[en] Purpose. Reverse iontophoresis is an alternative to blood sampling for the monitoring of endogenous molecules. Here, the potential of the technique to measure urea and potassium levels non-invasively, and to track their concentrations during hemodialysis, has been examined. Materials and Methods. In vitro experiments were performed to test (a) a series of subdermal urea and potassium concentrations typical of the pathophysiologic range, and (b) a decreasing profile of urea and potassium subdermal concentrations to mimic those which are observed during hemodialysis. Results. (a) After 60-120 min of iontophoresis, linear relationships (p < 0.05) were established between both urea and potassium fluxes and their respective subdermal concentrations. The determination coefficients were above 0.9 after 1 h of current passage using sodium as an internal standard. (b) Reverse iontophoretic fluxes of urea and K+ closely paralleled the decay of the respective concentrations in the subdermal compartment, as would occur during a hemodialysis session. Conclusions. These in vitro experiments demonstrate that urea and potassium can be quantitatively and proportionately extracted by reverse iontophoresis, even when the subdermal concentrations of the analytes are varying with time. These results suggest the non-invasive monitoring of urea and potassium to diagnose renal failure and during hemodialysis is feasible, and that in vivo measurements are warranted.
Disciplines :
Pharmacy, pharmacology & toxicology Chemistry
Author, co-author :
Wascotte, Valentine; Université Catholique de Louvain - UCL > Unité de Pharmacie Galénique
Delgado-Charro, Begona; University of Bath > Department of Pharmacy and Pharmacology
Rozet, Eric ; Université de Liège - ULiège > Chimie analytique
Wallemacq, Pierre; Université Catholique de Louvain - UCL > Cliniques Universitaires St Luc > Biochimie Médicale
B. Leboulanger, R. H. Guy, and M. B. Delgado-Charro. Reverse iontophoresis for non-invasive transdermal monitoring. Physiol. Meas. 25:R35-R50 (2004).
Y. N. Kalia, A. Naik, J. Garrison, and R. H. Guy. Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 56:619-658 (2004).
P. G. Green, M. Flanagan, B. Shroot, and R. H. Guy. Iontophoretic drug delivery. In K. A. Walters and J. Hadgraft (eds), Pharmaceutical Skin Penetration Enhancement, Dekker, New York, 1993, pp. 311-332.
D. Marro, Y. N. Kalia, M. B. Delgado-Charro, and R. H. Guy. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm. Res. 18:1701-1708 (2001).
A. Sieg, R. H. Guy, and M. B. Delgado-Charro. Electroosmosis in transdermal iontophoresis: implications for noninvasive and calibration-free glucose monitoring. Biophys. J. 87:3344-3350 (2004).
J. B. Phipps and J. R. Gyory. Trandermal ion migration. Adv. Drug Deliv. Rev. 9:137-176 (1992).
R. R. Burnette and B. Ongpipattanakul. Characterization of the permselective properties of excised human skin during iontophoresis. J. Pharm. Sci. 76:765-773 (1987).
M. J. Tierney, J. A. Tamada, R. O. Potts, R. C. Eastman, K. Pitzer, N. R. Ackerman, and S. J. Fermi. The GlucoWatch biographer: a frequent automatic and noninvasive glucose monitor. Ann. Med. 32:632-641 (2000).
B. Leboulanger, J. M. Aubry, G. Bondolfi, R. H. Guy, and M. B. Delgado-Charro. Lithium monitoring by reverse iontophoresis in vivo. Clin. Chem. 50:2091-2100 (2004).
I. T. Degim, S. Ilbasmis, R. Dundaroz, and Y. Oguz. Reverse iontophoresis: a non-invasive technique for measuring blood urea level. Pediatr. Nephrol. 18:1032-1037 (2003).
N. K. Man, M. Touam, and P. Jungers. Causes et conséquences de l'urémie chronique, indications de la dialyse de suppléance. In L'Hémodialyse de Suppléance, Médecine-Sciences, Flammarion, Paris, 2003, pp. 1-15.
A. Farkas, R. Vamos, T. Bajor, N. Mullner, A. Lazar, and A. Hraba. Utilization of lacrimal urea assay in the monitoring of hemodialysis: conditions, limitations and lacrimal arginase characterization. Exp. Eye Res. 76:183-192 (2003).
R. Koncki, A. Radomska, and S. Glab. Bioanalytical flow-injection system for control of hemodialysis adequacy. Anal. Chim. Acta 418:213-224 (2000).
