Determination Of The Topology Of The Hydrophobic Segment Of Mammalian Diacylglycerol Kinase Epsilon In A Cell Membrane And Its Relationship To Predictions From Modeling
Decaffmeyer, Marc; Shulga, Yv.; Dicu, Ao.et al.
2008 • In Journal of Molecular Biology, 383 (4), p. 797-809
[en] The epsilon isoform of diacylglycerol kinase (DGKepsilon) is unique among
mammalian DGKs in having a segment of hydrophobic amino acids comprising
approximately residues 20 to 41. Several algorithms predict this segment to be a
transmembrane (TM) helix. Using PepLook, we have performed an in silico analysis
of the conformational preference of the segment in a hydrophobic environment
comprising residues 18 to 42 of DGKepsilon. We find that there are two distinct
groups of stable conformations, one corresponding to a straight helix that would
traverse the membrane and the second corresponding to a bent helix that would
enter and leave the same side of the membrane. Furthermore, the calculations
predict that substituting the Pro32 residue in the hydrophobic segment with an
Ala will cause the hydrophobic segment to favor a TM orientation. We have
expressed the P32A mutant of DGKepsilon, with a FLAG tag (an N-terminal 3xFLAG
epitope tag) at the amino terminus, in COS-7 cells. We find that this mutation
causes a large reduction in both k(cat) and K(m) while maintaining k(cat)/K(m)
constant. Specificity of the P32A mutant for substrates with polyunsaturated acyl
chains is retained. The P32A mutant also has higher affinity for membranes since
it is more difficult to extract from the membrane with high salt concentration or
high pH compared with the wild-type DGKepsilon. We also evaluated the topology of
the proteins with confocal immunofluorescence microscopy using NIH 3T3 cells. We
find that the FLAG tag at the amino terminus of the wild-type enzyme is not
reactive with antibodies unless the cell membrane is permeabilized with
detergent. We also demonstrate that at least a fraction of the wild-type
DGKepsilon is present in the plasma membrane and that comparable amounts of the
wild-type and P32A mutant proteins are in the plasma membrane fraction. This
indicates that in these cells the hydrophobic segment of the wild-type DGKepsilon
is not TM but takes up a bent conformation. In contrast, the FLAG tag at the
amino terminus of the P32A mutant is exposed to antibody both before and after
membrane permeabilization. This modeling approach thus provides an explanation,
not provided by simple predictive algorithms, for the observed topology of this
protein in cell membranes. The work also demonstrates that the wild-type
DGKepsilon is a monotopic protein.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Decaffmeyer, Marc ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
Shulga, Yv.
Dicu, Ao.
Thomas, Annick ; Université de Liège - ULiège > Chimie et bio-industries > Centre de Bio. Fond. - Section de Biologie moléc. et numér.
Truant, R.
Topham, Mk.
Brasseur, Robert ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
Epand, Rm.
Language :
English
Title :
Determination Of The Topology Of The Hydrophobic Segment Of Mammalian Diacylglycerol Kinase Epsilon In A Cell Membrane And Its Relationship To Predictions From Modeling
Han G.S., O' H.L., Siniossoglou S., and Carman G.M. Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J. Biol. Chem. 283 (2008) 20443-20453
Ducarme P., Rahman M., and Brasseur R. IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies. Proteins 30 (1998) 357-371
Deber C.M., Wang C., Liu L.P., Prior A.S., Agrawal S., Muskat B.L., and Cuticchia A.J. TM Finder: a prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci. 10 (2001) 212-219
Cserzo M., Wallin E., Simon I., von Heijne G., and Elofsson A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10 (1997) 673-676
Tang W., Bunting M., Zimmerman G.A., McIntyre T.M., and Prescott S.M. Molecular cloning of a novel human diacylglycerol kinase highly selective for arachidonate-containing substrates. J. Biol. Chem. 271 (1996) 10237-10241
Walsh J.P., Suen R., Lemaitre R.N., and Glomset J.A. Arachidonoyl-diacylglycerol kinase from bovine testis. Purification and properties. J. Biol. Chem. 269 (1994) 21155-21164
Topham M.K., and Prescott S.M. Diacylglycerol kinases: regulation and signaling roles. Thromb. Haemostasis 88 (2002) 912-918
Milne S.B., Ivanova P.T., Armstrong M.D., Myers D.S., Lubarda J., Shulga Y.V., et al. Dramatic differences in the roles in lipid metabolism of two isoforms of diacylglycerol kinase. Biochemistry 47 (2008) 9372-9379
