Abstract :
[en] Phase imaging with tapping mode atomic force microscopy (AFM) and force modulation microscopy were used to probe the mechanical properties of phase-separated lipid monolayers made of a mixture (0.25:0.75) of the surface-active lipopeptide surfactin and of dipalmitoylphosphatidylcholine (DPPC). The π–A isotherms and the result of a molecular modeling study revealed a loose, 2-D liquid-like organization for the surfactin molecules and a closely packed, 2-D solid-like organization for DPPC molecules. This difference in molecular organization was responsible for a significant contrast in height, tapping mode phase and force modulation amplitude images. Phase imaging at light tapping, i.e., with a ratio of the set-point tapping amplitude with respect to the free amplitude Asp/A0≈0.9, showed larger phase shifts on the solid-like DPPC domains attributed to larger Young’s modulus. However, contrast inversion was observed for Asp/A0<0.7, suggesting that at moderate and hard tapping the image contrast was dominated by the probe–sample contact area. Surprisingly, force modulation amplitude images showed larger stiffness for the liquid-like surfactin domains, suggesting that the contrast was dominated by contact area effects rather than by Young’s modulus. These data emphasize the complex nature of the contrast mechanisms of dynamic AFM images recorded on mixed lipid monolayers.
Scopus citations®
without self-citations
34