function on R, there exists a constant c > 0 such that

2 − α − c/ log b � dimH�(f ) � 2 − α,

for b sufficiently large (see [24]). Some results have also been obtained in the case of Weierstraß
functions with random phase added to each term: for such functions, equality (1) holds with
probability one (see [13]). For the so-called index α fields studied in [1], the same relation is
satisfied.

Therefore, though relation (1) does not hold in generality, it seems to be satisfied for most
of the studied strongly monoHölder models. It is then quite natural to wonder to what point
this behaviour is a typical one. Firstly, is ‘almost every’ function belonging to Cα(Rd) a
strongly monoHölder function? Thereafter what can be said about the Hausdorff dimension
of the graph of ‘almost every’ function of Cα(Rd)?

We first need to introduce what is meant by ‘almost every function’. In a finite dimensional
space, we say that a property holds almost everywhere if the set of points where it is not true
is of vanishing Lebesgue measure. The Lebesgue measure has here a preponderant role, as it
is the only σ -finite and translation invariant measure. Unfortunately, no measure shares those
properties in infinite dimensional Banach spaces. A way to recover a natural notion of ‘almost
every’ in infinite dimensional vector spaces is defined by Christensen in [4]. The basic idea is
to generalize the well-known characterization of Lebesgue measure zero subsets of Rd . In Rd ,
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a Borel set B has measure zero if and only if there exists a compactly supported probability
measure µ such that,

∀x ∈ Rd , µ(x + B) = 0.

This characterization can be turned into a definition in the infinite dimensional setting and
leads to the concept of Haar-null sets. This concept provides the needed analogue of ‘Lebesgue
measure zero’ sets for infinite dimensional spaces.

Definition 1. Let E be a complete metric vector space. A Borel set B ⊂ E is Haar-null if
there exists a compactly supported Borel probability measure µ such that

∀x ∈ E, µ(x + B) = 0.

A subset S of E is Haar-null if it is included in a Haar-null Borel set. The complement of a
Haar-null set is called a prevalent set.

In this paper we study the prevalent behaviour of the functions of Cα(Rd). We first prove
that the spaces SMα(Rd) are prevalent in Cα(Rd).

Theorem 1. For any α > 0, the space SMα(Rd) is a prevalent subset of Cα(Rd).

Our second main result proves that, though (1) is not generally satisfied, it is true for a prevalent
subset of Cα(Rd):

Theorem 2 (Let α ∈ (0, 1)). There is a prevalent subset of Cα(Rd) for which the Hausdorff
dimension of the graph of its elements is equal to the maximum possible value, d + 1 − α, i.e.
for any element f of this subset,

dimH�(f ) = d + 1 − α.

Thus, the classical case where the Hausdorff dimension of the graph of a function is linked to
its uniform Hölder exponent corresponds to the typical behaviour of the functions of Cα(Rd).

These two results are proved in section 4 using wavelets. Indeed Jaffard has shown that
the wavelet transform in general is a very efficient tool to study the regularity of a function.
In particular, the wavelet leaders method most closely characterizes the Hölder regularity of
a function (see [14] and references therein). The same pattern is followed for the Hölderian
irregularity: this notion is studied under the discrete wavelet lens and several criteria binding
the wavelet coefficients with the irregularity exponent are obtained.

Our plan will be as follows. In section 2, we first recall some definitions about pointwise
irregularity and strongly monoHölder functions. In section 3, we state and prove our two
wavelet criteria. Using these wavelet criteria, we are able in section 4 to prove our two main
results: theorem 1 and theorem 2.

2. Hölderian and anti-Hölderian functions

We recall here the definitions related to the Hölderian regularity of a function for exponents
greater than one, before introducing the Hölderian irregularity. These considerations also lead
to a weaker definition of pointwise smoothness. Finally, we define the strongly monoHölder
functions; this notion formalizes the idea of a function which has everywhere the same
regularity, in a way as uniform as possible.

The integer part of α will be denoted [α]: if α > 0, [α] = sup{k ∈ N : k � α}. We will
also use the following notation:

Bh(x0, r) = {x : [x, x + ([α] + 1)h] ⊂ B(x0, r)}
and denote, as usual, the finite differences of arbitrary order as follows:

�1
hf (x) = f (x + h) − f (x), �n+1

h f (x) = �n
hf (x + h) − �n

hf (x).
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Definition 2. Let f : Rd → Rd ′
be a locally bounded function, let x0 ∈ Rd and α � 0;

f ∈ Cα(x0) if there exist C, R > 0 such that

sup
|h|�r

‖�[α]+1
h f ‖L∞(Bh(x0,r)) � Crα, ∀r � R. (2)

Such a function is said to be Hölderian of exponent α at x0. The lower Hölder exponent of f

at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}.
A function f is uniformly Hölderian of exponent α (f ∈ Cα(Rd)) if there exist C, R > 0 such
that (2) is satisfied for any x0 ∈ Rd ; f is uniformly Hölderian if there exists ε > 0 such that
f ∈ Cε(Rd).

