Abstract :
[en] In this paper, we address a problem of biomedical image classification that involves the automatic classification of x-ray images in 57 predefined classes with large intra-class variability. To achieve that goal, we apply and slightly adapt a recent generic method for image classification based on ensemble of decision trees and random subwindows. We obtain classification results close to the state of the art on a publicly available database of 10000 x-ray images. We also provide some clues to interpret the classification of each image in terms of subwindow relevance.
Scopus citations®
without self-citations
20