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Abstract

We study the typical behaviour of strongly monoHolder functions from the
prevalence point of view. To this end we first prove wavelet-based criteria
for strongly monoHolder functions. We then use the notion of prevalence to
show that the functions of C*(R“) are almost surely strongly monoHolder with
Holder exponent «. Finally, we prove that for any @ € (0, 1) on a prevalent set
of C*(R?) the Hausdorff dimension of the graph is equal to d + 1 — a.

Mathematics Subject Classification: 26A16, 42C40

1. Introduction

The most popular concept for uniform regularity is uniform Holder regularity defined from
Holder spaces C“ (RY). For any o € (0, 1), a bounded function f belongs to C* (RY) if there
exist Cy, ro > 0 such that
vr < ro, sup |f(x) = fFWI < Cor®.
[x=yl<r

This notion can be generalized to exponents greater than one (see section 2). It has been used to
study smoothness properties of classical models as trigonometric series (see [16, 28]), sample
paths properties of processes as Brownian motion (see [17]) or fractional Brownian motion.
The pointwise counterparts of spaces C%(R?) are the spaces C*(xp). A locally bounded
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function f belongs to C*(x¢) with @ € (0, 1) (see section 2 for the general case) if there exist
C, R > 0 such that

sup | f(x) = f(xo)| < Cr?, vr < R.
[x—xol<r
In [27], a very natural notion for the pointwise irregularity of a function is obtained by reversing
the inequality sign in the definition of the Holder regularity, when the regularity exponent is
lower than 1. This definition is generalized in [5, 6] for any positive exponent. The spaces
I%(xo) and I*(R?) are the irregular analogues of the usual Holder spaces C%(x,) and C*(R?),
respectively.

In [15], it is showed that most of the historical space-filling functions share the same
property: the associated regularity and irregularity exponents are the same, i.e. f € C*(R%)N
1%(R“). Such mappings are said to be strongly monoHolder with exponent &, which is denoted
by f € SM*(R?). Increasing interest has been paid to such functions in the case where o €
(0, 1) since the box-counting dimension of their graph on RY, T'(f) = {(x, f(x)), x € R%} is
equal tod + 1 — « (see, e.g., [11]). Let us point out that concerning the Hausdorff dimension
of I'(f), it has been proved that the following relationship,

dimul(f) =d +1 —a, (1)

is not true. In [22], McMullen proposed an example of self-affine set which is the graph of a
strongly monoHolder function and whose Hausdorff dimension is lower than its box dimension.
There are examples where equality (1) holds (see, e.g., [19]). However, even for the case of
the classical Weierstraf3 function W, (¢ € (0, 1)) defined on R by

+00

Wy (x) = Z 27 cos(22%x)

k=0
equality (1) remains as a conjecture (see, e.g., [3,21]), although estimates are known. For
example, in the more general case of Weierstra$3 type functions of the form

f) =) 27t g2k),

k=0
where g is a continuously differentiable function on R, there exists a constant ¢ > 0 such that
2—a—c/logh <dimyI'(f) <2 —«,

for b sufficiently large (see [24]). Some results have also been obtained in the case of Weierstraf3
functions with random phase added to each term: for such functions, equality (1) holds with
probability one (see [13]). For the so-called index « fields studied in [1], the same relation is
satisfied.

Therefore, though relation (1) does not hold in generality, it seems to be satisfied for most
of the studied strongly monoHolder models. It is then quite natural to wonder to what point
this behaviour is a typical one. Firstly, is ‘almost every’ function belonging to C*(R?) a
strongly monoHolder function? Thereafter what can be said about the Hausdorff dimension
of the graph of ‘almost every’ function of C*(R%)?

We first need to introduce what is meant by ‘almost every function’. In a finite dimensional
space, we say that a property holds almost everywhere if the set of points where it is not true
is of vanishing Lebesgue measure. The Lebesgue measure has here a preponderant role, as it
is the only o -finite and translation invariant measure. Unfortunately, no measure shares those
properties in infinite dimensional Banach spaces. A way to recover a natural notion of ‘almost
every’ in infinite dimensional vector spaces is defined by Christensen in [4]. The basic idea is
to generalize the well-known characterization of Lebesgue measure zero subsets of R?. In R¢,
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a Borel set B has measure zero if and only if there exists a compactly supported probability
measure u such that,

Vx € R?, u(x+ B) =0.