Condition (2) is satisfied if and only if there exists a polynomial P of degree less than α such
that

‖f (x) − P(x)‖L∞(B(x0,r)) � Crα, ∀r � R (3)

(see, e.g., [5, 10, 18]). This inequality is more often chosen to define the spaces Cα(x0).
Nevertheless, this last definition cannot directly be linked to our notion of pointwise irregularity,
in contrast to definition 2. The lower Hölder exponent is simply denoted Hölder exponent in
the literature. However, since we are interested in introducing another concept of pointwise
Hölderian regularity, the accustomed notation h is replaced here by h.

The irregularity of a function can be studied through the notion of anti-Hölderianity.

Definition 3. Let f : Rd → Rd ′
be a locally bounded function, let x0 ∈ Rd and α � 0;

f ∈ Iα(x0) if there exist C, R > 0 such that

sup
|h|�r

‖�[α]+1
h f ‖L∞(Bh(x0,r)) � Crα, ∀r � R. (4)

Such a function is said to be anti-Hölderian of exponent α at x0. The upper Hölder exponent
(or irregularity exponent) of f at x0 is

hf (x0) = inf{α : f ∈ Iα(x0)}.
We will say that f is strongly Hölderian of exponent α at x0 (f ∈ Cα

s (x0)) if f ∈
Cα(x0) ∩ Iα(x0).

Let us remark that the statement (4) is not equivalent to negating the property f ∈ Cα(x0).
Indeed, f 	∈ Cα(x0) if for any C > 0, there exists a sequence (rn)n (depending on C) for
which

sup
|h|�rn

‖�[α]+1
h f ‖L∞(Bh(x0,rn)) � Crα

n .

We are thus naturally led to the following definition.

Definition 4. Let f : Rd → Rd ′
be a locally bounded function, let x0 ∈ Rd and α � 0;

f ∈ Cα
w(x0) if f /∈ Iα(x0), i.e. for any C > 0 there exists a sequence (rn)n strictly decreasing

to 0 such that

sup
|h|�rn

‖�[α]+1
h f ‖L∞(Bh(x0,rn)) � Crα

n , ∀n ∈ N .

Such a function is said weakly Hölderian of exponent α at x0.

Roughly speaking, a function is weakly Hölderian of exponent α at x0 if for any C > 0, one
can bound the oscillation of f over B(x0, rn) by Crα

n for a remarkable decreasing subsequence
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(rn)n of scales, whereas for an Hölderian function, the oscillation of f over B(x0, r) has to be
bounded at each scale r > 0 by Crα , for some C > 0.

Strongly monoHölderian functions naturally arise in the study of the regularity of mappings
such as Weierstraß-type functions, space-filling functions or random processes (see, e.g.,
[9, 12, 15]). Indeed, many results only hold for such mappings.

Definition 5. A function f : Rd → Rd ′
is strongly monoHölderian of exponent α (f ∈

SMα(Rd)) if f ∈ Cα(Rd) ∩ Iα(Rd), i.e. if there exist C, R > 0 such that, for any x0 ∈ Rd ,

rα/C � sup
|h|�r

‖�[α]+1
h f ‖L∞(Bh(x0,r)) � Crα ∀r � R.

3. Wavelet criteria for pointwise irregularity

Results binding the lower Hölder exponent of a function with its wavelet leaders are well
known (see, e.g., [14]). In this section, we show that the Hölder irregularity of a function can
also be studied through the wavelet leaders method. However, for the Hölder irregularity, only
weaker results hold.

3.1. Wavelets and usual pointwise regularity

Let us briefly recall some definitions and notations (for more precisions, see, e.g., [7, 20, 23]).
Under some general assumptions, there exist a function φ and 2d − 1 functions (ψ(i))1�i<2d ,
called wavelets, such that {φ(x−k)}k∈Zd ∪{ψ(i)(2j x−k) : 1 � i < 2d , k ∈ Zd , j ∈ N} form
an orthogonal basis of L2(Rd). Any function f ∈ L2(Rd) can be decomposed as follows:

f (x) =
∑
k∈Zd

Ckφ(x − k) +
+∞∑
j=1

∑
k∈Zd

∑
1�i<2d

c
(i)
j,kψ

(i)(2j x − k),

where

c
(i)
j,k = 2dj

∫
Rd

f (x)ψ(i)(2j x − k) dx,

and

Ck =
∫

Rd

f (x)φ(x − k) dx.

