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Heisenberg-limited sensitivity with
decoherence-enhanced measurements

Daniel Braun'? & John Martin'?3

Quantum-enhanced measurements use quantum mechanical effects to enhance the sensitivity
of the measurement of classical quantities, such as the length of an optical cavity. The major
goal is to beat the standard quantum limit (SQL), that is, an uncertainty of order 1/\/N, where
N is the number of quantum resources (for example, the number of photons or atoms used),
and to achieve a scaling 1/N, known as the Heisenberg limit. So far very few experiments have
demonstrated an improvement over the SQL. The required quantum states are generally highly
entangled, difficult to produce, and very prone to decoherence. Here, we show that Heisenberg-
limited measurements can be achieved without the use of entangled states by coupling the
quantum resources to a common environment that can be measured at least in part. The method
is robust under decoherence, and in fact the parameter dependence of collective decoherence
itself can be used to reach a 1/N scaling.

"Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse (UPS), 118, route de narbonne, Toulouse F-31062, France. > CNRS, LPT (IRSAMC),
118, route de Narbonne, Toulouse F-31062, France. ® Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liege, Liege 4000,
Belgium. Correspondence and requests for materials should be addressed to D.B. (email: braun@irsamc.ups-tlse.fr).

NATURE COMMUNICATIONS | 2:223 | DOI: 10.1038/ncomms1220 | www.nature.com/naturecommunications
© 2011 Macmillan Publishers Limited. All rights reserved.



ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1220

uantum mechanical noise imposes fundamental limita-

tions on any measurement. The best-known example is the

Heisenberg uncertainty relation, which provides a lower
bound on the product of fluctuations of two non-commuting quan-
tized variables. But even a classical system parameter x can in gen-
eral not be measured with arbitrary precision with a finite number of
measurements due to the statistical nature of any quantum state. A
lower bound on the uncertainty is given by the smallest dx such that
two quantum states p(x) and p(x + dx) lead to statistically significant
differences for an optimally chosen observable. A similar problem
exists in classical statistical analysis, in which one wants to distin-
guish between two probability distributions P(x) and P(x + 0x), and
the celebrated Cramér-Rao bound sets an ultimate lower bound on
the uncertainty of a measurement of x based on the distinguishabil-
ity of P(x) and P(x+ 0x) (ref. 1). That analysis has been generalized
to the quantum world? and has become known as ‘quantum param-
eter estimation theory’. Recently, the theory was used to prove lower
bounds on the smallest measurable ox for unitary time evolution.
It was shown that if N replicas of the quantum system evolve inde-
pendently and linearly, for an initially separable state no uncertainty
smaller than 1/+/N can be achieved, that is, the standard quantum
limit (SQL), no matter how sophisticated the measurement. If ini-
tially entangled states are allowed, a 1/N scaling of the uncertainty
is the ultimate lower bound under otherwise identical conditions®*.
The use of non-classical states of light for Heisenberg-limited inter-
ferometry, notably the use of squeezed states, was proposed theo-
retically already in 1981 (ref. 7). So-called NOON states have been
investigated for super-resolution®'°. However, decoherence of these
highly non-classical states has so far prevented reaching an uncer-
tainty that scales as 1/N for systems with N>>1 (refs 11, 12). In ref.
13 entanglement-free Heisenberg-limited sensitivity of a phase-shift
measurement was reported for several hundred quantum resources
by passing light many times through the phase shifter.

Decoherence arises when a quantum system interacts with an
environment with many uncontrolled degrees of freedom, such as
the modes of the electromagnetic field, phonons in a solid or sim-
ply a measurement instrument'. Decoherence destroys quantum
mechanical coherence, and has an important role in the transition
from quantum to classical mechanics®. It becomes extremely fast
for a mesoscopic or even macroscopic ‘distance’ between the com-
ponents of a ‘Schrodinger cat’-type superposition of quantum states.
Universal power laws rule the scaling of the decoherence rates in
this regime'®'”. Only recently could the collapse be time-resolved in
experiments with relatively small ‘Schrédinger cat’ states'®". How-
ever, decoherence can depend very sensitively on the initial state
and the coupling to the environment. Entire decoherence-free sub-
spaces (DFSs) can exist if the coupling operators to the environment
have degenerate eigenvalues®-*.

We show below that a collective coupling that depends on a
parameter x of N quantum systems S, to a common ‘environment’
‘R can be used to measure x with an uncertainty that scales as 1/N
with an initial product state of all subsystems. The method works
whether R is entirely under our control, or a reservoir with many
degrees of freedom to which we have only partly access, that is, a
collective decoherence process of the S, as long as we can measure
an observable of the environment.

Results
Model. Consider N quantum systems S, coupled to a common
environment R. The hamiltonian of the total system has the form

N
H(x)=YH;+ Y8 ,(x)®R, + Hp, (1)

i=1 i,V

where H, is the hamiltonian of system S, and for simplicity we take
the S, as non-interacting. H, denotes the hamiltonian of R, which

may be itself a composite quantum system. Hamiltonian (1) can be
a model of decoherence (in which case R would be the ensemble
of many degrees of freedom of a ‘reservoir’ to which we have only
partial access), or H(x) can generate a unitary evolution if R and
S§={S,,..., Sy} are completely under our control. The sum over vruns
over an arbitrary number of operators for each subsystem S;and R,
but R, can also mean operators on different subsystems of R if R is
composite (for example, positions of harmonic oscillators modelling
a heat bath). To have a generic name for R that encompasses these
different situations, we will refer to R as the ‘quantum bus’ The
entire dependence on x is included in the coupling operators S, (x).
With ‘collective couplings’ (and with ‘collective decoherence’ if R is
a reservoir) we mean S, ,(x) which do not depend on i.