This characterization can be turned into a definition in the infinite dimensional setting and
leads to the concept of Haar-null sets. This concept provides the needed analogue of ‘Lebesgue
measure zero’ sets for infinite dimensional spaces.

Definition 1. Let E be a complete metric vector space. A Borel set B C E is Haar-null if
there exists a compactly supported Borel probability measure | such that

Vx e E, u(x+ B) =0.

A subset S of E is Haar-null if it is included in a Haar-null Borel set. The complement of a
Haar-null set is called a prevalent set.

In this paper we study the prevalent behaviour of the functions of C*(R?). We first prove
that the spaces SM%(R¢) are prevalent in C%(R?).

Theorem 1. For any a > 0, the space SM®(R?) is a prevalent subset of C* (R?).

Our second main result proves that, though (1) is not generally satisfied, it is true for a prevalent
subset of C*(R%):

Theorem 2 (Let o € (0, 1)). There is a prevalent subset of C* (RY) for which the Hausdorff
dimension of the graph of its elements is equal to the maximum possible value, d + 1 — «, i.e.
for any element f of this subset,

dimy(f) =d +1 — a.

Thus, the classical case where the Hausdorff dimension of the graph of a function is linked to
its uniform Holder exponent corresponds to the typical behaviour of the functions of C*(R?).

These two results are proved in section 4 using wavelets. Indeed Jaffard has shown that
the wavelet transform in general is a very efficient tool to study the regularity of a function.
In particular, the wavelet leaders method most closely characterizes the Holder regularity of
a function (see [14] and references therein). The same pattern is followed for the Holderian
irregularity: this notion is studied under the discrete wavelet lens and several criteria binding
the wavelet coefficients with the irregularity exponent are obtained.

Our plan will be as follows. In section 2, we first recall some definitions about pointwise
irregularity and strongly monoHolder functions. In section 3, we state and prove our two
wavelet criteria. Using these wavelet criteria, we are able in section 4 to prove our two main
results: theorem 1 and theorem 2.

2. Holderian and anti-Holderian functions

We recall here the definitions related to the Holderian regularity of a function for exponents
greater than one, before introducing the Holderian irregularity. These considerations also lead
to a weaker definition of pointwise smoothness. Finally, we define the strongly monoHolder
functions; this notion formalizes the idea of a function which has everywhere the same
regularity, in a way as uniform as possible.

The integer part of « will be denoted [«]: if & > 0, [«¢] = sup{k € N : k < «}. We will
also use the following notation:

By (xo,7r) = {x : [x,x + ([a] + 1)h] C B(xg, r)}
and denote, as usual, the finite differences of arbitrary order as follows:
Al fx) = f(x+h) — f(x), AL F(x) = AN f(x +h) — Al f(x).
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Definition 2. Let f : R? — R be a locally bounded function, let xo, € R* and a > 0;
f € C%(xp) if there exist C, R > 0 such that
sup AT £l LBy o < €T vr < R. @)
|hl<r
Such a function is said to be Holderian of exponent o at xo. The lower Holder exponent of f
at xg is

hy(xo) = supfar : f € C*(x0)}.

A function f is uniformly Hélderian of exponent o (f € C*(R?)) if there exist C, R > 0 such
that (2) is satisfied for any xo € RY; f is uniformly Holderian if there exists & > 0 such that
f e C*(RY).

Condition (2) is satisfied if and only if there exists a polynomial P of degree less than « such
that

I f(x) = POl Bero.ry < CrY, Vr < R 3)

(see, e.g., [5,10, 18]). This inequality is more often chosen to define the spaces C“(xo).
Nevertheless, this last definition cannot directly be linked to our notion of pointwise irregularity,
in contrast to definition 2. The lower Holder exponent is simply denoted Holder exponent in
the literature. However, since we are interested in introducing another concept of pointwise
Holderian regularity, the accustomed notation # is replaced here by A.

The irregularity of a function can be studied through the notion of anti-Holderianity.