Bazan N.G. Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32 (2005) 89-103
Musto A., and Bazan N.G. Diacylglycerol kinase epsilon modulates rapid kindling epileptogenesis. Epilepsia 47 (2006) 267-276
Rodriguez de Turco E.B., Tang W., Topham M.K., Sakane F., Marcheselli V.L., Chen, et al. Diacylglycerol kinase epsilon regulates seizure susceptibility and long-term potentiation through arachidonoyl-inositol lipid signaling. Proc. Natl Acad. Sci. USA 98 (2001) 4740-4745
Wattenberg B.W., Pitson S.M., and Raben D.M. The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. J. Lipid Res. 47 (2006) 1128-1139
Glukhov E., Shulga Y.V., Epand R.F., Dicu A.O., Topham M.K., Deber C.M., and Epand R.M. Membrane interactions of the hydrophobic segment of diacylglycerol kinase epsilon. Biochim. Biophys. Acta 1768 (2007) 2549-2558
Dicu A.O., Topham M.K., Ottaway L., and Epand R.M. Role of the hydrophobic segment of diacylglycerol kinase epsilon. Biochemistry 46 (2007) 6109-6117
Elofsson A., and von Heijne G. Membrane protein structure: prediction versus reality. Annu. Rev. Biochem. 76 (2007) 125-140
Carman G.M., Deems R.A., and Dennis E.A. Lipid signaling enzymes and surface dilution kinetics. J. Biol. Chem. 270 (1995) 18711-18714
Zhao Y., Zhang W., Kho Y., and Zhao Y. Proteomic analysis of integral plasma membrane proteins. Anal. Chem. 76 (2004) 1817-1823
Kobayashi N., Hozumi Y., Ito T., Hosoya T., Kondo H., and Goto K. Differential subcellular targeting and activity-dependent subcellular localization of diacylglycerol kinase isozymes in transfected cells. Eur. J. Cell Biol. 86 (2007) 433-444
Thomas A., Milon A., and Brasseur R. Partial atomic charges of amino acids in proteins. Proteins 56 (2004) 102-109
Thomas A., Deshayes S., Decaffmeyer M., Van Eyck M.H., Charloteaux B., and Brasseur R. Prediction of peptide structure: how far are we?. Proteins 65 (2006) 889-897
Lovell S.C., Davis I.W., Arendall III W.B., de Bakker P.I., Word J.M., Prisant M.G., et al. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50 (2003) 437-450
Blobel G. Intracellular protein topogenesis. Proc. Natl Acad. Sci. USA 77 (1980) 1496-1500
Fowler P.W., Balali-Mood K., Deol S., Coveney P.V., and Sansom M.S.P. Monotopic enzymes and lipid bilayers: a comparative study. Biochemistry 46 (2007) 3108-3115
Birrell G.B., Hedberg K.K., Volwerk J.J., and Griffith O.H. Differential expression of phospholipase C specific for inositol phospholipids at the cell surface of rat glial cells and REF52 rat embryo fibroblasts. J. Neurochem. 60 (1993) 620-625
Fukunaga-Takenaka R., Shirai Y., Yagi K., Adachi N., Sakai N., Merino E., et al. Importance of chroman ring and tyrosine phosphorylation in the subtype-specific translocation and activation of diacylglycerol kinase alpha by d-alpha-tocopherol. Genes Cells 10 (2005) 311-319
Crane J.K., and Vezina C.M. Externalization of host cell protein kinase C during enteropathogenic Escherichia coli infection. Cell Death Differ. 12 (2005) 115-127
Yohannan S., Faham S., Yang D., Whitelegge J.P., and Bowie J.U. The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc. Natl Acad. Sci. USA 101 (2004) 959-963
Spisni E., Tomasi V., Cestaro A., and Tosatto S.C. Structural insights into the function of human caveolin 1. Biochem. Biophys. Res. Commun. 338 (2005) 1383-1390
Schlegel A., Schwab R.B., Scherer P.E., and Lisanti M.P. A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. J. Biol. Chem. 274 (1999) 22660-22667
Campbell R.E., Tour O., Palmer A.E., Steinbach P.A., Baird G.S., Zacharias D.A., and Tsien R.Y. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99 (2002) 7877-7882
Ring A., Le L.S., Pohl J., Verkade P., and Stremmel W. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim. Biophys. Acta 1761 (2006) 416-423
Eisenberg D., Weiss R.M., and Terwilliger T.C. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299 (1982) 371-374
Lagarias J.C., Reeds J.A., Wright M.H., and Wright P.E. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9 (1998) 112-147
Nelder J.A., and Mead R. A simplex method for function minimization. Comput. J. 7 (1965) 308-313
Smith P.E., and Pettitt B.M. Modeling solvent in biomolecular systems. J. Phys. Chem. 98 (1994) 9700-9711
Shrake A., and Rupley J.A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79 (1973) 351-371
Lins L., Thomas A., and Brasseur R. Analysis of accessible surface of residues in proteins. Protein Sci. 12 (2003) 1406-1417
Brasseur R. Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J. Biol. Chem. 266 (1991) 16120-16127