T. A. Depner, P. R. Keshaviah, J. P. Ebben, P. F. Emerson, A. J. Collins, K. K. Jindal, A. R. Nissenson, J. M. Lazarus, and K. Pu. Multicenter clinical validation of an on-line monitor of dialysis adequacy. J. Am. Soc. Nephrol. 7:464-471 (1996).
S. Alloatti, A. Molino, M. Manes, and G. M. Bosticardo. Urea rebound and effectively delivered dialysis dose. Nephrol. Dial. Transplant. 13(Suppl 6):25-30 (1998).
L. R. Narasimhan, W. Goodman, and C. K. Patel. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc. Natl. Acad. Sci. U. S. A. 98:4617-4621 (2001).
Reviewing the draft NKF-DOQI guidelines. 1. National Kidney Foundation-Dialysis Outcome Quality Initiative. Nephrol. News Issues 11:10-11 (2000).
G. S. Metry, P. O. Attman, P. Lonnroth, S. N. Beshara, and M. Aurell. Urea kinetics during hemodialysis measured by microdialysis-a novel technique. Kidney Int. 44:622-629 (1993).
M. Capdevila, I. Martinez Ruiz, C. Ferrer, F. Monllor, C. Ludjvick, N. H. Garcia, and L. I. Juncos. The efficiency of potassium removal during bicarbonate hemodialysis. Hemodial. Int. 9:296-302 (2005).
B. Redaelli, G. Bonoldi, G. Di Philippo, M. R. Vigano, and A. Malnati. Behaviour of potassium removal in different dialytic schedules. Nephrol. Dial. Transplant. 13:35-38 (1998).
J. Ahmed and L. S. Weisberg. Hyperkaliemia in dialysis patients. Sem. Dial. 14:348-356 (2001).
S. H. Pai and M. Cyr-Manthey. Effects of hemolysis on chemistry tests. Lab. Med. 22:408-410 (1991).
D. Yücel and K. Dalva. Effect of in vitro hemolysis on 25 common biochemical tests. Clin. Chem. 38:575-577 (1992).
M. J. Tierney, J. A. Tamada, R. O. Potts, L. Jovanovic, and S. Garg. Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosens Bioelectron. 16:621-629 (2001).
A. Sieg, R. H. Guy, and M. B. Delgado-Charro. Reverse iontophoresis for noninvasive glucose monitoring: the internal standard concept. J. Pharm. Sci. 92:2295-2302 (2003).
A. Sieg, R. H. Guy, and M. B. Delgado-Charro. Simultaneous extraction of urea and glucose by reverse iontophoresis in vivo. Pharm. Res. 21:1805-1810 (2004).
N. G. Levinsky. Fluides et Electrolytes. In J. D. Wilson, E. Braunwald, K. J. Isselbacher, R. G. Petersdorf, J. B. Martin, A. S. Fauci, and R. K. Root (eds), T.R. Harrison, Principes de Médecine Interne, Médecine- Sciences, Flammarion, Paris, 1992, pp. 278-295.
B. Kirschbaum. The effect of hemodialysis on electrolytes and acid-base parameters. Clin. Chim. Acta 336:109-113 (2003).
B. Canaud. Adequacy target in hemodialysis. J. Nephrol. 17:77-86 (2004).
R. van der Geest, M. Danhof, and H. Boddé. Validation and testing of a new iontophoretic continuous flow through transport cell. J. Control. Release 51:85-91 (1998).
P. F. Mulvenna and G. Savidge. A modified manual method for the determination of urea in seawater using diacetylmonoxime reagent. Estuar., Coast. Shelf Sci. 34:429-438 (1992).
E. Rozet, V. Wascotte, N. Lecouturier, V. Préat, W. Dewé, B. Boulanger, and P. Hubert. Improvement of the decision efficiency of the accuracy profile by means of indexes for analytical methods validation. Application to a diacetyl-monoxime colorimetric assay used for the determination of urea in transdermal iontophoretic extracts. Anal. Chim. Acta (2006).
C. R. Harding. The stratum corneum: structure and function in health and disease. Dermatol. Ther. 17(Suppl 1):6-15 (2004).
M. Loden. Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am. J. Clin. Dermatol. 4:771-788 (2003).
B. Mudry, R. H. Guy, and M. B. Delgado-Charro. Electromigration of ions across the skin: determination and prediction of transport numbers. J. Pharm. Sci., 95:561-569(2006).