Let us remark that we do not choose the L2(Rd) normalization for the wavelets, but rather an
L∞ normalization, which is better fitted to the study of the Hölderian regularity. Hereafter, the
wavelets are always supposed to belong to Cγ (Rd) with γ > α, and the functions {∂sφ}|s|�γ ,
{∂sψ(i)}|s|�γ are assumed to have fast decay.

A dyadic cube of scale j is a cube of the form

λ =
[

k1

2j
,
k1 + 1

2j

)
× · · · ×

[
kd

2j
,
kd + 1

2j

)
,

where k = (k1, . . . , kd) ∈ Zd . From now on, wavelets and wavelet coefficients will be
indexed with dyadic cubes λ. Since i takes 2d − 1 values, we can assume that it takes values
in {0, 1}d − (0, . . . , 0); we will use the following notations:

• λ = λ(i, j, k) = k

2j
+

i

2j+1
+

[
0,

1

2j+1

)d

,

• cλ = c
(i)
j,k ,

• ψλ = ψ
(i)
j,k = ψ(i)(2j · −k).
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The pointwise Hölderian regularity of a function is closely related to the decay rate of its
wavelet leaders.

Definition 6. The wavelet leaders are defined by

dλ = sup
λ′⊂λ

|cλ′ |.

Two dyadic cubes λ and λ′ are adjacent if they are at the same scale and if dist(λ, λ′) = 0. We
denote by 3λ the set of 3d dyadic cubes adjacent to λ and by λj (x0) the dyadic cube of side of
length 2−j containing x0. Then

dj (x0) = sup
λ⊂3λj (x0)

dλ.

The following theorem [14] allows to ‘nearly’ characterize the Hölderian regularity by a decay
condition on dj as j goes to infinity.

Theorem 3. Let α > 0; if f ∈ Cα(x0), then there exists C > 0 such that

dj (x0) � C2−αj , ∀j � 0. (5)

Conversely, if (5) holds and if f is uniformly Hölderian, then there exist C, R > 0 and a
polynomial P of degree less than α such that

‖f (x) − P(x)‖L∞(B(x0,r)) � Crα log
1

r
, ∀r � R.

In particular, if f is uniformly Hölderian, the usual Hölder exponent, denoted here hf (x0),
can be estimated from a log–log regression of the wavelet leaders:

Corollary 1. Assume that f is uniformly Hölderian. One has

hf (x0) = lim inf
j→∞

log dj (x0)

−j log 2
.

From now on, we will suppose that the wavelets are compactly supported; such wavelets
are constructed in [7].

3.2. A polynomial characterization of the weak pointwise regularity

Proposition 1 will be useful to obtain criteria for pointwise irregularity. We first need the
following easy lemma, allowing us to work on dyadic scales.

Lemma 1. A locally bounded function f belongs to Cα
w(x0) if and only if, for any C > 0,

there exists a strictly increasing sequence of integers (jn)n such that, for any j � jn,

sup
|h|�2−j

‖�[α]+1
h f ‖L∞(Bh(x0,2−j )) � C2−jnα.

Proof. The ‘if’ part is trivial; let us show the converse. Let C > 0; since f ∈ Cα
w(x0), there

exists a sequence (rn)n strictly decreasing to 0 such that

sup
|h|�rn

‖�[α]+1
h f ‖L∞(Bh(x0,rn)) � C2−αrα

n .

Now, for n ∈ N , let jn = [− log rn/ log 2] + 1. Since rn/2 � 2−jn < rn, one has

sup
|h|�2−jn

‖�[α]+1
h f ‖L∞(Bh(x0,2−jn )) � C2−αrα

n � C2−α2(−jn+1)α = C2−jnα,

which allows to conclude.
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Proposition 1. The two following properties are equivalent:

(1) f ∈ Cα
w(x0),

(2) For any C > 0, there exist a strictly increasing sequence of integers (jn)n and a sequence
of polynomials (Pn)n with degree less than [α] such that, ∀j � jn,

‖f − Pn‖L∞(B(x0,2−j )) � C2−jnα. (6)

Proof. Let f be a locally bounded function and assume that f ∈ Cα
w(x0). The Whitney

theorem (see, e.g., [26]) asserts that there exists a constant C0 > 0 depending only on α and
d such that, for any x0 ∈ Rd and any integer j ,

inf
deg(P )�[α]

‖f − P ‖L∞(B(x0,2−j ) � C0 sup
|h|�2−j

‖�[α]+1
h f ‖L∞(Bh(x0,2−j )).

