[en] Through the cAMP signaling pathway, TSH stimulates thyroid follicular cell proliferation, differentiation, and function. Although the autocrine production of IGF-I in the thyroid gland suggests an important physiological function for this factor in these processes, the exact role of the IGF-I/IGF-I receptor system in vivo remains unclear. Although the mitogenic action of TSH requires the presence of IGF-I or insulin in primary culture of dog and human thyroid cells, IGF-I has an effect equal to and independent of the effect of TSH on cell proliferation in rat thyroid cell lines and may even be the main growth regulator in this case. To investigate the in vivo function of the IGF-I/IGF-I receptor system, transgenic mice overexpressing human IGF-I, IGF-I receptor, or both in the thyroid were generated. Adult transgenic mice did not present external signs of thyroid dysfunction, but mice overexpressing both transgenes had significantly increased gland weight and follicular lumen area. A decreased TSH level together with a slightly increased serum T4 concentration and increased thyroidal iodine uptake were also observed, suggesting that IGF-I and IGF-I receptor stimulate thyroid function to some extent in vivo
Clément, S.; Université Libre de Bruxelles - ULB > Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucléaire, Institut de Biologie et de Médecine Moléculaire
Refetoff, S.; Departments of Medicine and Pediatrics, University of Chicago (S.R.), Chicago, Illinois 60637
Robaye, B.; Université Libre de Bruxelles - ULB > Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucléaire, Institut de Biologie et de Médecine Moléculaire
Dumont, E.; Université Libre de Bruxelles - ULB > Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucléaire, Institut de Biologie et de Médecine Moléculaire
Schurmans, Stéphane ; Université Libre de Bruxelles - ULB > Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucléaire, Institut de Biologie et de Médecine Moléculaire
Language :
English
Title :
Low TSH requirement and goiter in transgenic mice overexpressing IGF-1 and IGF-1R in the thyroid gland
Publication date :
2001
Journal title :
Endocrinology
ISSN :
0013-7227
eISSN :
1945-7170
Publisher :
Endocrine Society, Chevy Chase, United States - Maryland
Dumont J.E., Lamy F., Roger P., Maenhaut C. (1992) Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and others factors. Physiol Rev 72:667-689.
Vassart G., Dumont J.E. (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13:596-611.
Burikhanov R., Coulonval K., Pirson I., Lamy F., Dumont J.E., Roger P. (1996) Thyrotropin via cyclic AMP induces insulin receptor expression and insulin co-stimulation of growth and amplifies insulin and insulin-like growth factor signaling pathways in dog thyroid epithelial cells. J Biol Chem 271:29400-29406.
Deleu S., Pirson I., Coulonval K., Drouin A., Taton M., Clermont F., Roger P.P., Nakamura T., Dumont J.E., Maenhaut C. (1999) IGF-I or insulin, and the TSH cyclic AMP cascade separately control dog and human thyroid cell growth and DNA synthesis, and complement each other in inducing mitogenesis. Mol Cell Endocrinol 149:41-51.
Santisteban P., Kohn L.D., Di Lauro R. (1987) Thyroglobulin gene expression is regulated by insulin and insulin-like growth factor I, as well as thyrotropin, in FRTL-5 thyroid cells. J Biol Chem 262:4048-4052.
Polh V., Roger P.P., Christophe D., Pattyn G., Vassart G., Dumont J.E. (1990) Differentiation expression during proliferative activity induced through different pathways: In situ hybridization study of thyroglobulin gene expression in thyroid epithelial cells. J Cell Biol 111:663-672.
Kimura T., Dumont J.E., Fusco A., Golstein J. (1999) Insulin and TSH promote growth in size of PC CI3 rat thyroid cells, possibly via a pathway different from DNA synthesis: Comparison with FRTL-5 cells. Eur J Endocrinol 140:94-103.
Thomas G.A., Davies H.G., Williams E.D. (1994) Site of production of IGF-I in the normal and stimulated mouse thyroid. J Pathol 173:355-360.
Hofbauer L.C., Rafferzeder M., Janssen O.E., Gärtner R. (1995) Insulin-like growth factor-1 messenger ribonucleic acid expression in porcine thyroid follicles is regulated by thyrotropin and iodine. Eur J Endocrinol 132:605-610.
Tode B., Serio M., Rotella C.M., Galli G., Franceschelli F., Tanini A., Toccafondi R. (1989) Insulin-like growth factor-1: Autocrine secretion by human thyroid follicular cells in primary culture. J Clin Endocrinol Metab 69:639-647.