The smallest uncertainty 6x with which x can be measured is
found from quantum parameter estimation theory?. If the state of
a system is given by a density matrix p(x), the smallest achievable
Ox is given by

M [diz) @
where we allow for M repetitions of the same measurement
in identically prepared states p(x), and ds* is a metric on the
space of density operators. It is related to the Bures metric
dpues(Pp+dp), with dp=p’x)dx, by ds=2dy,.(p,p+dp). For
pure states, the Bures distance reduces essentially to their over-
lap, dpyres (| WX || 9X0 1) =V2/1=[{y [ 9) . If p(x) and p(x) +
dp are related through a unitary transformation with generator h,
p(x +dx) = exp(—ihdx) p(x) exp(ihdx), then?

dpures (P(x), p(x)+dp) = <Aflz>1/2 dx. 3)

An operational definition of dx is given by

o %, )
VM | (A), /0x |

where we see that Ox corresponds to the quantum uncertainty
of an observable A in state p(x), suitably translated by the slope
of (A), into a fluctuation of x. As usual, for any observable A,
(AA%H=(A?)—(A)*, and all expectation values are with respect to
p(x). Inequality (2) holds for all possible measurements, and for
M— a measurement exists that saturates the bound?.

Model (1) cannot be solved in all generality. However, if the
interaction is sufficiently weak it can be treated in perturbation
theory. As we start in an initial product state at =0, we can then
relate properties of the full model to the single-particle dynamics
of all S, and R. We first establish the fundamental lower bound on
Ox with the help of quantum parameter estimation theory, and then
calculate 6x for a given measurement on R.

Quantum parameter estimation theory. We decompose
H(x)=Hy+H(x), H(x)=X%,S,,(x)®R, and switch to the interac-
tion picture with respect to H,, with wave function |y,(x,1)) = exp(i
HyH)|w(x,0), |w(x, 1)) =exp(—iH(x)t)|yp). In Methods, we show that
the Bures distance between the two states p(x) = | y,(x,1)){y;(x,1)| and
plx+dx) = |y (x+dx, )}y (x+dx, t)| is given by

Bures (P00, pl+ ) = ! 1y de Ky (1 (st ), (5,8)) (5)

where we have defined the correlation function for any two opera-
tors A, B in the state |y), K,(A, B)=(y|AB|y)~(y|A|yXy|Bly),
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Hi(x, t) = exp(+iHyt)H,(x) exp(—iH,t) is the interaction hamiltonian
in the interaction picture, and H(x, t)=0dH,(x, t)/0x. Equation (5)
generalizes (3), which isrecovered if [H(x), H(x)] =0 and H (x)t = xh.
From (2), we have

1

£t
M (jojodtldt2K|W0>(H,l (1), H' [(x,t5))

5xmin = 72 (6)

For identical and identically prepared systems S, S, =S, and
| ); =| @) for all i, and an initial product state

lyo) =l )N ®18), @)

we find

Kjyoy(H' 106,17, H' [ (3,1))

= D (NKjg)(S"y (x5, 8 1 (%, 1)K R, (81)Ry, (1))
Vil

+ NZ <S,v(x) t1)><S”u (X, tZ )>K|§) (Rv(tl))R# (tz))), (8)

where the expectation values for operators of S; (R) are taken
in states |@) (|&)). Together with equation (6), this proves the
existence of a measurement on S and R that gives a 1/N scal-
ing of dx,,, for N>1 and an initial product state, provided

‘min

Zyu L:J;(S'v(x,ﬁ)xs'y(x,tz)>K|§>(Rv(t1),Ru(tz))dtldtz #0.

Measuring the quantum bus. We now use directly equation (4) for
showing that the 1/N scaling can be achieved with the measurement
of almost any observable A on R alone. The expectation values in
equation (4) are in general time-dependent. This implies a time-
dependent minimal uncertainty as well which does, however, not
affect the scaling with N. We evaluate (A(#)) and (AA%(t)) again
by using second order perturbation theory in the interaction. The
general results for these expressions are cumbersome, but simplify
considerably if we make the following two assumptions: (1) the initial
state of R is an eigenstate of A, A[&) = ag | £); and (2) A commutes
with H,. Both assumptions taken together imply that the quantum
bus is prepared in a noiseless state at =0 ((AA*(0))=0). Under the
above two assumptions, we find

(A®) = ag+ [ dt, [ dtr 25 (N x,11,85)Cray(t1,12) + OCHD),  (9)

ZSV/.L(N>x’tl’t2) = NK|(p)(Sv(x’tl)>S‘u(x>t2))

R (10)
+N <Sv (x, ] )XS,u (x, 2 »

Crawu (t1,ty) =(Ry(t )ARy (ty))— ag (R, (t1)R# (E)) (11)

which can also be used to obtain (A%(f)) and (AA%(f)). Equation (4)
then leads to

1/2
{[gdtl jo’dtz 3 svu (N1, 1R (1), AT A, R, (tz)])}
Ox =

i .(12)

VM

t t 0
jodtljodtz%la—x Ksvu (N 2.1, 15 KRy (1) [A, Ry (£)])

In the limit of N>>1, the term quadratic in N in Xsyu(N,%:t1,t5)
dominates, and we find a 1/N scaling of dx,

([ dn [idts 35y (o)X (o) X(Ry (1), ATLA, Ry 1) DI
Ox = VoAt

1
TN (13)

)
[ianfa vzﬁ(m(x, XS (et (Ry (6, Ry (1))

provided that the denominator does not vanish. It is enough to
measure an observable of the quantum bus R alone, with all
subsystems initially in a product state.

