[en] Quantum-enhanced measurements use quantum mechanical effects to enhance the sensitivity of the measurement of classical quantities, such as the length of an optical cavity. The major goal is to beat the standard quantum limit (SQL), that is, an uncertainty of order 1/ N, where N is the number of quantum resources (for example, the number of photons or atoms used), and to achieve a scaling 1/N, known as the Heisenberg limit. So far very few experiments have demonstrated an improvement over the SQL. The required quantum states are generally highly entangled, difficult to produce, and very prone to decoherence. Here, we show that Heisenberg- limited measurements can be achieved without the use of entangled states by coupling the quantum resources to a common environment that can be measured at least in part. The method is robust under decoherence, and in fact the parameter dependence of collective decoherence itself can be used to reach a 1/N scaling.
Disciplines :
Physics
Author, co-author :
Braun, D.
Martin, John ; Université de Liège - ULiège > Département de physique > Optique quantique
Language :
English
Title :
Heisenberg-limited sensitivity with decoherence-enhanced measurements
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Cramér, H. Mathematical Methods of Statistics (Princeton University Press, 1946).
Braunstein, S. L. & Caves, C M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439-3443 (1994). (Pubitemid 24975442)
Giovannetti, V., Loyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330-1336 (2004). (Pubitemid 39534415)
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology Phys. Rev. Lett. 96,010401 (2006).
Budker, D. & Romalis M. Optical magnetometry Nat Phys. 3, 227-234 (2007).
Goda, K. et al A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4, 472-476 (2008).
Caves, C M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693-1708 (1981).
Sanders, B. C Quantum dynamics of the nonlinear rotator and the ef ects of continual spin measurement. Phys. Rev. A 40, 2417-2427 (1989).
Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the difraction limit. Phys. Rev. Lett 85, 2733-2736 (2000).
Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161-164 (2004). (Pubitemid 38656187)
Leibfried, D. et al. Creation of a six-atom ' Schrodinger cat ' state. Nature438, 639-642 (2005). (Pubitemid 41740569)
Nagata, T., Okamoto, R., O ' Brien, J. L. & Takeuchi, K. S. S. Beating the standard quantum limit with four-entangled photons. Science 316, 726-729 (2007). (Pubitemid 46717676)
Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393-396 (2007). (Pubitemid 350126742)
Zurek, W. H. Decoherence and the transition from quantum to classical. Phys. Today 44, 36-44 (1991).
Giulini, D. et al. Decoherence and the Appearance of a Classical World in Quantum T eory (Springer, 1996).
Braun, D., Haake, F. & Strunz, W. Universality f Decoherence. Phys. Rev. Lett. 86,2913-2917(2001).
Strunz, W. T., Haake, F. & Braun, D. Universality of decoherence for macroscopic quantum superpositions. Phys. Rev. A 67, 022101 (2003).
Brune, M. et al. Observing the progressive decoherence of the 'Meter' in a quantum measurement. Phys. Rev. Lett 77, 4887-4890 (1996). (Pubitemid 126627718)
Guerlin, C et al. Progressive f eld-state collapse and quantum non-demolition photon counting. Nature 448, 889-893 (2007). (Pubitemid 47312774)
Zanardi, P. & Rasetti, M. Noiseless quantum codes. Phys. Rev. Lett 79, 3306-3309 (1997). (Pubitemid 127624774)
Braun,D.,Braun,P.A. & Haake, F. Slow decoherence of superpositions of macroscopically distinct states, Proceedings of the 1998 Bielefeld Conference on 'Decoherence: T eoretical, Experimental, and Conceptual Problems'. Lect Notes Phys. 538, 55-66 (2000).
Lidar, D. A., Chuang, I. L. & Whaley K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594-2597 (1998). (Pubitemid 128790445)
Duan, L. M. & Guo, G. C Prevention of dissipation with two particles. Phys. Rev. A 57, 2399-2402 (1998)
Braun, D. Dissipative Quantum Chaos and Decoherence, vol. 172 of Springer Tracts in Modern Physics (Springer, 2001).
Bengtsson, I. & Zyczkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambride University Press, 2006).
Breuer, H.-P. & Petruccione, F Te T eory of Open Quantum Systems (Oxford University Press 2006).
Tavis, M. & Cummings, F. W. Exact Solution for an N-molecule, radiation-f eld hamiltonian. Phys. Rev. 170, 379-384 (1968).
Karasik, R. I., Marzlin, K.-P., Sanders, B. C & Whaley K. B. Multiparticle decoherence-free subspaces in extended systems. Phys. Rev. A 76, 012331 (2007).
Agarwal, G. S. Master-equation approach to spontaneous emission. Phys. Rev. A 2,2038 (1970).
Bonifacio, R., Schwendiman, P. & Haake, F. Quantum statistical theory of superradiance I. Phys. Rev. A 4, 302-313 (1971).
Glauber, R. J. & Haake, F. Superradiant pulses and directed angular momentum states. Phys. Rev. A 13, 357-366 (1976).
Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301-396 (1982).
Gross, M., Fabre, C., Pillet, P. & Haroche, S. Observation of near-infrared Dicke superradiance on cascading transitions in atomic sodium. Phys. Rev. Lett. 36, 1035-1038(1976).
Skribanowitz, N., Herman, I. P., MacGillivray J. C & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett 30, 309 (1973).
Beige, A., Braun, D. & Knight, P. L. Driving atoms into decoherence-free states. New J. Phys. 2, 22.1-22.5 (2000).
Kitaev, A. Y. Quantum measurements and the Abelian stabilizer problem. Electr. Coll. Comput. Complex. 3 (http://www.eccc.uni-trier.de/report/1996/003/) (1996)
Kołodyski, J. Demkowicz-Dobrzaski, R. Phase estimation without a priori phase knowledge in the presence of loss. Phys. Rev. A 82, 053804 (2010).
Fink, J. M. et al. Dressed collective Qubit states and the Tavis-Cummings model in circuit QED. Phys. Rev. Lett 103, 083601 (2009).
Häfner, H., Roos, C F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155-203 (2008).
Reithmaier, J. P. et al Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197-200 (2004). (Pubitemid 39545845)
Ganesh, N. et al. Enhanced f uorescence emission from quantum dots on a photonic crystal surface. Nat Nanotechnol. 2, 515 (2007).
Braun, D. Parameter estimation with mixed quantum states. Eur. Phys. J. D 59, 521-523 (2010).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.