[en] The membrane-proximal external region (MPER) of the gp41 fusion protein of HIV is
highly conserved among isolates of this virus and is considered a target for
vaccine development. This region also appears to play a role in membrane fusion
as well as localization of the virus to cholesterol-rich domains in membranes.
The carboxyl terminus of MPER has the sequence LWYIK and appears to have an
important role in cholesterol interactions. We have tested how amino acid
substitutions that would affect the conformational flexibility of this segment
could alter its interaction with cholesterol. We studied a family of peptides
(all peptides as N-acetyl-peptide amides) with P, G, or A substituting for W and
I of the LWYIK sequence. The peptide having the greatest effect on cholesterol
distribution in membranes was the most flexible one, LGYGK. The corresponding
mutation in gp41 resulted in a protein retaining 72% of the fusion activity of
the wild-type protein. Two other peptides were synthesized, also containing two
Gly residues, GWGIK and LWGIG, and did not have the ability to sequester
cholesterol as efficiently as LGYGK did. Making the corresponding mutants of gp41
showed that these other two double Gly substitutions resulted in proteins that
were much less fusogenic, although they were equally well expressed at the cell
surface. The study demonstrates that drastic changes can be made in the LWYIK
segment with the retention of a significant fraction of the fusogenic activity,
as long as the mutant proteins interact with cholesterol.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Vishwanathan, Sa.
Thomas, Annick ; Université de Liège - ULiège > Chimie et bio-industries > Centre de Bio. Fond. - Section de Biologie moléc. et numér.
Brasseur, Robert ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
Epand, Rf.
Hunter, E.
Epand, Rm.
Language :
English
Title :
Large Changes In The Crac Segment Of Gp41 Of Hiv Do Not Destroy Fusion Activity If The Segment Interacts With Cholesterol
Publication date :
2008
Journal title :
Biochemistry
ISSN :
0006-2960
eISSN :
1520-4995
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Salzwedel, K., West, J. T., and Hunter, E. (1999) A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J. Virol. 73, 2469-2480.
Munoz-Barroso, I., Salzwedel, K., Hunter, E., and Blumenthal, R. (1999) Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J. Virol. 73, 6089-6092.
Dimitrov, A. S., Rawat, S. S., Jiang, S., and Blumenthal, R. (2003) Role of the fusion peptide and membrane-proximal domain in HIV-1 envelope glycoprotein-mediated membrane fusion. Biochemistry 42, 14150-14158.
Huarte, N., Lorizate, M., Maeso, R., Kunert, R., Arranz, R., Valpuesta, J. M., and Nieva, J. L. (2008) The broadly neutralizing anti-HIV-1 4E10 monoclonal antibody is better adapted to membrane-bound epitope recognition and blocking than 2F5. J. Virol. 82, 8986-8996.
Lorizate, M., Huarte, N., Saez-Cirion, A., and Nieva, J. L. (2008) Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission. Biochim. Biophys. Acta 1778, 1624-1639.
Suarez, T., Gallaher, W. R., Agirre, A., Goni, F. M., and Nieva, J. L. (2000) Membrane interface-interacting sequences within the ectodomain of the human immunodeficiency virus type 1 envelope glycoprotein: Putative role during viral fusion. J. Virol. 74, 8038-8047.
Suarez, T., Nir, S., Goni, F. M., Saez-Cirion, A., and Nieva, J. L. (2000) The pre-transmembrane region of the human immunodeficiency virus type-1 glycoprotein: A novel fusogenic sequence. FEBS Lett. 477, 145-149.
Saez-Cirion, A., Nir, S., Lorizate, M., Agirre, A., Cruz, A., Perez-Gil, J., and Nieva, J. L. (2002) Sphingomyelin and cholesterol promote HIV-1 gp41 pretransmembrane sequence surface aggregation and membrane restructuring. J. Biol. Chem. 277, 21776-21785.
Shnaper, S., Sackett, K., Gallo, S. A., Blumenthal, R., and Shai, Y. (2004) The C- and the N-terminal regions of glycoprotein 41 ectodomain fuse membranes enriched and not enriched with cholesterol, respectively. J. Biol. Chem. 279, 18526-18534.
Lorizate, M., Cruz, A., Huarte, N., Kunert, R., Perez-Gil, J., and Nieva, J. L. (2006) Recognition and Blocking of HIV-1 gp41 Pre-transmembrane Sequence by Monoclonal 4E10 Antibody in a Raft-like Membrane Environment. J. Biol. Chem. 281, 39598-39606.
Vincent, N., Genin, C., and Malvoisin, E. (2002) Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups. Biochim. Biophys. Acta 1567, 157-164.
Epand, R. M., Sayer, B. G., and Epand, R. F. (2003) Peptide-induced formation of cholesterol-rich domains. Biochemistry 42, 14677-14689.
Li, H., and Papadopoulos, V. (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139, 4991-4997.
Epand, R. F., Thomas, A., Brasseur, R., Vishwanathan, S. A., Hunter, E., and Epand, R. M. (2006) Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains. Biochemistry 45, 6105-6114.