This shows that inequality (6) is satisfied.
Let us prove the converse assertion. Assume that (6) is satisfied. Let h ∈ Rd such that

|h| � 2−j and x ∈ Rd such that [x, x + ([α] + 1)h] ⊂ B(x0, r). Then for any polynomial P

with degree less than [α],

|�[α]+1
h f (x)| = |�[α]+1

h (f (x) − P(x))| �
[α]+1∑
i=0

|f (x + ih) − P(x + ih)|,

which implies

sup
|h|�2−j

‖�[α]+1
h f ‖L∞(Bh(x0,2−j )) � ([α] + 2)‖f − P ‖L∞(B(x0,2−j )).

Taking the infimum over all the polynomials of degree less than [α] in the right-hand side of
the last inequality leads to the desired result.

3.3. Wavelet criteria for pointwise irregularity

Concerning the pointwise irregularity, there is no result analogous to theorem 3. However,
some stronger properties can be characterized. Let us recall that the wavelets are assumed to
belong to Cγ (Rd), with γ > α.

Theorem 4. Let α > 0 and f ∈ L∞
loc(R

d). If there exists C > 0 such that

dj (x0) � C2−jα, ∀j � 0, (7)

then f ∈ Iα(x0).

Proof. Let �0 such that for any i, supp(ψ(i)) ⊂ B(0, 2�0+1), assume that (7) is satisfied for
some C > 0 and suppose that f ∈ Cα

w(x0). By proposition 1, there exist a strictly increasing
sequence of integers (jn) and a sequence (Pn) of polynomials with degree less than α such
that for any n,

‖f − Pn‖L∞(B(x0,2−jn )) � C

2‖ψ‖L1(Rd )

2−d(�0+1)2−jnα. (8)

Now, let us fix λ′ ⊂ λjn+�0+1(x0) and bound the wavelet coefficient cλ′ . Since ψ has sufficiently
many vanishing moments,

cλ′ = 2�′d
∫

Rd

f (x)ψ(2�′
x − k′) dx

= 2�′d
∫

B(k′/2�′ ,2−(�′−�0−1))

(f (x) − Pn(x))ψ(2�′
x − k′) dx. (9)
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Remark that the assumption λ′ ⊂ λjn+�0+1(x0) implies �′ � jn + �0 + 1 and
B(k′/2�′

, 2−(�′−�0−1)) ⊂ B(x0, 2−jn ). Equality (9) implies

|cλ′ | � 2d(�0+1)‖f − Pn‖L∞(B(x0,2−jn ))‖ψ‖L1(Rd ),

which thanks to inequality (8) yield a contradiction with inequality (7).

Note that we do not have a wavelet characterization of the property hf (x0) = α, as it is the
case for hf (x0) (see corollary 1). It is shown in section 3.4 that it cannot be so. Nevertheless,
one can characterize the stronger property f ∈ Cα

s (x0) using wavelets.

Proposition 2. Let f ∈ Cα(x0).

(1) If there exist two constants C1, C2 > 0 depending only on x0 such that

C12−jα � dj (x0) � C22−jα ∀j,

then f ∈ Iα(x0).
(2) Assume that f is uniformly Hölderian. If f is anti-Hölderian of exponent α at x0, then

for any β > 1, there exist two constants C1, C2 > 0 depending only on x0 such that

C1
2−jα

jβ(α+1)
� dj (x0) � C22−jα ∀j. (10)

Proof. The first part of the proposition comes from theorem 4. Let us prove the second part of
the proposition. We assume that for some ε0 > 0, f ∈ Cε0(Rd). Since f belongs to Cα(x0),
we have, for some C2 > 0,

dj (x0) � C22−jα ∀j.

Suppose now that for any C > 0, there exists a strictly increasing sequence of integers (jn)n
such that,

djn
(x0) � C

2−jnα

j
β(α+1)
n

∀n.

We will show that this hypothesis leads to a contradiction. Define �0 such that C2 = 2�0(M−α)C

and define the sequence (�n)n�1 recursively as follows:

�1 = j1 + �0, �n = min{� � �n−1 : � − �0 − β log2 � � jn} ∀n � 2.