Decoherence. All derivations so far apply perfectly well if R is
an environment with many degrees of freedom, which we cannot
fully measure. Measuring an observable A on only a subset of these
implies a non-unitary evolution of S. This establishes immediately
that we can reach a 1/N scaling of dx, if x parametrizes a collective
decoherence process and if we can measure at least some part of
the environment. The example of superradiance that we will work
out below is of this type. However, one might also be interested
in how the unitary evolution generated by the hamiltonian (1) is
affected by additional independent decoherence of the compo-
nents S; and R. For Markovian decoherence, such a situation is
described by a master equation for the density matrix W(t) of S
and R of the form

W(t)=—i(Ly+L;(x)+iAg +iAg )W (1), (14)

where LyX=[H,, X], L;(x)X =[H;(x),X], and Ag (Ag) are Lio-
uvillians of the Lindblad-Kossakowski type* for R (S), with

_vN
A S = zl‘zl Ai'

The free evolution (H,=0) still factorizes, such that, essentially,
all expectation values and correlation functions are replaced by
expectation values with respect to the relevant mixed states (see
equation (37) in Methods). The 1/N scaling is therefore robust
under individual decoherence of the components, an eventually
increased prefactor not withstanding. This is corroborated by
further exact results for a pure interaction with decoherence added
toall S;or to R (see Supplementary Discussion), and by the example
of superradiance below.

Measuring the length of a cavity. As example of an application, we
now show how to measure the relative change of length SL/L of a
cavity with an uncertainty of order 1/N with an initial product state
of N quantum resources. We first consider unitary evolution.

Let N two-level atoms or ions (N even, ground and excited states
|0), 1), foratom i,i=1,..., N) belocalized in a cavity, and resonantly
coupled with real coupling constants g; to a single electromagnetic
(e.m.) mode of the cavity of frequency w and annihilation operator
a (see Fig. 1), interaction hamiltonian Hj = 2?:71 g,-(O'(_’)aT +0'$)a),
where ¢ =| 0);,(1};» a&’ =|1);{0 ;- Owing to the spatial dependence
of the e.m. mode in resonance with the atoms, the g; depends on the
position z; of the atoms along the cavity axis and on the length L of
the cavity (the waist of the mode is taken to be much larger than the
size of the atomic ensemble)

ho
.= |——sin(k,z)e.d
g /80V (k.z)

where k,=nn/L, €, denotes the dielectric constant of vacuum,
V=LA the mode volume (with an effective cross-section A), € the
polarization vector of the mode, and d the vector of electric dipole
transition matrix elements between the states |0);, and |1), taken
identical for all atoms.

If all g; are identical, we obtain the Tavis—-Cummings model”.
Here, we consider the situation where the atoms can be grouped into
two sets with N/2 atoms each and coupling constants G, in the first

(15)
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Figure 1| Scheme for measuring the change of the length of an optical
cavity. N atoms (or ions) are trapped at fixed positions in two two-
dimensional optical lattices perpendicular to the cavity axis. A dipole
transition of the atoms is in resonance with a single, leaky cavity mode.
The atoms are initially prepared in a dark state in which destructive
interference prevents the photons from being transferred from the atoms
to the cavity mode. When the cavity length L changes by a small amount
oL, the true dark states evolve, and the initial state is exposed to collective
decoherence, detectable by photons leaking out through the semi-
reflecting mirror at a rate proportional to N2 This allows to measure 6L/L

with a Heisenberg-limited uncertainty of order 1/N, even if the initial dark
state is a product state.

set (i €{1...,N/2}), and G, in the second set (i € {N/2+1,...,N}). One
way of obtaining two coupling constants may be to trap the atoms
in two two-dimensional lattices perpendicular to the cavity axis (see
Fig. 1). Note that it is not necessary to locate the atoms within a
quarter wave-length of each other to obtain a DFS, as would be nec-
essary without the cavity®. Distances which are integer multiples
of the wave-length work just as well. In (15) we have neglected the
transversal dependence of the mode, assuming that the atoms are
localized at a distance from the cavity axis much smaller than the
waist of the mode. However, this is for a computational convenience
only. The initial product DFS states also exist if there is a radial
variation of the g, but describing the dynamics would become
much more complicated as it would depend on all the different g;
values. Assuming two different sets of coupling constants, the sys-
tem is described by equation (1), where we identify a pair of atoms
(,i+N/2) with subsystem S, i=1,...,N/2=N,, and the resonant
cavity mode with the quantum bus R. The free hamiltonian H,
consists of the energy of all atoms, H; = (w/ 2)(0';’) + 0';’+N /2)), and
the energy of the cavity mode, Hy = wa'a.

An expansion of the g about L for a small change JL
allows one to write the cot_lplinsg in the form of (1) with
8;1(x) = g(1+x)0W +(1-x)0 M) 5, ) = 8]} and R, =a', R, =0,
and xe<OL/L (see Supplementary Information for the prefactor). For
notational simplicity we restrict ourselves to the case where for x=0
the couplings are the same for the two sets, G, = G,=g, but this is by
no means necessary for the method to work.

