[en] Penicillin-binding proteins (PBPs) are membrane proteins involved in the final stages of peptidoglycan synthesis and represent the targets of beta-lactam antibiotics. Enterococci are naturally resistant to these antibiotics because they produce a PBP, named PBP5fm in Enterococcus faecium, with low-level affinity for beta-lactams. We report here the crystal structure of the acyl-enzyme complex of PBP5fm with benzylpenicillin at a resolution of 2.4 A. A characteristic of the active site, which distinguishes PBP5fm from other PBPs of known structure, is the topology of the loop 451-465 defining the left edge of the cavity. The residue Arg464, involved in a salt bridge with the residue Asp481, confers a greater rigidity to the PBP5fm active site. In addition, the presence of the Val465 residue, which points into the active site, reducing its accessibility, could account for the low affinity of PBP5fm for beta-lactam. This loop is common to PBPs of low affinity, such as PBP2a from Staphylococcus aureus and PBP3 from Bacillus subtilis. Moreover, the insertion of a serine after residue 466 in the most resistant strains underlines even more the determining role of this loop in the recognition of the substrates.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Sauvage, Eric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Kerff, Frédéric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Fonze, E.
Herman, Raphaël ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Schoot, B.
Marquette, J. P.
Taburet, Y.
Prevost, D.
Dumas, J.
Stefanic, P.
Coyette, Jacques ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
Charlier, Paulette ; Université de Liège - ULiège > Département des sciences de la vie > Cristallographie des macromolécules biologiques
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ghuysen J.M. (1994) Molecular structure of penicillin-binding proteins and β-lactamases. Trends Microbiol. 2:372-380.
Frère J.M., Nguyen-Distèche M., Coyette J., Joris B. (1992) Mode of action: Interaction with the penicillin-binding proteins. The Chemistry of β-Lactams , Page M. I. (ed.), Blackie, London; 148-197.
Goffin C., Ghuysen J.M. (1998) Multimodular penicillin-binding proteins: An enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62:1079-1093.
Massova I., Mobashery S. (1998) Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 42:1-17.
Nguyen-Distèche M., Fraipont C., Buddelmeijer N., Nanninga N. (1998) The structure and function of Escherichia coli penicillin-binding protein 3. Cell. Mol. Life Sci. 54:309-316.
Vicente M., Errington J. (1996) Structure, function and controls in microbial division. Mol. Microbiol. 20:1-7.
Ghuysen J.M. (1997) Penicillin-binding proteins: Wall peptidoglycan assembly and resistance to penicillin; facts, doubts and hopes. Int. J. Antimicrob. Agents 8:45-60.
Williamson R., LeBouguenec C., Gutmann L., Horaud T. (1985) One or two low affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faeium to benzylpenicillin. J. Gen. Microbiol. 131:1933-1940.
Hakenbeck R., Coyette J. (1998) Resistant penicillin-binding proteins. Cell. Mol. Life Sci. 54:332-340.
Murray B.E. (1990) The life and times of the Enterococcus. Clin. Microbiol. Rev. 3:46-65.
Fontana R., Aldegheri M., Ligozzi M., Lopez H., Sucari A., Satta G. (1994) Overproduction of a low-affinity penicillin-binding protein and high-level resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 38:1980-1983.
Zorzi W., Zhou X.Y., Dardenne O., Lamotte J., Raze D., Pierre J. (1996) Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J. Bacteriol. 178:4948-4957.
Rybkine T., Mainardi J.L., Sougakoff W., Collatz E., Gutmann L. (1998) Penicillin-binding protein 5 sequence alteration in clinical isolates of Enterococcus faecium with different levels of β-lactam resistance. J. Infect. Dis. 178:159-163.
Hanrahan J., Hoyen C., Rice L.B. (2000) Geographic distribution of a large mobile element that transfers ampicillin and vancomycin resistance between Enterococcus faecium strains. Antimicrob. Agents Chemother. 44:1349-1351.
Al-Obeid S., Billot-Klein D., Van Heijenoort J., Collatz E., Gutmann L. (1992) Replacement of the essential penicillin-binding protein 5 by high-molecular mass PBPs may explain vancomycin-β-lactam synergy in low-level vancomycin-resistant Enterococcus faecium D366. FEMS Microbiol. Lett. 91:79-84.
Carias L.L., Rudin S.D., Donskey C.J., Rice L.B. (1998) Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J. Bacteriol. 180:4426-4434.
Klare I., Rodloff A.C., Wagner J., Witte W., Hakenbeck R. (1992) Overproduction of a penicillin-binding protein is not the only mechanism of penicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 36:783-787.
Rice L.B., Carias L.L., Hutton-Thomas R., Sifaoui F., Gutmann L., Rudin S.D. (2001) Penicillin-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 45:1480-1486.
Sifaoui F., Arthur M., Rice L., Gutmann L. (2001) Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob. Agents Chemother. 45:2594-2597.
Signoretto C., Boaretti M., Canepari P. (1998) Peptidoglycan synthesis by Enterococcus faecalis penicillin binding protein 5. Arch. Microbiol. 170:185-190.
Bugg T.D.H., Wright G.D., Dutka-Malen S., Arthur M., Courvalin P., Walsh C.T. (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: Biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and Van A. Biochemistry 30:2017-2021.
Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.