Now, let |h| � 2−�n and x such that

[x, x + Mh] ⊂ B(x0, 2−�n).

We may write

�M
h f (x) =

∑
k

Ck�
M
h φk(x) +

∑
i,j,k

c
(i)
j,k�

M
h ψ

(i)
j,k(x) =

∑
j�0

�M
h fj ,

where fj (x) = ∑
k Ckφk(x) if j = 0, fj (x) = ∑

i,k cλψλ(x) otherwise.
Let α′ > α and define Ln = [α′�n/ε0] + 1. We have, for n sufficiently large,∣∣∣∣∣∣

∑
j�Ln

�M
h fj (x)

∣∣∣∣∣∣ �
∑
j�Ln

∑
i,r,k

|cλ| |ψλ(x + rh)|.

Since the wavelets have fast decay, for any s > 0 there exist some M(s) > 0 such that for any
y ∈ Rd ,

|ψ(i)(y)| � M(s)

(1 + |y|)s .
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Hence ∣∣∣∣∣∣
∑
j�Ln

�M
h fj (x)

∣∣∣∣∣∣ � M(s)
∑
j�Ln

2−jε0
∑
i,r,k

1

(1 + |2j (x + rh) − k|)s .

The usual inequality supx∈Rd

∑
k

1
(1+|2j x−k|)s < ∞ leads to∣∣∣∣∣∣

∑
j�Ln

�M
h fj (x)

∣∣∣∣∣∣ � C(s)2−Lnε0 � C(s)2−�nα
′ � C(s)2−�nα

for some C(s) > 0.
Let us now give an upper bound for

∑Ln

j=�n
�M

h fj (x). Since the wavelets are compactly
supported, if n is sufficiently large, we have, for any y ∈ B(x0, 2−�n) and any λ 	⊂ 3λjn

(x0),
ψλ(y) = 0. Then∣∣∣∣∣∣

Ln∑
j=�n

�M
h fj (x)

∣∣∣∣∣∣ � M sup
y∈B(x0,2−�n )

Ln∑
j=�n

∑
i

∑
k,λ⊂3λjn (x0)

|cλ| |ψλ(y)|

� M

Ln∑
j=�n

C
2−jnα

j
β(α+1)
n

sup
y

∑
k

|ψλ(y)|

� MCLn

2−jnα

j
β(α+1)
n

.

As in [14], since dj (x0) � C22−jα and the wavelets belong to Cγ (Rd),∣∣∣∣∣∣
jn∑

j=0

�M
h fj (x)

∣∣∣∣∣∣ � 2−�nγ C2jn2(γ−α)jn

= C2−�nγ 2(γ−α)(jn+�0)jn

by definition of �0. Finally, one needs to give an upper bound for

�n∑
j=jn

�M
h fj =


 �n∑

j=jn

∑
�M

h fj +
�n∑

j=jn

∑
λ 	⊂3λjn

�M
h fj


 .

In the first sum of the right-hand side, one can use the upper bound dj (x0) � C2−jnα/j
β(α+1)
n

and in the second, dj (x0) � C22−jα to obtain an upper bound. Therefore |�M
h f (x)| � C2−�nα

and f ∈ Cα
w(x0).

In a similar way, proposition 3 gives a sufficient condition on wavelet coefficients for a
function to be uniform anti-Hölderian of exponent α.

Proposition 3. Let α > 0. If there exist C1, C2 > 0 such that for any x0 ∈ Rd and any dyadic
cube λ of length side 2−j ,

C12−jα � dλ � C22−jα,

then f is both uniformly Hölderian and uniformly anti-Hölderian of exponent α.

Proof. If f is not uniformly anti-Hölderian, then, for any C > 0, there exist a strictly increasing
sequence of integers (jn)n and a sequence of real numbers (xn)n such that

sup
|h|�2−jn

‖�[α]+1
h f ‖L∞(Bh(xn,2−jn )) � C2−jnα ∀n.
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Then using a proof similar to this of proposition 1, it follows that for any n, there exists a
polynomial Pn of degree less than α such that

‖f (x) − Pn(x)‖L∞(B(xn,2−jn )) � C2−jnα.

Using a similar approach to this of the proof of theorem 4, one deduces that, for any C > 0,
there exist a strictly increasing sequence of integers (jn)n and a sequence of real numbers (xn)n
such that

djn
(xn) � C0C2−jnα,

where C0 only depends on the multi-resolution analysis; this leads to a contradiction.