A convenient basis for a pair of atoms is given by the ‘singlet’
and ‘triplet’ states {| )| f-):ﬁ)to Mt with |sy=(]01)—|10))/V2
L [£2)=[00), |£5) = (| 01)+ | 10))/~/2, and | £, ) =|11). As initial state
of all §; and R we take the product state (7) with N—N/2, and
| @) = (|t_)+|s)//2, and | E) =| 0) for a cavity mode in the vacuum
state. We obtain a time-independent K(t;,t,) = g2 (N p+N ;)/2,
and from (6)

2
JMgt\aN+N?

which clearly scales as 1/N for N>>1. One might argue that a small
amount of entanglement is present in |@), but the size of the clus-
ter of atoms all entangled with each other (that is, a pair of atoms)
is independent of N, such that it is legitimate to consider a pair of

5xmin = (16)

atoms as individual subsystem, and it is a product state of these sub-
systems that we consider. In Supplementary Information, we show
that the product state can be prepared by letting the atoms interact
pairwise.

The initial state contains half a photon per atom. For a generic
state the excitations stored in the atoms would start oscillating
between the cavity mode and the atoms. However, for x=0 our
initial state is a ‘dark state, as destructive interference prevents
the transfer of the photon from any pair of atoms to the cav-
ity. When x deviates from zero, the perfect cancellation in the
destructive interference is broken, and photons get transferred
to the cavity.

Measuring the number of photons constitutes an optimal mea-
surement in the sense that the bound (16) is reached. To see this,
we identify A=a'a in equation (13). This leads in a straightforward
manner to 8x =2 /M gtN, which agrees with (16) for N > 1,
including the prefactor. After what was said in section ‘Decoherence),
it is clear that adding independent decoherence to all subsystems
does not change the 1/N scaling of 0x,,,. We now show this expli-
citly by considering the situation of very strong damping of the
cavity mode, the superradiant regime.

The framework of section ‘Decoherence’ is suited for this ana-
lysis, but we adopt the well-developed theory of superradiance®-**
to give an independent demonstration that x,,, scales as 1/N.
Decoherence arises because of two processes: each atom can
undergo spontaneous emission with rate I, because of its coupling
to a continuum of additional e.m. modes. The damping of the cavity
mode arises from the escape of photons with a rate 2x through one
of the mirrors. In the notation of equation (14) and identification of
a pair of atoms (4,i+ N/2) with S, the generators A; and Ay, for these
two processes read***

AX = g([a(_i)X,GSf)]+ [oUtN x GU+NI2)) 4 h.c.), (17)

ApX =x([aX,a"]+he). (18)
Superradiance occurs in the overdamped regime I' < gJN <k,
where a photon transferred to the cavity leaves the cavity before it
can feed itself back to the atoms, but induces emission in other atoms
while in the cavity mode. Cavity decay is then the by far dominant
process. We will therefore start by neglecting T', but treat spontane-
ous emission in Supplementary Information. The population of the
cavity follows the occupation of the atoms adiabatically, and one can
eliminate the cavity mode. This leads to the well-known and, for
x=0, experimentally verified master equation of superradiance®-*
for the reduced density matrix p; of the atoms in the interaction
picture,

%ps(t) =Li(x)[ps)]=y(U-(x)ps (1), ] O+ _(x), ps )1 (2)])  (19)

The collective generators ], are J_(x)= Zfi{z Si1(x) = Zfﬂz
((1+x)0'(_’) +(1—x)o-(_’+N/2)), ]+(x)=]j(x) . The rate '}/=’g2/1< is inde-
pendent of N. Collective decoherence is a two-stage process here,
as photons stored in the atoms first need to be transferred to the
cavity mode before they can leave the system. The dark states of sec-
tion ‘Measuring the length of a cavity’ are therefore decoherence-
free states. There is a large DFS containing () ~ 2" /YN DF states,
including a 2 dimensional subspace ®Ll*-)Is} in which the pair
formed by the atoms [ and I+ N/2 can be in a superposition of |t_),
and |s); >*°. A DFS of the same dimension also exists for non-identi-
cal couplings, but the coefficients in the linear combination of the
singlet state need to be adapted accordingly,
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If after preparing the atoms in a DFS state corresponding to the
initial couplings Gfo), Ggo) the length L of the cavity changes slightly,
the coupling constants will evolve, G§O) — Gp, I=1, 2, and so will
the DES. Photons will leak out of the cavity as the original state
becomes exposed to decoherence.

There is a well-known connection between the photon statistics
in the cavity mode and the excitation of the atoms, derived in ref. 30
for all couplings identical,

2m
(aTmam(t)) = Zm(fj J‘;dsK'e*mes(eKs —1)2"171(]:'_1]1"(1‘—5)). (20)

One checks that this relation remains valid for small asymmetries
x#0. Thus, instead of the number of photons in the cavity for a
given value x one can calculate the excitation of the atoms, where,
however, the observable itself becomes a function of x, J7" (x)] (x).
For the initial product state (7) as considered above (with N—>N,,
@) =(t_)+] $))/~/2, and | €) =| 0)) we have from (19),

2
JJ_(0)= xz[?+l\;‘v]—yt(3N§ +N3 )P +x+0(),  (21)

N, 5NZ N> N?
202 p P, Np Npla
Zy=| F-—F+—+—L|x
JLIZ@) [ AT

5.2 11 3 3 4 1 5) 4
29t -N, —-2N2+—=N3 2N -=N3 |x
H( Ptk P

5.2, 7.3 5.4 1 5)5% 2

Equation (20) is in principle valid only in the Markovian regime
t>1/x, if (J7J™(t—s)) is obtained from the solution of the
Markovian superradiance master equation (19). However, the ini-
tial behaviour of (a'a(t)), (ata(t)y ~ g2t2 (J,J_(0)), is entirely deter-
mined by the value of (J, J_(¢)) at t=0, that is, the question of the
Markovian approximation of the dynamics of {J,J_(t)) does not
arise, and equation (20) can therefore be used to calculate (nph(x, £))
for short times up to order 2. From {J,J_(0)) one finds immediately