Pares S., Mouz N., Petillot Y., Hakenbeck R., Dideberg O. (1996) X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat. Struct. Biol. 3:284-289.
Dessen A., Mouz N., Hopkins J., Dideberg O. (2001) Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate: A mosaic framework containing 83 mutations. J. Biol. Chem. 30:45106-45112.
Korz D.J., Rinas U., Hellmuth K., Sanders E.A., Deckwer W.D. (1995) Simple fed-batch technique for high cell density cultivation of Escherichia coli. J. Biotechnol. 39:59-65.
LeMaster D.M., Richards F.M. (1985) 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry 24:7263-7268.
Leslie A.G.R.W. MOSFLM Version 5.40 Mosflm Users Guide1996.
Miller R., Gallo S.M., Khalak H.G., Weeks C.M. (1994) SnB: Crystal structure determination via Shake-and-Bake. J. Appl. Cryst. 27:613-621.
Cowtan K., Main P. (1998) Miscellaneous algorithms for density modification. Acta Crystallogr. D54:487-493.
Roussel A., Cambillau C. Silicon Graphics Geometry Partner Directory , Silicon Graphics, Mountain View, Calif.; 1989, 77-78.
Brünger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D54:905-921.
Mollerach M.E., Partoune P., Coyette J., Ghuysen J.M. (1996) Importance of the E46-D160 polypeptide segment of the non-penicillin-binding module for the folding of the low-affinity, multimodular class B penicillin-binding protein 5 of Enterococcus hirae. J. Bacteriol. 178:1774-1775.
Wu C.Y.E., Alborn W.E., Flokowitsch J.E., Hoskins J., Ünal S., Blaszczak L.C. (1994) Site-directed mutagenesis of the mecA gene from a methicillin-resistant strain of Staphylococcus aureus. J. Bacteriol. 176:443-449.
Maveyraud L., Golemi D., Kotra L.P., Tranier S., Valulenko S., Mobashery S. (2000) Insights into class D β-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure 8:1289-1298.
Davies C., White S.W., Nicholas R.A. (2001) Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3 Å resolution. J. Biol. Chem. 276:616-623.
Kelly J.A., Knox J.R., Moews P.C., Hite G.J., Bartolone J.B., Zhao H. (1985) 2.8-Å structure of penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase from Streptomyces R61 and complexes with beta-lactams. J. Biol. Chem. 260:6449-6458.
Fonzé E., Vermeire M., Nguyen-Distèche M., Brasseur R., Charlier P. (1999) The crystal structure of a penicilloyl-serine transferase of intermediate penicillin sensitivity: The DD-transpeptidase of Streptomyces K15. J. Biol. Chem. 274:21853-21860.
Strynadka N.C.J., Adachi H., Jensen S.E., Johns K., Sielecki A., Betzel C. (1992) Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature 359:700-705.
Zafaralla G., Manavathu E.K., Lerner S.A., Mobashery S. (1992) Elucidation of the role of arginine-244 in the turnover processes of class A beta-lactamases. Biochemistry 31:3847-3852.
Wladkowski B.D., Chenoweth S.A., Sanders J.N., Krauss M., Stevens W.J. (1997) Acylation of β-lactams by class A β-lactamase: An ab initio theoretical study on the effects of the oxy-anion hole. J. Am. Chem. Soc. 119:6923-6431.
Dive G., Dehareng D. (1999) Serine peptidase catalytic machinery: Cooperative one-step mechanism. Int. J. Quant. Chem. 73:161-174.
Adachi H., Ohta T., Matsuzawa H. (1991) Site-directed mutants, at position 166, of RTEM-1 β-lactamase that form a stable acyl-enzyme intermediate with penicillin. J. Biol. Chem. 266:3186-3191.
Lu W.P., Sun Y., Bauer M.D., Paule S., Koenigs P.M., Kraft W.G. (1999) Penicillin-binding protein 2a from methicillin resistant Staphylococcus aureus: Kinetic characterization of its interactions with β-lactams using electrospray mass spectrometry. Biochemistry 38:6537-6546.
Jamin M., Damblon C., Millier S., Hakenbeck R., Frère J.M. (1993) Penicillin-binding protein 2x of Streptococcus pneumoniae: Enzymic activities and interactions with beta-lactams. Biochem. J. 292:735-741.
Delaire M., Labia R., Samama J.P., Masson J.M. (1992) Site-directed mutagenesis at the active site of Escherichia coli TEM-1 beta-lactamase: Suicide inhibitor-resistant mutants reveal the role of arginine 244 and methionine 69 in catalysis. J. Biol. Chem. 267:20600-20606.
Mouz N., Di Guilmi A.M., Gordon E., Hakenbeck R., Dideberg O., Vernet T. (1999) Mutations in the active site of penicillin-binding protein PBP2x from Streptococcus pneumoniae. J. Biol. Chem. 274:19175-19180.
Gordon E., Mouz N., Duée E., Dideberg O. (2000) The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: Implication in drug resistance. J. Mol. Biol. 299:477-485.
Ligozzi M., Pittaluga F., Fontana R. (1996) Modification of penicillin-binding protein 5 associated with high-level ampicillin-resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 40:354-357.
Pinho M.G., De Lencastre H., Tomasz A. (2001) An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc. Natl. Acad. Sci. USA 98:10886-10891.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.