Definition 3. Ler f : R - RY bea locally bounded function, let x, € Rianda > 0;
f € I%(xg) if there exist C, R > 0 such that

!
sup | AP £l 18, 0y = €T, vr < R. 4)
[h|<r

Such a function is said to be anti-Hélderian of exponent o at xo. The upper Holder exponent
(or irregularity exponent) of f at xq is

hy(xo) = infla : f € I*(xo)}.
We will say that f is strongly Hélderian of exponent a at xo (f € Cg(xo)) if f €
C*(x0) N 1% (xo).

Let us remark that the statement (4) is not equivalent to negating the property f € C*(xo).
Indeed, f ¢ C*(xp) if for any C > 0, there exists a sequence (r,), (depending on C) for
which

+1
sup | A £l Loy oy = CrE
|h‘<rn

We are thus naturally led to the following definition.
Definition 4. Let f : R? — R be a locally bounded function, let xo € R* and a > 0;

f e Cyxo)if f & I%(x0), i.e. for any C > O there exists a sequence (ry,), strictly decreasing
to 0 such that

!
sup | AV £l Loy oy < CTE Vn € N.

|hI<ra

Such a function is said weakly Holderian of exponent o at x.

Roughly speaking, a function is weakly Holderian of exponent « at x if for any C > 0, one
can bound the oscillation of f over B(xo, r,) by Cr for a remarkable decreasing subsequence
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(rn)n of scales, whereas for an Holderian function, the oscillation of f over B(xy, r) has to be
bounded at each scale r > 0 by Cr?, for some C > 0.

Strongly monoHolderian functions naturally arise in the study of the regularity of mappings
such as Weierstra-type functions, space-filling functions or random processes (see, e.g.,
[9,12,15]). Indeed, many results only hold for such mappings.

Definition 5. A function f : R? — R? is strongly monoHélderian of exponent o (f €
SM*(RY)) if f € C*(RY) N I*(RY), i.e. if there exist C, R > 0 such that, for any xo € R¢,

1
r/C < sup |AY £l (s, 0y < Cr© Vr < R.
|hl<r

3. Wavelet criteria for pointwise irregularity

Results binding the lower Holder exponent of a function with its wavelet leaders are well
known (see, e.g., [14]). In this section, we show that the Holder irregularity of a function can
also be studied through the wavelet leaders method. However, for the Holder irregularity, only
weaker results hold.

3.1. Wavelets and usual pointwise regularity

Let us briefly recall some definitions and notations (for more precisions, see, e.g., [7, 20, 23]).
Under some general assumptions, there exist a function ¢ and 24 _ 1 functions (1//(i))1<,-<2¢z,
called wavelets, such that {¢ (x —k) }reze Uy P (Q2/x —k) : 1 <i < 2% k € Z%, j € N} form
an orthogonal basis of L>(R?). Any function f € L?>(R?) can be decomposed as follows:

fO =) Cox—h+y > Y ypP@x—h),

kezd Jj=1kezd 1<i<24

where

D=2 [ reonO i -,
and "’

Cy = fRd f(x)p(x — k) dx.

Let us remark that we do not choose the L?(R¢) normalization for the wavelets, but rather an
L®° normalization, which is better fitted to the study of the Holderian regularity. Hereafter, the
wavelets are always supposed to belong to C¥ (R?) with y > «, and the functions {00} 1s51<y s
{05y D} <, are assumed to have fast decay.

A dyadic cube of scale j is a cube of the form

|:k1 k1+1> |:kd kd+1>
A= e - X s X, - s
27 2J 27 2J

where k = (ki,...,k;) € Z¢. From now on, wavelets and wavelet coefficients will be
indexed with dyadic cubes A. Since i takes 24 _ 1 values, we can assume that it takes values
in {0, 1}¢ — (0, ..., 0); we will use the following notations:
A=A, j, k)= k i 0 Ly
o A =A(, J, )—E+2j+l+ ’W >
® C), = Cﬁl;{,

o Y=y =y k).
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The pointwise Holderian regularity of a function is closely related to the decay rate of its
wavelet leaders.