(nph(x,t)) = (aTa(x,t)) = égztzx2 (NP(NP + 1))+ o). (23)

At this order x does not intervene yet, as initially the cavity mode
is in the vacuum state. The quadratic initial increase of (1) reflects
the beginning of a Rabi oscillation between the excited atoms
and the cavity mode. We expect this result therefore to be valid
as long as (npp (x,1)) $1. Equation (23) agrees identically with the
result one finds from the approach in section ‘Decoherence’ (see
equation (37) in Methods). The fluctuations of 7, are obtained
from (n,p, (x6,1)%) =(a2a®(x,1)) +(npp (x,1)). Together with (20) one
gets for (npp, (x,1)) <1, (Anf)h(x,t)) =~ (nyp (x,t)) with corrections of
order (g/x)*. From equations (4) and (23), we find

Sy V2 o2
" JMgtJN(N+2) JMgN’

which is identical to the minimal possible uncertainty, equation (16)
for N>>1. The validity of the short time expansions (21,22) is lim-
ited to Nyt < 1, as can be seen from comparing the first order term
with the zeroth order term. Inserting (21) in (20) gives therefore
an analytical prediction of (np, (¢)) valid for g/k < gt <Kk/(Ng),
in addition to the small-time result (23) for gt < g/k. The agree-
ment of <nph(t)> based on (21) with the result from simulating (19)
can be further improved by re-exponentiating {J, J_(¢)) according

dx

Figure 2 | Mean photon number and uncertainty ox of the change
of length of the cavity. (a) Mean photon number (n,,) as a function
of dimensionless time gt (where g is the coupling constant of the
atoms to the cavity mode) for N=2, 4, 6, 8, 10, 12 (black, red, green,
blue, brown, violet), in units of x? for x=0.1, and with photon escape
rate from cavity k=5g, obtained through numerical simulation of
superradiance using a stochastic Schrédinger equation. The dashed
lines with corresponding colours are analytical results valid up to
Ng?t/ k-1 (see equations (20) and (21)). (b) Uncertainty x (see
equation (4)) based on A=n,, as function of N for gt =0.0485 and
x=0.01. Numerical results (circles) show the same 1/N scaling as
the ideal lower bound (red dashed line), equation (16), with slightly
increased prefactor. Green continuous line is an analytical prediction
based on an expansion of {n,,(t)) for small gt.

to a+bt = aexp(b/at), before inserting it in (20). The limitation of
validity of the small-time expansion does not pose a serious restric-
tion in the bad cavity limit K>>g, nor does it imply that the 1/N
scaling of the sensitivity breaks down beyond that regime. A full
theoretical analysis for longer times will have to include the calcula-
tion of the superradiant propagator with broken SU(2) symmetry,
however. Fort ~ 1/x a non-Markovian description of superradiance
is called for, which is beyond the scope of the present investigation.

Figure 2 shows that (n,p,(f)) obtained numerically by simulating
(19) through an equivalent stochastic Schrédinger equation, and
integration of (JJ_(t)) according to equation (20) agrees well with
the result based on (21) for gt < g/k and g/k < gt K< kK /(Ng). The
stochastic Schrédinger equation for real y/(¢) reads

Ay (t) = Dy (w(t))dt + Dy (w(t))dW(t), 24)

with  Dy(y) =y )y J_—JJ_—{J_De)w, and Dy(y)=2y
J_—« ]_),,,)l//, where dW(?) is a Wiener process with average zero
and variance dt, and (L)l,, =(y|J_|¥)*. We used 2,000 equidis-
tant time steps in the time interval £=0,..., 20/g, 20 random realiza-
tions of the process for the simulation of (n,,(£)), and 400 realiza-
tions for the calculation of dx. Figure 2 also shows Ox calculated
from the numerical data for (An h(l‘))l/2 and (nph(x,t)) through
equation (4), together with the f}l)mdamental lower bound 6x,;,,
equation (16). We see that at gt=0.0485, dx follows the optimal 1/N
scaling with only slightly increased prefactor.

We emphasize that n,,, allows to measure 0L/L, not just to detect
a change of L. Equations (20) and (21) relate (nph) to x, and, unless
the two lattices are situated at anti-nodes of the mode, the relation
between 6G =(G; —G,)/2=gx and SL/L is linear to lowest order
and independent of N: if we choose the position of the atoms such
that zy —z; = mA with n, —1 2m € N, we have

5G (ﬂzﬂzljaL
X =—=mnrcot| —— |—.
L L

Therefore, the measurement of (r,,) allows the measurement of
OL/L. Several other practical questions, for example, the preparation
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of the initial state, and the robustness of the method with respect to
fluctuations of the coupling constants, spontaneous emission and
errors in the preparation of the initial state, are addressed in Supple-
mentary Information. The superradiant regime has the advantage of
providing direct access to the number of photons in the cavity. The
average number of photons outside is simply obtained by integrat-
ing 2;((,1 a(t)) up to time ¢, as the photon escape rate is proportional
to the average photon number inside the cavity™®. The results for the
scaling of &x with N based on A=a'a are therefore unaffected by
detecting the photons that leave the cavity. Measuring the number
of photons amounts to monitoring the decoherence dynamics, and
we have thus an example where the parametric dependence of a
collective decoherence process allows to achieve the Heisenberg
limit with an initial product state.