3.4. An example showing that the reciprocal to theorem 4 is not always satisfied

We now study the pointwise irregularity at the origin of a family of wavelet series. These
functions illustrate the difficulty to obtain an irregularity criterion relying on the wavelet
leaders. Indeed, there is no result corresponding to theorem 3 for the irregularity.

We will use the Daubechies wavelet with two vanishing moments, ψ2. Let α ∈ (0, 1),
β > 1 and fα,β defined as

fα,β(x) = −
∞∑

n=0

2−jnα

jn+1−1∑
j=jn

ψ2(2
j x − 1), (11)

where jn = [βn] can be modified so that (jn)n is a strictly increasing sequence. The aim is to
prove the following proposition.

Proposition 4. Assume that α ∈ (0, 1/2) and β > 1. Then

hfα,β
(0) <

βα

β + α(β − 1)
< lim sup

j→∞

− log dj (0)

j log 2
= α.

We will use the following result.

Proposition 5. The wavelet leaders of fα,β satisfy the following relation,

lim sup
j→∞

− log dj (0)

j log 2
= α.

Proof. The result is obvious, since dj (0) = 2−jnα whenever j ∈ {jn, · · · , jn+1 − 1}.
We will also need the following lemma, which summarizes some useful properties of ψ2.

Lemma 2. Let ψ = −ψ2(· − 1); the following properties are satisfied:

• supp(ψ) ⊂ [0, 3],
• ψ ∈ Cγ (R), with γ = 1 − log((1 +

√
3)/2)/ log 2,

• if m ∈ N , ψ(2−m) = 2−mγ (
√

3 − 1)/2,
• both ψ(1) and ψ(2) are positive.

Proof. The first assertion is proved in [7] whereas the second one is proved in [8] (theorem 3.1).
Using the two scale difference equation satisfied by φ,

φ(x) =
∑

p

cpφ(2x − p),
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where cp are explicitly known real coefficients (see [7]), one has

φ(2−m+1) = 2

(
1 +

√
3

4

)m

,

for any m ∈ N . The well-known relationship between φ and ψ2 (see, e.g., [20]) leads to

ψ(2−m) = − ψ2(2
−m − 1) =

√
3 − 1

4
φ(2−m+1)

=
√

3 − 1

2

(
1 +

√
3

4

)m

=
√

3 − 1

2
2−mγ .

Finally, the explicit computation of φ(1) and φ(2) (φ(1) = (1 +
√

3)/2, φ(2) = (1 − √
3)/2)

gives ψ(1) > 0 and ψ(2) > 0.

The upper Hölder exponent of fα,β at the origin is given by the following proposition. Let
us note that γ = 0.550 01 ± 10−5 > 1/2.

Proposition 6. If α ∈ (0, 1/2) and β > 1, then

hfα,β
(0) = βαγ

βγ + α(β − 1)
.

Proof. We first give an upper bound for hfα,β
(0). Let � ∈ N and n0 such that jn0 � � �

jn0+1 − 1. Since f (0) = 0, we just have to give a lower bound for |f (2−�)|. Using the fact
that supp(ψ2) ⊂ [−1, 2], one has

f (2−�) = −
n0−1∑
n=0

2−jnα

jn+1−1∑
j=jn

ψ2(2
j 2−� − 1) =

n0−1∑
n=0

2−jnα

jn+1−1∑
j=jn

ψ(2j 2−�).

Therefore,

f (2−�) � C1


n0−1∑

n=0

2−jnα

jn+1−1∑
j=jn+1

2(j−�)γ + 2−jn0 α

�−1∑
j=jn0 +1

2(j−�)γ




� C1

(
2−�γ

n0−1∑
n=0

2−jnα2jn+1γ + 2−�γ 2−jn0 α2�γ

)

� C1

(
2−�γ

n0−1∑
n=0

2jn(βγ−α) + 2−jn0 α

)

� C1(2
−�γ 2jn0−1(βγ−α) + 2−jn0 α).

Let t ∈ (1, β) be such that jn0 = �/t . We have

f (2−�) � C12−� min(γ− γβ−α

βt
, α

t
)
.

Since we claim that α � 1/2 � γβ,

max
t∈(1,β)

(
min

(
γ − βγ − α

βt
,
α

t

))
= βαγ

βγ + α(β − 1)
,

and thus, for any � � j0,

f (2−�) � C12−h�,
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where h = γβα/(γβ + α(β − 1)). In other words, the following relation has been proved for
any � � j0:

sup
[x,x+h]⊂B(0,2−�)

|f (x + h) − f (x)| � C2−h�,

which gives the required upper bound for hfα,β
(0).

