Crawford, C.M., Hurtgen-Grace, K., Talarico, E. & Marley, J. Abdominal aortic aneurysm: an illustrated narrative review. J. Manipulative Physiol. Ther. 26, 184-195 (2003).
Weintraub, N.L. Understanding abdominal aortic aneurysm. N. Engl. J. Med. 361, 1114-1116 (2009).
Annambhotla, S. et al. Recent advances in molecular mechanisms of abdominal aortic aneurysm formation. World J. Surg. 32, 976-986 (2008).
Grootenboer, N., Bosch, J.L., Hendriks, J.M. & van Sambeek, M.R. Epidemiology, aetiology, risk of rupture and treatment of abdominal aortic aneurysms: does sex matter? Eur. J. Vasc. Endovasc. Surg. 38, 278-284 (2009).
Assar, A.N. & Zarins, C.K. Ruptured abdominal aortic aneurysm: a surgical emergency with many clinical presentations. Postgrad. Med. J. 85, 268-273 (2009).
Wahlgren, C.M., Larsson, E., Magnusson, P.K., Hultgren, R. & Swedenborg, J. Genetic and environmental contributions to abdominal aortic aneurysm development in a twin population. J. Vasc. Surg. 51, 3-7 discussion 7 (2010).
Ogata, T. et al. The lifetime prevalence of abdominal aortic aneurysms among siblings of aneurysm patients is eightfold higher than among siblings of spouses: an analysis of 187 aneurysm families in Nova Scotia, Canada. J. Vasc. Surg. 42, 891-897 (2005).
Sandford, R.M., Bown, M.J., London, N.J. & Sayers, R.D. The genetic basis of abdominal aortic aneurysms: a review. Eur. J. Vasc. Endovasc. Surg. 33, 381-390 (2007).
Shibamura, H. et al. Genome scan for familial abdominal aortic aneurysm using sex and family history as covariates suggests genetic heterogeneity and identifes linkage to chromosome 19q13. Circulation 109, 2103-2108 (2004).
Van Vlijmen-Van Keulen, C.J., Rauwerda, J.A. & Pals, G. Genome-wide linkage in three Dutch families maps a locus for abdominal aortic aneurysms to chromosome 19q13.3. Eur. J. Vasc. Endovasc. Surg. 30, 29-35 (2005).
Helgadottir, A. et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat. Genet. 40, 217-224 (2008).
Thompson, A.R. et al. Sequence variant on 9p21 is associated with the presence of abdominal aortic aneurysm disease but does not have an impact on aneurysmal expansion. Eur. J. Hum. Genet. 17, 391-394 (2009).
Bown, M.J. et al. Association between the coronary artery disease risk locus on chromosome 9p21.3 and abdominal aortic aneurysm. Circ. Cardiovasc. Genet. 1, 39-42 (2008).
Elmore, J.R. et al. Identifcation of a genetic variant associated with abdominal aortic aneurysms on chromosome 3p12.3 by genome wide association. J. Vasc. Surg. 49, 1525-1531 (2009).
Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719-748 (1959).
Evans, D.M., Frazer, I.H. & Martin, N.G. Genetic and environmental causes of variation in basal levels of blood cells. Twin Res. 2, 250-257 (1999).
Iwashita, S. & Song, S.Y. RasGAPs: a crucial regulator of extracellular stimuli for homeostasis of cellular functions. Mol. Biosyst. 4, 213-222 (2008).
Xie, D. et al. DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proc. Natl. Acad. Sci. USA 106, 19878-19883 (2009).
Chen, H., Pong, R.C., Wang, Z. & Hsieh, J.T. Differential regulation of the human gene DAB2IP in normal and malignant prostatic epithelia: cloning and characterization. Genomics 79, 573-581 (2002).
Qiu, G.H. et al. Differential expression of hDAB2IPA and hDAB2IPB in normal tissues and promoter methylation of hDAB2IPA in hepatocellular carcinoma. J. Hepatol. 46, 655-663 (2007).
Dimmeler, S. et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605 (1999).
Shiojima, I. & Walsh, K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90, 1243-1250 (2002). (Pubitemid 34787405)
Yoshimura, K. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat. Med. 11, 1330-1338 (2005).
Zhang, H. et al. AIP1 functions as an endogenous inhibitor of VEGFR2-mediated signaling and infammatory angiogenesis in mice. J. Clin. Invest. 118, 3904-3916 (2008).
Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491-1493 (2007). (Pubitemid 46906618)
McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488-1491 (2007).
Prandoni, P. Links between arterial and venous disease. J. Intern. Med. 262, 341-350 (2007).
Sørensen, H.T., Horvath-Puho, E., Pedersen, L., Baron, J.A. & Prandoni, P. Venous thromboembolism and subsequent hospitalisation due to acute arterial cardiovascular events: a 20-year cohort study. Lancet 370, 1773-1779 (2007).
Braekkan, S.K. et al. Family history of myocardial infarction is an independent risk factor for venous thromboembolism: the Tromso study. J. Thromb. Haemost. 6, 1851-1857 (2008).
Sabeti, P.C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913-918 (2007).
Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat. Genet. 35, 131-138 (2003).
Rice, J.A. Generalized likelihood ratio tests. in Mathematical Statistics and Data Analysis Vol 1 (ed. Rice, J.A.) 308-310 (International Thomson Publishing, 1995).
Rafnar, T. et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41, 221-227 (2009).
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997-1004 (1999).
Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906-913 (2007).
Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851-861 (2007).
Cordell, H.J. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum. Mol. Genet. 11, 2463-2468 (2002).