Discussion

Our results may seem to conflict with the well-known theorem*
that for unitary evolution of N independent quantum systems in
an initial product state at best a scaling 8x,,;, ~1/+/N is possi-
ble. To see that there is no contradiction, it is helpful to consider
the simple case where H’(x)=dH(x)/dx and H(x) commute,
[H(x),H’(x)] = 0. One then easily shows that to lowest order in dx,
p(x,t) = exp(—iH (x)t)p(0)exp(iH(x)t) (with h=1) and P(X t)+dp
are related by a unitary transformation with generator 1= H’(x)t.
Let us furthermore restrict ourselves to a single operator per
subsystem, that is, v=1 only, and to the linear x dependence
S;1(x) = xS for all i, and R, =R. A few lines of calculation lead to

(ARy = (N(AS2X(R?)+ N2 (S (ARD)) (25)

for an initial product state, p(0)=|woXwo| with |¥y) from
equation (7). All expectation values of S in (25) are in state | @), those
of R in the state |§> Inserting (25) into (3) and (2), we find that for
N>>1and (SY2(AR?) %0,

1 1
i = L
e = TME | (S) [ (ARDE N

that is, the Heisenberg limit 6x,;, ~1/N can be achieved with
an initial product state. Clearly, for the case considered above the
unitary transformation generated by Hy =2; H; + Hy is not nece-
ssary to achieve the 1/N scaling. We therefore simplify the reasoning
further by considering the case H;=0. We are then left with a pure
interaction,

H(x)=Hj(x)=x) 8 ®R. (26)
1
But this is not a hamiltonian of the form H(x) = x ®; h; required by
the theorem in ref. 4. In our case all subsystems couple in a non-
trivial manner to the common quantum bus R and are therefore not
independent. This turns out to be the decisive difference. The SQL
can be recovered for the standard situation of N independent sub-
systems through a R that acts only trivially on R, that is, R=1, such
that (AR?) =0, and thus 8x,;, =1/(2 MNt(AS2 12 This makes
obvious the rather ironic fact that quantum fluctuations in R help
and are necessary to achieve the 1/Nscaling. The prefactor of the 1/N
behaviour is smallest for an initial state with an equal weight super-
position of the eigenstates of R pertalmng to 1ts largest and lowest
eigenvalues r,,,, and r,, in which case (AR*Y2 =|r. . —r. . |/2.
This simple example also allows to corroborate that to achieve
the 1/N scaling one need not measure the S, at all, and almost
any measurement on R suffices. Consider an initial product state

eIXSN

1)+ 1) —{Hi1 (0 HHjo(0) - Hia(% F 4H/N(X)F Iro) +
ls) l
Is)
Is)

Figure 3 | Quantum circuit that reproduces the interaction hamiltonian
H)=xZN S ®R=2 H,;(x) . N quantum systems S, prepared all in the
eigenstate |s) of S, S|s)=s]|s) in equation (26), lead to a total accumulated
relative phase between states of the quantum bus R that is proportional
to xN. This allows a measurement of x with a precision that scales as

1/N, even though the initial state is a product state, by measuring any
observable A on R alone that does not commute with R.

i N
[y = Y dye 25 @) [ 5,)® | 1,) (27)
m i=1

Let A be an observable on R, which does not commute with
R, that is, there are at least two eigenstates |r,) and |r,) such that
(rg|A|n)#0. It is sufficient to consider an initial state of R,
which is a superposition of these two states, for example, we may
take dy=d; =1/+/2, and an observable A=|r)Xn |+|nXr | If
all subsystems S, are prepared in the sqme state with s;=s, one
finds (A(t)) = cos(st(rO —n)t) and (AA%(1)) = st(st(rO 1) .
Inserted in equation (4) this leads to the exact result

1

- (29)
Nls|lm-nlt

valid for all x. This shows that the 1/N scaling can be reached by
measuring almost any observable of R, as long as it does not com-
mute with R. Furthermore, equation (27) allows a simple quantum-
information theoretical explanation of the effect: The final state
reflects the accumulated phase from the interaction of all the systems
S; with the common quantum bus R. Figure 3 shows an equivalent
quantum circuit that reproduces state (27). One subsystem S, after
another imprints the same phase on the components of the state of
‘R. Equation (27) also makes obvious that a measurement of the S,
alone does not allow to achieve the 1/N scaling, as the state of R will
collapse on a single state |r,,), and one only gets an irrelevant global
phase. Thus, measuring the quantum bus is not only sufficient, but
also necessary for the 1/N scaling of dx. We also see that the meas-
urement of A =| ry X, |+ |1 Xr, | is optimal if , r; correspond to the
smallest and largest eigenvalues of R, respectively.