Definition 6. The wavelet leaders are defined by

d, = sup |cy|-
NCh

Two dyadic cubes ). and )" are adjacent if they are at the same scale and if dist(A, A") = 0. We

denote by 3 the set of 3% dyadic cubes adjacent to A and by Aj(x0) the dyadic cube of side of
length 27/ containing xy. Then

dj ()Co) = Ssup d)L.

AC32; (x0)
The following theorem [14] allows to ‘nearly’ characterize the Holderian regularity by a decay
condition on d; as j goes to infinity.
Theorem 3. Let o > 0; if f € C*(xy), then there exists C > 0 such that
dj(xg) < C27%, Vj > 0. 5

Conversely, if (5) holds and if f is uniformly Hélderian, then there exist C, R > 0 and a
polynomial P of degree less than o such that

1
I f(x) = PO lLoBxe,ry < Cr®log P Vr < R.

In particular, if f is uniformly Holderian, the usual Holder exponent, denoted here h ¢ (xo),
can be estimated from a log—log regression of the wavelet leaders: ‘
Corollary 1. Assume that f is uniformly Hélderian. One has

logd;

h ;(x0) = liminf logd;(xo)

- j—o0o  —jlog2

From now on, we will suppose that the wavelets are compactly supported; such wavelets
are constructed in [7].

3.2. A polynomial characterization of the weak pointwise regularity

Proposition 1 will be useful to obtain criteria for pointwise irregularity. We first need the
following easy lemma, allowing us to work on dyadic scales.

Lemma 1. A locally bounded function f belongs to C3 (xo) if and only if, for any C > 0,
there exists a strictly increasing sequence of integers (j,), such that, for any j > j,,

. .
sup ||A[;,M]Jr FllLeB, o2y < C2777.
Ih1<2-

Proof. The ‘if” part is trivial; let us show the converse. Let C > 0; since f € CJ (xo), there
exists a sequence (r,), strictly decreasing to O such that

] —
sup AT £l By oy < C270rE
|h‘<rn

Now, forn € N, let j, = [—logr,/log2] + 1. Since r, /2 < 2= < r,, one has

sup  [|AY! £l ooy 2oy < €272 < €272 = o7
Ih|<2n

which allows to conclude.
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Proposition 1. The two following properties are equivalent:

(1) f € Cy(x0),

(2) For any C > 0, there exist a strictly increasing sequence of integers (j,), and a sequence
of polynomials (P,), with degree less than [«] such that, Vj > j,,

I/ = Pullee B2y < C2 7, (6)

Proof. Let f be a locally bounded function and assume that f € CZ(xp). The Whitney
theorem (see, e.g., [26]) asserts that there exists a constant Cy > 0 depending only on « and
d such that, for any xo € R? and any integer j,

1 1
lnf ”f - P”LDC(B(X(),Z*/') g CO Sup ”A[;;”+ f||L°°(B;,(XQ,2’f))~
deg(P)<[a] o

This shows that inequality (6) is satisfied.
Let us prove the converse assertion. Assume that (6) is satisfied. Let 4 € R such that
|h| <27/ and x € R? such that [x, x + ([a] + 1)h] C B(xo, ). Then for any polynomial P
with degree less than [«],
[ee]+1
(APl = 1A (F ) = PG < DD If (e +ih) — P(x +ih)],
i=0
which implies
sup [1AF™ Fll s, 02-0 < (@] + D f = Pll(so.2-iy-
Ih|<2-i

Taking the infimum over all the polynomials of degree less than [«] in the right-hand side of
the last inequality leads to the desired result.

3.3. Wavelet criteria for pointwise irregularity

Concerning the pointwise irregularity, there is no result analogous to theorem 3. However,
some stronger properties can be characterized. Let us recall that the wavelets are assumed to
belong to C” (R?), with y > a.

Theorem 4. Let oo > 0 and f € LS.(R?). If there exists C > 0 such that

loc
dj(x) = C27/%, Vj >0, (7N
then f € I*(xp).

