Article (Scientific journals)
Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: A biogeochemical model of the whole water column coupling the oxic and anoxic parts
Grégoire, Marilaure; Soetaert, Karline
2010In Ecological Modelling, p. 15
Peer Reviewed verified by ORBi
 

Files


Full Text
CarbonNitrogenOxygenSulfideEM2010.pdf
Publisher postprint (1.15 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Biogeochemical cycles; anoxic waters; mathematical model
Abstract :
[en] Carbon, nitrogen, oxygen and sulfide budgets are derived for the Black Sea water column from a coupled physical-biogeochemical model. The model is applied in the deep part of the sea and simulates processes over the whole water column including the anoxic layer that extends from ~ 115 m to the bottom (~ 2000 m). The biogeochemical model involves a refined representation of the Black Sea foodweb from bacteria to gelatinous carnivores. It includes notably a series of biogeochemical processes typical for oxygen deficient conditions with, for instance, bacterial respiration using different types of oxidants (i.e denitrification, sulfate reduction), the lower efficiency of detritus degradation, the ANAMMOX (ANaerobic AMMonium OXidation) process and the occurrence of particular redox reactions. The model has been calibrated and validated against all available data gathered in the Black Sea TU Ocean Base and this exercise is described in Gregoire et al., (2008). In the present paper, we focus on the biogeochemical flows produced by the model and we compare model estimations with the measurements performed during the R.V. KNORR expedition conducted in the Black Sea from April to July 1988 (Murray and the Black Sea Knorr Expedition, 1991). Model estimations of hydrogen sulfide oxidation, metal sulfide precipitation, hydrogen sulfide formation in the sediments and water column, export flux to the anoxic layer and to the sediments, denitrification, primary and bacterial production are in the range of field observations. With a simulated Gross Primary Production (GPP) of 7.9 molC m-2 yr-1 and a Community Respiration (CR) of 6.3 molC m-2 yr-1, the system is net autotrophic with a Net Community Production (NCP) of 1.6 molC m-2 yr-1. This NCP corresponds to 20 % of the GPP and is exported to the anoxic layer. In order to model Particulate Organic Matter (POM) fluxes to the bottom and hydrogen sulfide profiles in agreement with in-situ observations, we have to consider that the degradation of POM in anoxic conditions is less efficient that in oxygenated waters as it has often been observed (see discussion in Hedges et al., 1999). The vertical POM profile produced by the model can be fitted to the classic power function describing the oceanic carbon rate (CR=Z-) using an attenuation coefficient  of 0.36 which is the value proposed for another anoxic environment (i.e. the Mexico Margin) by Devol and Hartnett, (2001). Due to the lower efficiency of detritus degradation in anoxic conditions and to the aggregation of particles that enhanced the sinking, an important part of the export to the anoxic layer (i.e. 33 %, 0.52 molC m-2 yr-1) escapes remineralization in the water column and reaches the sediments. Therefore, sediments are active sites of sulfide production contributing to 26 % of the total sulfide production. In the upper layer, the oxygen dynamics is mainly governed by photosynthesis and respiration processes as well as by air-sea exchanges. ~ 71 % of the oxygen produced by phytoplankton (photosynthesis + nitrate reduction) is lost through respiration, ~ 21 % by outgasing to the atmosphere, ~ 5 % through nitrification and only ~ 2 % in the oxidation of reduced components (e.g. Mn2+, Fe2+, H2S). The model estimates the amount of nitrogen lost through denitrification at 307 mmolN m-2 yr-1 that can be partitioned into a loss of ~ 55 % through the use of nitrate for the oxidation of detritus in low oxygen conditions, ~ 40 % in the ANAMMOX process and the remaining ~ 5% in the oxidation of reduced substances by nitrate. In agreement with data analysis performed on long time series collected since the 1960's (Konovalov and Murray, 2001), the sulfide and nitrogen budgets established for the anoxic layer are not balanced in response to the enhanced particle fluxes induced by eutrophication: the NH4 and H2S concentrations increase.
Research Center/Unit :
MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Grégoire, Marilaure  ;  Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Océanologie
Soetaert, Karline
Language :
English
Title :
Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: A biogeochemical model of the whole water column coupling the oxic and anoxic parts
Publication date :
July 2010
Journal title :
Ecological Modelling
ISSN :
0304-3800
eISSN :
1872-7026
Publisher :
Elsevier Science, Amsterdam, Netherlands
Pages :
15 p.
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
SESAME EU FP6
Available on ORBi :
since 20 July 2010

Statistics


Number of views
148 (10 by ULiège)
Number of downloads
5 (2 by ULiège)

Scopus citations®
 
28
Scopus citations®
without self-citations
23
OpenCitations
 
20
OpenAlex citations
 
31

Bibliography


Similar publications



Contact ORBi