In ref. 13, an adaptive measurement technique was demonstrated
that allows one to achieve Heisenberg-limited uncertainty by using
only an initial product state. The method is based on phase estima-
tion’, but instead of using a NOON state of N photons, independ-
ent photons were passed N times through the same phase shifter.
This amplifies the phase by a factor N, but it was shown that in the
presence of losses the scaling of the sensitivity with N is at most
improved by a constant factor’” compared with the classical case for
N—®. A common feature of both phase estimation and our method
is that a measurement is performed on a common quantum system
that interacts with all other quantum systems. However, our method
is more general. It incorporates decoherent and unitary evolutions
in the same framework, and allows one to use collective decoher-
ence as a signal. Second, phase estimation was developed for a

|Wo)=®N, |50 | &), with Si|siy=s;|s;),and |[E)=2,,d,, |r,) for multi-qubit system with controlled, sequentially turned on inter-
R|n,) =1y |1,). We then have actions, and an x-dependence in the free evolution. Hamiltonian
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(1) on the other hand can be used to describe substantially more
complex systems, with possibly non-trivial dynamics in the absence
of the collective interaction, and with interactions that do not com-
mute with the Hamiltonians of the free constituents. Furthermore,
the interaction is simultaneous such there is no bandwidth penalty
in the accumulation of the phase, nor is there a need to re-sample a
phase shift many times.

Our method requires a collective interaction between N sep-
arable quantum systems and a common quantum bus, an initial
noiseless state in the sense discussed above, and the possibility to
measure at least part of the quantum bus. In the case of incom-
plete measurement of the quantum bus this implies the need of
a collective decoherence process with a decoherence-free initial
state. Besides atoms in a cavity one might consider circuit-QED
systems®, trapped ions coupled to a common phonon mode®,
or quantum dots coupled to micro-resonators®® or to photonic
crystals*’. Both unitary evolution or a decoherence process can
be useful, as long as the collective interaction between the N
quantum resources and a common quantum bus depends on the
parameter x to be measured.

To summarize, we have developed a general theory of collec-
tively enhanced quantum measurements based on the interaction
of N quantum systems with a common ‘quantum bus’ The latter
can be a simple quantum system, or an environment with many
degrees of freedom to which we have only partial access. We have
shown that if the collective interactions depend on a parameter x,
the Heisenberg limit (that is, a 1/N scaling of the uncertainty of
x) can be reached with an initial product state, and by measuring
almost any observable of the quantum bus. We have used quantum
parameter estimation theory to establish that a 1/N scaling of the
uncertainty is indeed optimal in this setup. We have given a simple
quantum-information theoretical interpretation of the effect, and
we have analysed in detail a possible experimental implementation
of the measurement of the change of the length of a cavity with an
uncertainty that scales as 1/N.

The proposed measurement principle offers an attractive way
out of the dilemma of ubiquitous decoherence that has so far
plagued quantum-enhanced measurements. First of all, there is no
need to build highly entangled states, which are extremely fragile
under decoherence for large N. Simple product states will do, and
decoherence of some parts of the system does not affect the 1/N
scaling of the minimal uncertainty. Second, parameter-dependent
collective decoherence is covered itself by our new measurement
principle. Indeed, decoherence is a process in which quantum
interference effects can have an important role. This is exemplified
by the very existence of DFS, and can lead to exquisite sensitivity
when a DEFS is disturbed. Instead of trying to suppress decoher-
ence at all costs, one might therefore be better off exploiting its
parametric dependence.

Methods
Bures distance for unitary evolution. The state vector |y(x,t)) in the inter-
action picture obeys the time-dependent Schrédinger equation

(yy (e +dnt) |y, (x,t))z1+dx[ij(:<H’,(x,t1))dt1
L TN G, H () Ddnd, )
2 G CH Gt + ) [ o), Hy o) D

2 [N () H ()t dy), (32)

with all expectation values with respect to | ;). We assume that the derivatives of
Hj(x) with respect to x are hermitian operators, in which case the term linear in dx
is purely imaginary. The lowest order term in the squared overlap is then of order
dx*. One finds in a straightforward manner the squared Bures distance (5).

Decoherence of subsystems. Markovian decoherence of the S; and R on top
of the unitary evolution generated by H(x) can be described by equation (14).
The single system dynamics (that is, all S, and R taken separately, L,;=0), can be
solved formally by exponentiating the Liouvillians. We will again treat L(x) in
perturbation theory. The density matrix W,(t) of S and R in the interaction
picture is related to the one in the Schrédinger picture, W(t), by

W)= oA Ay, () = e K (1), (33)

and obeys the master equation Wl(t) =—iL; (x,t)W; (t). With equation (33) we have
defined the free propagator Py (t)=e X =®,e ™ " @ e KR =@, P (1) ® Py (1), and
L;(x,t) = Pp(—t)L;(x)Pg(t) is the interaction Liouvillian in the interaction picture.
We decompose furthermore L; = ZkN:I Ly 4 with Ly X =[H ;., X]. To second order
in L, we have

(A(t)y = tr{A(Pp(t) - iz_[otPF (t=t))L; 1 (x)Pp(t;)dty (34)
k

-y jo’dtl j;ldtzPF(t — 1)Ly (X)Ps (b — )Ly o (%)Pe(ty) + O(L} YW (0)}.
k,k’

With an initial product state, W(0) = ®N, p;(0)® p, (0), we obtain the zeroth order
term (A(0), = tr(AP, (OW(0)) = tr(®, B() [, (0)] ® APR(1) g (0)]) = try (Apg (1),
as all propagators are trace-preserving, and pp (t) = Py (t)[px (0)]- Similarly, by
explicitly writing L; , X = ¥ [S; , Ry, X], we obtain the first order term

(A@t)), = —iZtr(Aj;PF(t — 1)Ly Pr(ty )dtIW(O)) (35)
k
= i3 [ e, (S 1)t (APt = £)[R,Pr(8)]), 36)
k,v

where (S ,, (t)) = tr Sy, Py (t) [P, (0)]. We generalize the second simplifying
assumption in section ‘Measuring the quantum bus’ to P (t)[pr (0)] = p(0),
and trp (AP (£)[X]) = f4 ()trg (AX) with some function f,(¢)*. This implies

that the initial state is decoherence-free concerning the decoherence of R alone.
This is a natural assumption for the state of an environment initially in thermal
equilibrium, or for a quantum bus in its ground state, such as an initially empty
cavity mode (see the example of superradiance). We then have again (A(#)),=0.
To second order in the interaction we find