Proof. Let £ such that for any i, supp(y@) C B(0, 2%+*"), assume that (7) is satisfied for
some C > 0 and suppose that f € C7 (xo). By proposition 1, there exist a strictly increasing
sequence of integers (j,) and a sequence (P,) of polynomials with degree less than « such
that for any n,

C
20l rey

Now, letus fix A" C A j,+¢,+1(x0) and bound the wavelet coefficient ¢, . Since ¢ has sufficiently
many vanishing moments,

¢ =24 / FOYQR x —k')dx
Rd

—d(tg+D)n—j,
If = PallLeBixo2-iny) < (EotDo=iner, (8)

= 2@'”’/ (f(x) = P (2% x — k) dx. o
B(k'/2¢ 2~ ~to=D)
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Remark, that/ the assumption X C  Aj+eeri(x0) implies £ > j, + £o + 1 and
B(k'/2%, 2= =%=Dy c B(xy, 27/"). Equality (9) implies

lew| <27V f = Poll ooy 1W Ly
which thanks to inequality (8) yield a contradiction with inequality (7).

Note that we do not have a wavelet characterization of the property Ef (x0) = «, asitisthe
case for h y (x0) (see corollary 1). It is shown in section 3.4 that it cannot be so. Nevertheless,
one can characterize the stronger property f € CZ(xp) using wavelets.

Proposition 2. Let f € C*(xo).
(1) If there exist two constants C1, Cy > 0 depending only on xo such that
C1277% < dj(xg) < G277 vJ,

then f € I*(x).
(2) Assume that f is uniformly Holderian. If f is anti-Holderian of exponent o at x, then
for any B > 1, there exist two constants Cy, C, > 0 depending only on x such that

2-je o )
Cljﬂ(ot+1) <dj(xo) < G2 J vj. (10)

Proof. The first part of the proposition comes from theorem 4. Let us prove the second part of
the proposition. We assume that for some gy > 0, f € C*(R?). Since f belongs to C%(xo),
we have, for some C, > 0,

d ()Co) C22 Je Vj.
Suppose now that for any C > 0, there exists a strictly increasing sequence of integers (ji,),
such that,
D= ine

dj,,(x()) < CW Vn.
n

We will show that this hypothesis leads to a contradiction. Define £y such that C, = 2%M~-9C
and define the sequence (¢,),> recursively as follows:

€ = ji+0o, &y =min{l > b,y : € — Ly — Blog, £ > j,} Vn > 2.
Now, let |#] < 27% and x such that

[x,x + Mh] C B(xo,2™).
We may write

A fx) = Z Cetl e (x) + > Ny =D Al f,

i,jk j>0

where f;(x) = >, Cigu(x) if j =0, f;(x) = D, ; cxu.(x) otherwise.
Let o’ > « and define L, = [&'¢,/50] + 1. We have, for n sufficiently large,

S A E®[< Y el latx +rh)l.

JjZLy JZLy irk
Since the wavelets have fast decay, for any s > 0 there exist some M (s) > 0 such that for any
y € R%,
M(s)

Oy < —8)
VOO T
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Hence

) 1
M o —J%
2 MW SME) Y2

JjZLn JjZLa ik

The usual inequality sup,cpe > m < oo leads to

D AN fi)| < C)27 0 < )27 < C(s)27

JjZLn

for some C(s) > 0.

Let us now give an upper bound for ZL”

e A f;(x). Since the wavelets are compactly
supported, if n is sufficiently large, we have, for any y € B(xp, 27%) and any A ¢ 31; (xo),
Y. (y) = 0. Then

L, Ly
YA <M sip YN N el

J=tn YEB(x0.27m) i =g k,AC3Aj, (x0)
Lo 2= Jne
<M Y C—sup ) 9 ()]
j=ty In Yok
D= ine
< MCLn m .
Jn

As in [14], since d; (xg) < C»277% and the wavelets belong to C7(RY),

Jn
Z Al;l’lfj )] < Zflnyczjnz(}/*a)jn
=0

— Cz*fn}’z(yfa)(jﬁ@o)jn

by definition of £y. Finally, one needs to give an upper bound for

0, 4, Ly
ZA%fJ‘: Zzﬁj}ffﬁz Z N

J=n J=Jn J=Jn L3 j,

In the first sum of the right-hand side, one can use the upper bound d; (xo) < C2 / j,,ﬂ (@+l)
and in the second, d; (x) < C>277* to obtain an upper bound. Therefore | A} f(x)| < C274
and f € Cy(xo).