Let us now check for a lower bound for hfα,β
(0). Since ψ ∈ Cγ (R),

∀|x| � 2−�, |ψ(2j x)| � C22(j−�)γ ,

for some C2 > 0. If n ∈ N , let us set �n = jn+1 − 1. Since supp(ψ) ⊂ [0, 3], we have, for
any given n0 and any |x| � 2−�n0 ,

|fα,β(x)| � C2

n0∑
n=0

2−jnα

jn+1−1∑
j=jn

2j−�n0 � C22−�n0 γ 2�n0
γβ−α

β .

The same arguments as above lead to the following inequality:

sup
|x|�2−�n

|fα,β(x) − fα,β(0)| � C2−h�n ,

which allows to conclude.

Since γ < 1,

βαγ

βγ + α(β − 1)
<

βα

β + α(β − 1)

and proposition 4 is then a direct consequence of proposition 5 and proposition 6.

4. Proof of the prevalence results

4.1. Proof of theorem 1

The proof of our two prevalence results relies on the stochastic process technique. Recall that
random element X on a complete metric space E is a measurable mapping X defined on a
probability space (�, A, P ) with values in E. For any random element on E, one can define
a probability on E by the formula

PX(A) = P {X ∈ A}.
If we consider as measure µ, µ = PX in the definition of a Haar-null set given in section 1,
we see that in order to prove that a set is Haar-null, it is sufficient to check that

∀f ∈ E, PX(A + f ) = 0.

We now show that the spaces SMα(Rd) are prevalent subsets of Cα(Rd). Theorem 1 directly
follows from proposition 7:

Proposition 7. For f in a prevalent subset of Cα(Rd), there exist C0 > 0 and j0 such that

∀j � j0, ∀λ such that |λ| = 2−j , |dλ| � C02−jα.

Remark 1. Proposition 7 also holds if we replace the notion of prevalence with a quasi-sure
property based on the Baire’s category theorem; see [14] (proposition 5).
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Proof. Let us recall that the wavelet basis (ψ
(i)
j,k)i,j,k is assumed to be compactly supported. Let

(nλ) be independently identically distributed (i.i.d.) Bernoulli random variables and consider
the random field defined as follows:

X(x) =
2d−1∑
i=1

∑
j�0

∑
|k|�2jd

(−1)nλ2−αjψλ(x).

The sample paths of {X(x)}x∈Rd belong to Cα(Rd) almost surely. It is then sufficient to show
that, for any function f belonging to Cα(Rd), there exist some integer j0 such that

∀j � j0, ∀λ such that |λ| = 2−j , dλ(f + X) � 2−jα

2
a.s. (12)

To prove property (12), we use an approach similar to [2]. By definition of the wavelet leaders

P

(
dλ(f + X) � 2−jα

2

)
= P

(⋂
λ′⊂λ

|c′
λ(f + X)| � 2−jα

2

)
.

We now use the independence of the wavelet coefficients of X + f and deduce that

P

(
dλ(f + X) � 2−jα

2

)
=

∏
λ′⊂λ

P

(
|cλ′(f + X)| � 2−jα

2

)

=
∏
λ′⊂λ

P

(
−2−jα

2
� cλ′(f + X) � 2−jα

2

)

=
∏
λ′⊂λ

P

(
−2−jα

2
− cλ′(f ) � cλ′(X) � 2−jα

2
− cλ′(f )

)
.

Let j ′ = j + [log(4‖f ‖Cα )/ log 2α] + 1; one has

P

(
dλ(f + X) � 2−jα

2

)
�

∏
λ′⊂λ, |λ′|=2−j ′

P

(
−2−jα

2
− cλ′(f ) � cλ′(X) � 2−jα

2
− cλ′(f )

)

�
∏

λ′⊂λ, |λ′|=2−j ′
P

(
−1

2
− cλ′(f )

2−jα
� (−1)nλ′ � 1

2
− cλ′(f )

2−jα

)

Since for such cubes λ′ (with side length 2−j ′
),

|cλ′ | � ‖f ‖Cα 2−j ′α � ‖f ‖Cα 2−jα 1

4‖f ‖Cα

� 2−jα

4
,

if cλ′(f ) � 0, one has 1/2 − cλ′(f )/2−jα < 1, whereas, if cλ′(f ) < 0 then −1/2 −
cλ′(f )/2−jα > −1. Thus, since P((−1)ηλ′ = −1) = P((−1)ηλ′ = 1) = 1/2,

P

(
−1

2
− cλ′(f )

2−jα
� (−1)nλ′ � 1

2
− cλ′(f )

2−jα

)
� 1

2
.