(A1) =(A(0))

¢ 2t 1 1 2 2
_% Jodes ], e N (1) (61,82 = CE (11, )C R (:11,82))

3 +NZ(S, (1)XS, () Clip (8112}, 37)
i§| v (60))=Hi(xt) |y (1)), (29)
o . Cllhay (B112) = trg (APy(t = 1) Ry, Py (6 = 1) [Ry g (1)1]) (38)
with the interaction hamiltonian
H(xt)= 38, (6. ) ® R, (1), (30) Chuy (tot1,15) = tr (AP (¢ = 1)) [Ry, Py (1 — 1) [Py ()R, 1) (39)
i
_ . . , Clru (bt1st2) = Cly (b.11,65) = CR (1.11,85) (40)
Sy (nt) =€, (e M R (1) = MR R e R, 61
(1) - _ —
The general solution of (29) is given by | Y (xt)= Texp[,iI;Hl (X,t’)dt’:| | WO)’ cSv,u (t,t,) = tr (S#Pk (f tz)[svpk (fz)]) (S,u(t] )><Sv(t2 » (41)
where T denotes the time-ordering operator. To second order in the perturbation
2
Hi(x,t), the overlap between |y, (x,t)} and | y; (x + dx,t)) reads Cgv)y (ty 1) =ty (Sppk(tl —t)[px(t, )Sv]) =S, (E)XS, (1)), (42)
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where pg(t) = Py (t)[pr(0)]. The index k is arbitrary, k=1,..., N, as we have assumed
all systems S, identical and identically prepared. All x-dependence is in the opera-
tors S,. Equation (37) also gives (A%(t)) by replacing A—A?, and (A(f))* to order
O(Hp). The equation obtained by inserting these expressions into equation (4)
generalizes the result (12) to decoherence on top of the unitary evolution consi-
dered in section ‘Measuring the quantum bus’ We see that the basic structure of the
result for Ox, and in particular its scaling with N is unchanged, but the expectation
values and correlation functions are replaced by more complicated expressions in-
volving in general mixed states and non-unitary evolution of individual subsystems.

Quantum parameter estimation for a Markovian master equation. In standard
descriptions of decoherence, one traces out the heat bath and gets a master
equation for the reduced density matrix p, of S alone. Using quantum parameter
estimation theory generalized to non-unitary evolution, we now show that for
Markovian decoherence with an initially decoherence-free state, measuring an
arbitrary x-independent observable on S alone gives at best a 8x,,;,, ~1/+/N . This
corroborates the result found for unitary evolution that the important quantum
system to measure is the common quantum bus R, rather than S.

The Markovian master equation for p(t) obtained by tracing out R has the
Lindblad-Kossakowski form

d
po()= AP, (=7 Y (B, ()P (OF (0] + hic), (43)
a=1

where we work in the interaction picture and assume that there is no additional
unitary evolution. The F,(x) are arbitrary linear (not necessarily hermitian) opera-
tors, which have inherited the x-dependence from the interaction hamiltonian
Hj(x), and d is the total number of generators. Note that we can restrict ourselves
to an initially pure state, as for any linear propagation one cannot do better with

a mixed state than with the pure states from which it is mixed*. We expand the
Markovian time evolution to first order in £, p =| wXw |+t A(x) | Xy | +O(t*), and
linearize F,(x) about the value of x where we want to measure. We set that value,
without restriction of generality, to zero, that is, F(x)=xF, a, +F,(0), and assume
that the initial state is decoherence-free at x=0. The Bures distance can still be
evaluated in a straightforward manner as the state at x=0 remains pure. One finds
45| ,_p=87t3,, KW/)( ,E,)dx?. As a consequence, the ultimate quantum limit of
the sensitivity with whlch the parameter x can be estimated from the parametric
dependence of the master equation, starting from a pure state |y), reads

1
O%Xmin = 72" (44)

2 2Myt (ZZZIKM(F;,F,X ))

With E, =N F,  we obtam KW,)(FT,F )= 1KM( Tr.r+Fo o) For an initially
entangled state, KW,)(F F,) can be of order N°. This can be seen from the example
of the GHZ state | y) = (|0...0)+]1...1))/~/2, and a smgle generator R;= =0 with

(’) the Pauli z matrix for subsystem i. Then K, ( Fl JE)= N2, and one obtalns a
l/N scaling of 0x;,, )ust as in the case of unltary evolution. However, if the initial
state factorizes, | w) = ®N| | @), there are no correlations between different sub-
systems rand s, and we thus have only the sum of correlations in all subsystems,
KIW( JE)=3N 1 Ky, >( .52 Fy.¢ ) which is at most of order N, and 0x,,, scales
as 1/f , again )ust as in the case of unitary evolution. This shows once more that
a measurement of an x-independent observable on S does not allow to do better
than in the standard situation of unitary evolution of S without coupling to a
common quantum bus.

Interestingly, superradiance is described by a master equation of S alone after
tracing out the cavity mode. But a measurement on R (the number of photons in
the cavity) translates in that case to a measurement on the S, that depends itself on
x. In this way, it is still possible to achieve a 1/N scaling of &x.
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