Sun, Z. Y., Oh, K. J., Kim, M., Yu, J., Brusic, V., Song, L., Qiao, Z., Wang, J. H., Wagner, G., and Reinherz, E. L. (2008) HIV-1 Broadly Neutralizing Antibody Extracts Its Epitope from a Kinked gp41 Ectodomain Region on the Viral Membrane. Immunity 28, 52-63.
Greenwood, A. I., Pan, J., Mills, T. T., Nagle, J. F., Epand, R. M., and Tristram-Nagle, S. (2008) CRAC motif peptide of the HIV-1 gp41 protein thins SOPC membranes and interacts with cholesterol. Biochim. Biophys. Acta 1778, 1120-1130.
Epand, R. M., Hughes, D. W., Sayer, B. G., Borochov, N., Bach, D., and Wachtel, E. (2003) Novel properties of cholesterol-dioleoylphosphatidylcholine mixtures. Biochim. Biophys. Acta 1616, 196-208.
Cao, J., Bergeron, L., Helseth, E., Thali, M., Repke, H., and Sodroski, J. (1993) Effects of amino acid changes in the extracellular domain of the human immunodeficiency virus type 1 gp41 envelope glycoprotein. J. Virol 67, 2747-2755.
Vishwanathan, S. A., and Hunter, E. (2008) Importance of its Membrane-Perturbing Properties of the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 gp41 to Viral Fusion. J. Virol. 82, 5118-5126.
Privalov, G., Kavina, V., Freire, E., and Privalov, P. L. (1995) Precise scanning calorimeter for studying thermal properties of biological macromolecules in dilute solution. Anal. Biochem. 232, 79-85.
Thomas, A., Deshayes, S., Decaffmeyer, M., Van Eyck, M. H., Charloteaux, B., and Brasseur, R. (2006) Prediction of peptide structure: How far are we? Proteins 65, 889-897.
Lins, L., Brasseur, R., De Pauw, M., Van Biervliet, J. P., Ruysschaert, J. M., Rosseneu, M., and Vanloo, B. (1995) Helix-helix interactions in reconstituted high-density lipoproteins. Biochim. Biophys. Acta 1258, 10-18.
Leach, A. R. (1996) van der Waals Interactions. In Molecular Modelling: Principles and Applications (Leach, A. R., Ed.) pp 171-177, Longman Ltd., Harlow, England.
Moult, J., and James, M. N. (1986) An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins 1, 146-163.
Thomas, A., Milon, A., and Brasseur, R. (2004) Partial atomic charges of amino acids in proteins. Proteins 56, 102-109.
Brasseur, R. (1995) Simulating the folding of small proteins by use of the local minimum energy and the free solvation energy yields native-like structures. J. Mol. Graphics 13, 312-322.
Lins, L., Thomas, A., and Brasseur, R. (2003) Analysis of accessible surface of residues in proteins. Protein Sci. 12, 1406-1417.
Wei, X., Decker, J. M., Liu, H., Zhang, Z., Arani, R. B., Kilby, J. M., Saag, M. S., Wu, X., Shaw, G. M., and Kappes, J. C. (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob. Agents Chemother. 46, 1896-1905.
Epand, R. M. (2007) Detecting the presence of membrane domains using DSC. Biophys. Chem. 126, 197-200.
Vishwanathan, S. A., Thomas, A., Brasseur, R., Epand, R. F., Hunter, E., and Epand, R. M. (2008) Hydrophobic Substitutions in the First Residue of the CRAC Segment of the gp41 Protein of HIV. Biochemistry 47, 124-130.
Epand, R. M., Bach, D., Borochov, N., and Wachtel, E. (2000) Cholesterol crystalline polymorphism and the solubility of cholesterol in phosphatidylserine. Biophys. J. 78, 866-873.
Loomis, C. R., Shipley, G. G., and Small, D. M. (1979) The phase behavior of hydrated cholesterol. J. Lipid Res. 20, 525-535.
Aloia, R. C., Tian, H., and Jensen, F. C. (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc. Natl. Acad. Sci. U.S.A. 90, 5181-5185.
Brugger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F. T., and Krausslich, H. G. (2006) The HIV lipidome: A raft with an unusual composition. Proc. Natl. Acad. Sci. U.S.A. 103, 2641-2646.
Leung, K., Kim, J. O., Ganesh, L., Kabat, J., Schwartz, O., and Nabel, G. J. (2008) HIV-1 assembly: Viral glycoproteins segregate quantally to lipid rafts that associate individually with HIV-1 capsids and virions. Cell Host Microbe 3, 285-292.
Luo, C., Wang, K., Liu, D. Q., Li, Y., and Zhao, Q. S. (2008) The functional roles of lipid rafts in T cell activation, immune diseases and HIV infection and prevention. Cell. Mol. Immunol. 5, 1-7.
Guyader, M., Kiyokawa, E., Abrami, L., Turelli, P., and Trono, D. (2002) Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J. Virol. 76, 10356-10364.
Zhu, P., Liu, J., Bess, J., Jr., Chertova, E., Lifson, J. D., Grise, H., Ofek, G. A., Taylor, K. A., and Roux, K. H. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441, 847-852.
Zanetti, G., Briggs, J. A., Grunewald, K., Sattentau, Q. J., and Fuller, S. D. (2006) Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog. 2, e83.