Therefore,

P(dλ(f + X) � 2−jαj−4α) �
(

1

2

)j 2

� exp(−j 2)

and thus ∑
λ

P

(
dλ(f + X) � 2−jα

2

)
�

∑
j∈N

exp(−j 2) < ∞.

The Borel–Cantelli lemma then implies inequality (12), which is the required conclusion.
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Proof of theorem 1. Theorem 1 then directly follows from proposition 7 and from the wavelet
criterion for strongly monoHölder functions stated in theorem 4.

4.2. Proof of theorem 2

We first briefly recall the definition of the Hausdorff dimension (see, e.g., [11] for more details).
Let δ > 0 and define the quantity

Hδ
ε(E) = inf

{ ∞∑
i=1

|Ei |δ : E ⊂
∞⋃
i=1

Ei, |Ei | � ε

}
.

The Hausdorff measure is defined from Hδ
ε as ε goes to 0.

Definition 7. The outer measure Hδ defined as

Hδ(E) = sup
ε>0

Hδ
ε(E)

is a metric outer measure. Its restriction to the σ -algebra of the Hδ-measurable sets defines
the Hausdorff measure of dimension δ.

Since the outer measure Hδ is metric, the σ -algebra includes the Borelian sets.
The Hausdorff measure Hδ is decreasing. Moreover, Hδ(E) > 0 implies Hδ′

(E) = ∞ if
δ′ < δ. We are then lead to the following definition.

Definition 8. The Hausdorff dimension dimH(E) of a set E ⊂ Rd is defined as follows:

dimH(E) = sup{δ : Hδ(E) = ∞}.
We now prove that the relation dimH�(f ) = d + 1 − α, connecting the Hausdorff

dimension of the graph of a function f and its uniform Hölder exponent, is satisfied for any
function belonging to a prevalent set of Cα(Rd).

From now on, we will assume that the support of the wavelet ψ is a compact set not
included in [0, 1)d . The following result is directly obtained by considering proposition 1 and
theorem 2 of [25].

Proposition 8. Let X be the following random wavelet series:

X(x) =
2d−1∑
i=0

∑
j�0

∑
k∈Zd

cλψλ(x),

where cλ are independent centred Gaussian random variables with standard deviation σλ. The
following equality is satisfied almost surely:

dimH�(X + f ) � s,

where

s = lim sup
J→∞

lim inf
j→∞

(−j)−1 log2 min
j���j+J

∑
k

min

(
1,

2−�

√
2πσλ

)
2−2�.

We can now prove theorem 2. Let (ξλ(i,j,k))i,j,k be i.i.d. standard Gaussian random variables.
We consider the following Gaussian field:

X(x) =
2d−1∑
i=1

∑
j�0

∑
|k|�2jd

ξλ(i,j,k)

j 2
√

log j
2−αjψλ(i,j,k)(x).
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If f belongs to Cα(Rd), f + X belongs to Cα′
(Rd) for any α′ < α almost surely and thus

dimH�(X + f ) � d + 1 − α.

Conversely, we have

σλ = E

∣∣∣∣∣ ξλ

j 2
√

log j
2−αj

∣∣∣∣∣
2

= 2−2αj

j 4 log j

and thus ∑
|k|�2�d

min

(
1,

2−�

√
2πσλ

)
2−2�d =

∑
|k|�2�d

min

(
1,

2−�2�α�2
√

log(�)√
2π

)
2−2�d

= 1√
2π

∑
|k|�2�d

2�(α−1−2d)�2
√

log(�)

= 1√
2π

2�(α−1−d)�2
√

log �.

Finally, since α − 1 − d > 0, we have, for any j and J ,

min
j���j+J

∑
k

min

(
1,

2−�

√
2πσλ

)
2−2� = 1√

2π
2j (α−1−d)j 2

√
log j .

This allows us to determine the index s of proposition 8:

s = lim sup
J→∞

lim inf
j→∞

(−j)−1 log2

(
min

j���j+J
2�(α−1−d)�2

√
log �

)

= lim sup
J→∞

lim inf
j→∞

(−j)−1 log2

(
1√
2π

2j (α−1−d)j 2
√

log j

)
= d + 1 − α.

Therefore, we have, using proposition 8,

dimH�(X + f ) � d + 1 − α

almost surely, which leads to the conclusion.
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