Baserga R., Sell C., Porcu P., Rubin M. (1994) The role of the IGF-I receptor in the growth and transformation of mammalian cells. Cell Proliferat 27:63-71.
Miyakawa M., Saji M., Tsushima T., Wakai K., Shizume K. (1988) Thyroid volume and serum thyroglobulin levels in patients with acromegaly: Correlation with plasma insulin-like growth factor I levels. J Clin Endocrinol Metab 67:973-978.
Kasagi K., Shimatsu A., Miyamoto S., Misaki T., Sakahara H., Konishi J. (1999) Goiter associated with accromegaly: Sonographic and scintigraphic findings of the thyroid gland. Thyroid 9:791-796.
Cannavo S., Squadrito S., Finocchiaro M.D., Curto L., Almoto B., Vieni A., Trimarchi F. (2000) Goiter and impairment of thyroid function in acromegalic patients: Basal evaluation and follow-up. Horm Metab Res 32:190-195.
Ledent C., Parmentier M., Vassart G. (1990) Tissue-specific expression and methylation of a thyroglobulin-chloramphenicol acetyltransferase fusion gene in transgenic mice. Proc Natl Acad Sci USA 87:6176-6180.
Hogan B.L.M., Costantini F., Lacy E. Manipulating the mouse embryo: a laboratory manual, Cold Spring Harbor: Cold Spring Harbor Laboratory; 1986.
Pohlenz J., Maqueen A., Cua K., Weiss R.E., Van Sande J., Refetoff S. (1999) Improved radioimmunoassay for measurement of mouse thyrotropin in serum: Strain differences in thyrotropin concentration and thyrotroph sensitivity to thyroid hormone. Thyroid 9:1265-1271.
Wolf E., Jehle P.M., Weber M.M., Sauerwein H., Daxenberger A., Breier B.H., Besenfelder U., Frenyo L., Brem G. (1997) Human insulin-like growth factor 1 (IGF-I) produced in the mammary glands of transgenic rabbits: Yield, receptor binding, mitogenic activity and effects on IGF-binding proteins. Endocrinology 138:307-313.
Dyck M.K., Ouellet M., Gagn M., Petitclerc D., Sirard M.A., Pothier F. (1999) Testes-specific transgene expression in insulin-like growth factor-1 transgenic mice. Mol Reprod Dev 54:32-42.
Baxter R.C. (2000) Insulin-like growth factor (IGF)-binding proteins: Interactions with IGFs and intrinsic bioactivities. Am J Physiol 278.
Murphy L.J., Rajkumar K., Molnar P. (1995) Phenotypic manifestations of insulin-like growth factor binding protein-1 (IGFBP-1) and IGFBP-3 overexpression in transgenic mice. Prog Growth Factor Res 6:425-432.
Mayerhofer A., Easterly S., Amador A.G., Gher J., Bartke A., Yun J., Wagner T.E. (1990) Studies of the thyroid in transgenic mice expressing the genes for human and bovine growth hormone. Experientia 46:1043-1046.
Denef J.F., Cordier A.C., Haumont S., Beckers C. (1980) The influence of thyrotropin and growth hormone on the thyroid gland in the hereditary dwarf mouse: A morphometric study. Endocrinology 107:1249-1257.
Cheung N.W., Lou J.C., Boyages S.C. (1996) Growth Hormone does not increase thyroid size in the absence of thyrotropin: A study in adults with hypopituitarism. J Clin Endocrinol Metab 81:1179-1183.
Ledent C., Dumont J.E., Vassart G., Parmentier M. (1992) Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism. EMBO J 11:537-542.
Zeiger M.A., Saji M., Gusev Y., Westra W.H., Takiyama Y., Dooley W.C., Kohn L.D., Levine M.A. (1997) Thyroid-specific expression of cholera toxin A1 subunit causes thyroid hyperplasia and hyperthyroidism in transgenic mice. Endocrinology 138:3133-3140.
Van Keymeulen A., Bartek J., Dumont J.E., Roger P.P. (1999) Cyclin D3 accumulation and activity integrate and rank the comitogenic pathways of thyrotropin and insulin in thyrocytes in primary culture. Oncogene 18:7351-7359.
Yoshinari M., Tokuyama T., Kuroda T., Sato K., Okazawa K., Mizokami T., Okamura K., Fujishima M. (1992) Preserved thyroidal secretion of thyroxine in acromegalic patients with suppressed hypophyseal secretion of thyrotropin. Clin Endocrinol (Oxf) 36:355-360.