In a similar way, proposition 3 gives a sufficient condition on wavelet coefficients for a
function to be uniform anti-Holderian of exponent «.

Proposition 3. Leta > 0. Ifthere exist Ci, C» > 0 such that for any xo € R? and any dyadic
cube ) of length side 277,

Ci277% < dy, < C270°,

then f is both uniformly Holderian and uniformly anti-Hélderian of exponent o.

Proof. If f is not uniformly anti-Holderian, then, for any C > 0, there exist a strictly increasing
sequence of integers (j,), and a sequence of real numbers (x,), such that

[e]+1 —Jjin
sup [AY fll L8y o2y < C277 Vn.
Ih| <2
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Then using a proof similar to this of proposition 1, it follows that for any n, there exists a
polynomial P, of degree less than « such that

£ () = Pa(O)ll 2 (B, 2y < C27.

Using a similar approach to this of the proof of theorem 4, one deduces that, for any C > 0,
there exist a strictly increasing sequence of integers (j,), and a sequence of real numbers (x,),
such that

dj, (x,) < CoC2™ M,

where Cj only depends on the multi-resolution analysis; this leads to a contradiction.

3.4. An example showing that the reciprocal to theorem 4 is not always satisfied

We now study the pointwise irregularity at the origin of a family of wavelet series. These
functions illustrate the difficulty to obtain an irregularity criterion relying on the wavelet
leaders. Indeed, there is no result corresponding to theorem 3 for the irregularity.

We will use the Daubechies wavelet with two vanishing moments, y». Let o € (0, 1),
B > 1 and f, p defined as

00 Jnr1—1

fap(x)==_27 3" yp2/x — 1), (11)
n=0 J=n

where j, = [8"] can be modified so that (j,), is a strictly increasing sequence. The aim is to
prove the following proposition.
Proposition 4. Assume that @ € (0, 1/2) and B > 1. Then

_ —logd; (0

hy,,(0) < ﬁ—a < limsup?g—j() =

' :3 +05(:3 - 1) j—o0 J 10g2
We will use the following result.

Proposition 5. The wavelet leaders of f, g satisfy the following relation,

. —logd;(0)
limsup ————— =«
Jj—o00 J 10g 2
Proof. The result is obvious, since d;(0) = 27/% whenever j € {jn, -+, jps1 — 1}.

We will also need the following lemma, which summarizes some useful properties of ;.

Lemma 2. Let ¢ = —vp(- — 1); the following properties are satisfied:

e supp(¥) C [0, 3],

e € CY(R), withy = 1 —log((1 ++/3)/2)/log 2,
oifme N, Y2 ™ =2"(/3-1)/2,

e both (1) and Y (2) are positive.

Proof. The first assertion is proved in [7] whereas the second one is proved in [8] (theorem 3.1).
Using the two scale difference equation satisfied by ¢,

$(x) =) cpp(2x — p),
P
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where ¢, are explicitly known real coefficients (see [7]), one has

1+v3)"
M2WU=2<'“F>,
4
for any m € N. The well-known relationship between ¢ and v, (see, e.g., [20]) leads to
_ _ ﬁ -1
YR = =" 1) = p27"h

27,

V31 (1+3Y ﬁ—1
2 4 2

Finally, the explicit computation of ¢ (1) and ¢ (2) (¢(1) = (1 ++/3)/2, ¢(2) = (1 —/3)/2)
gives ¥ (1) > O and ¥ (2) > 0.

The upper Holder exponent of f,, g at the origin is given by the following proposition. Let
us note that y = 0.55001 = 107> > 1/2.

Proposition 6. If« € (0, 1/2) and 8 > 1, then

- Bay

hpy0) = o
By +a(f —1)

Proof. We first give an upper bound for Efu' ;(0). Let £ € N and ng such that j,, < £ <

Jjnge1 — 1. Since £(0) = 0, we just have to give a lower bound for | f(27¢)|. Using the fact

that supp(y2) C [—1, 2], one has

no—1 Jne1—1 no—1 Jns1—1
fQH==>"270 3yt =) 27 3 y@i2h.
n=0 J=Jn n=0 J=Jn
Therefore,
no—1 Jne1— 1
f(z Z) > Cl Zz Jnot Z 2(} Ly +2 Jno Z 2(] Oy
J=Jjn+l J=Jng 1
Vlo—l
>C (2—157/ Z =@ jns1y +2—€J/2—jnovt25y>
n=0

no—1
> Cy (2—@/ Z 2Jn(By—a) +2_‘,-n00,)

n=0
> C (2772001 By =) 4 9 =in@)

Lett € (1, B) be such that j,, = £/t. We have

¢ B—a «
f@2H=cC Bl
Since we claim that e < 1/2 < v8,

( . ( e a)) B e
max (min |y — , — = ,
te(1,8) Bt t By +a(B—1)

and thus, for any £ > jj,
@Y =™,
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where 1 = yBa/(yp +a(B — 1)). In other words, the following relation has been proved for
any £ = jo:

sup  |f(x+h) — f(x)| = C27M,
[x,x+h]CB(0,27¢)

which gives the required upper bound for / s (0).
Let us now check for a lower bound for Efa +(0). Since ¥ € C"(R),
vix| <27, ¥ (27 x)| < C2V707,
for some C; > 0. If n € N, letus set {,, = j,+1 — 1. Since supp(y¥r) C [0, 3], we have, for
any given ng and any |x| < 27,

jn+l_]
vB—«a

no
|f01,/3('x)| < C2 Zz_j"a Z 2j_€"0 < sz_enoyzeno B

n=0 J=n

The same arguments as above lead to the following inequality:

Sup | fup(x) — fup(0)] < C27M,

x| <2t

which allows to conclude.

Since y < 1,
Bay - B
By+a(B-1) B+a(B—-1

and proposition 4 is then a direct consequence of proposition 5 and proposition 6.

4. Proof of the prevalence results

4.1. Proof of theorem 1

The proof of our two prevalence results relies on the stochastic process technique. Recall that
random element X on a complete metric space E is a measurable mapping X defined on a
probability space (€2, A, P) with values in E. For any random element on E, one can define
a probability on E by the formula

Pyx(A) = P{X € Al

If we consider as measure u, 4 = Py in the definition of a Haar-null set given in section 1,
we see that in order to prove that a set is Haar-null, it is sufficient to check that

VfeE, Py(A+ f) =0.

We now show that the spaces SM®(R?) are prevalent subsets of C*(R¢). Theorem 1 directly
follows from proposition 7:

Proposition 7. For f in a prevalent subset of C*(R?), there exist Cy > 0 and jo such that
Vj > jo, VA such that [A| =27/, |ds| = Co277%.

Remark 1. Proposition 7 also holds if we replace the notion of prevalence with a quasi-sure
property based on the Baire’s category theorem; see [14] (proposition 5).
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Proof. Letus recall that the wavelet basis (w](f,)(),v, j.k 1s assumed to be compactly supported. Let
(n,) be independently identically distributed (i.i.d.) Bernoulli random variables and consider
the random field defined as follows:

211

X)) =) Y > (=D)"27 Yy (x).

i=1 j>0 k|27
The sample paths of {X (x)},crs belong to C%(R“) almost surely. It is then sufficient to show
that, for any function f belonging to C*(R?), there exist some integer j, such that

7j0(

j 2
Vj = jo. VA suchthat [A]|=277, d(f+X) >

a.s. (12)

To prove property (12), we use an approach similar to [2]. By definition of the wavelet leaders

2Je , 2-Je
P<dx(f+X)< 5 >=P e +X01< =)

A CA

We now use the independence of the wavelet coefficients of X + f and deduce that

2-Je
HP<|cA/(f+X>| <= )

2«
P (dx(f +X) < )

2
AMCh
2 2w
= ]‘[P(— S-S a(f+X) < )
MNCh
2—ja —ju
=[]>r <— s — () <) < = —cAf(f))-
MNCh
Let j' = j + [log(4]l fllc«)/ log 2*] + 1; one has
2-ja -ja —Jja
P (dx(f+X) < 5 ) < H P (— 5 —cv(f) <en(X) < 5 —C,v(f)>

MNea, [V |=2-7

< Il P(—l— e >

2 2« 2 2«
MNCa, [V |=2-7

Since for such cubes A’ (with side length 2-J '),

1 2 Je
< ,
4 fllce 4

if cp(f) = 0, one has 1/2 — cA/(f)/Z_f"‘ < 1, whereas, if ¢y (f) < O then —1/2 —
cv(f)/277% > —1. Thus, since P((—1)™ = —1) = P((-1)™" =1) = 1/2,

lexl < N fllee27® <N fllee2 ™

Pt e LoDy
2 2 2 2 2
Therefore,
) 1\
P(d,(f+X)<27/%j7%) < (5) < exp(—j°)
and thus
dYoP(d(f+X)< 2 < > exp(—j*) < o0

) jeN

The Borel-Cantelli lemma then implies inequality (12), which is the required conclusion.
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Proof of theorem 1. Theorem 1 then directly follows from proposition 7 and from the wavelet
criterion for strongly monoHolder functions stated in theorem 4.

4.2. Proof of theorem 2

We first briefly recall the definition of the Hausdorff dimension (see, e.g., [11] for more details).
Let § > 0 and define the quantity

o0 o0
HUE) =inf \ D |ES  E | JE E|<e

The Hausdorff measure is defined from H? as & goes to 0.

Definition 7. The outer measure H® defined as

HY(E) = sup HX(E)

e>0
is a metric outer measure. Its restriction to the o-algebra of the H®-measurable sets defines

the Hausdorff measure of dimension 8.

Since the outer measure H® is metric, the o -algebra includes the Borelian sets.
The Hausdorff measure 7’ is decreasing. Moreover, H*(E) > 0 implies H® (E) = oo if
8’ < 8. We are then lead to the following definition.

Definition 8. The Hausdorff dimension dimy(E) of a set E C R? is defined as follows:
dimy(E) = sup{8 : H*(E) = o0o}.

We now prove that the relation dimyI'(f) = d + 1 — o, connecting the Hausdorff
dimension of the graph of a function f and its uniform Holder exponent, is satisfied for any
function belonging to a prevalent set of C%(RY).

From now on, we will assume that the support of the wavelet i is a compact set not
included in [0, 1)?. The following result is directly obtained by considering proposition 1 and
theorem 2 of [25].

Proposition 8. Ler X be the following random wavelet series:

241

X)) =Y Y ey,

i=0 j>0kezd

where c;, are independent centred Gaussian random variables with standard deviation o,. The
following equality is satisfied almost surely:

dimpy (X + f) > s

where

2—[
s = limsupliminf (—j)"'log, min min (1, >2—”.
i S 7 S - V2o,

We can now prove theorem 2. Let (§,, jk))i,j,x be i.i.d. standard Gaussian random variables.
We consider the following Gaussian field:

241

X =3 Y DA ey ),

2
i1 50 p<ae 4 V108 ]
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If f belongs to C*(RY), f + X belongs to C* (R?) for any o’ < « almost surely and thus

dimy'(X + f) <d +1—a.

Conversely, we have

2 ; 272

—aj

o) = -2 = i
j2/log j j*log j

and thus

Z min (1 2__[) n=2d _ Z min |1 % v1og(t) n—2td
k| <2t V270, k| <2t v

1
— Z zl(a—l—Zd)ZZ log(e)
VIT |G

1
= pla=l=d)p2 [l5op.
N2 g

Finally, since « — 1 —d > 0, we have, for any j and J,

2t 1 .
min min (1, —— |27 = —2/@1=D ;2 /50 ;.
JSESiH 4 < «/Ea,\> V2 Jviosd

This allows us to determine the index s of proposition 8:

s = limsupliminf(—;) " log, ( min 2{(“_1_d)22\/10gﬁ>

J>oo JoX® J<ULj+S

1 o .

T

= limsuplim inf(— ;)" log, (

J—soo ST

=d+1—a.

Therefore, we have, using proposition 8,

dimyF(X+ f) >d+1—«

almost surely, which leads to the conclusion.
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