New pyridobenzodiazepine derivatives: Modifications of the basic side chain differentially modulate binding to dopamine (D-4.2, D-2L) and serotonin (5-HT2A) receptors
Liégeois, Jean-François; Eyrolles, L.; Ellenbroek, B. A.et al.
2002 • In Journal of Medicinal Chemistry, 45 (23), p. 5136-5149
[en] A series of new pyridobenzodiazepines with variation of the basic side chain were synthesized and evaluated for their binding to D-4.2, D-2L, and 5-HT2A receptors in comparison with clozapine, haloperidol, and two parent compounds previously described, 8-chloro-6-(4-methyl-1-piperazinyl)-11H-pyrido[2,3-b][1,4]benzodiazepine (8) and 8-methyl-6-(4-methyl-1-piperazinyl)-11H-pyrido[2,3-b][1,4]benzodiazepine (9). In the piperazine series, replacing the N-methyl group by a N-phenyl moiety (15-17, 30-32) provided a dramatic decrease of affinity for all receptors (K-i > 1000 nM). A N-cyclohexyl group (20, 35) restored some affinity. Compounds with a N-benzyl (18, 33) or N-phenethyl side chain (19, 34) had significant affinities at D-4.2 and 5-HT2A receptors. Homologation of the piperazine nucleus (29, 44) led to a significant decrease of the affinity at all receptors investigated. In the 4-aminopiperidine series, N-methyl derivatives (21, 36) possessed less affinity in comparison with the N-metbylpiperazine analogues (8, 9) while the N-benzyl congeners (22, 37) showed similar affinities. The rigidification of piperidine nucleus as obtained in azabicyclo [3.2.1] octane derivatives (23, 38) involved a slight reduction of the affinity at D-4.2 and 5-HT2A receptors while the affinity at D-2L receptors was dramatically increased. The introduction of N-substituted aminoalkylamines to replace N-methylpiperazine generally led to a significant decrease in the affinity for D-4.2 receptors but some of these molecules (24, 25, 41) presented a significant 5-HT2A binding affinity. The presence of a more flexible side chain induced an increased conformational freedom. Consequently, the preferential position of the distal nitrogen or its basicity in piperazine derivatives was greatly modified. 19 with a high D-4.2 and 5-HT2A affinity (K-i = 40 and 103 nM, respectively) did not induce cataleptic phenomenon in the paw test in rats but significantly reduced the immobility time in Porsolt's test in mice suggesting antidepressant properties.
Disciplines :
Chemistry Pharmacy, pharmacology & toxicology
Author, co-author :
Liégeois, Jean-François ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Eyrolles, L.
Ellenbroek, B. A.
Lejeune, Corinne ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Département des sciences et gestion de l'environnement
Carato, P.
Bruhwyler, J.
Geczy, J.
Damas, Jacques ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Delarge, J.
Language :
English
Title :
New pyridobenzodiazepine derivatives: Modifications of the basic side chain differentially modulate binding to dopamine (D-4.2, D-2L) and serotonin (5-HT2A) receptors
Publication date :
07 November 2002
Journal title :
Journal of Medicinal Chemistry
ISSN :
0022-2623
eISSN :
1520-4804
Publisher :
Amer Chemical Soc, Washington, United States - Washington
Love, R. C.; Nelson, M. W. Pharmacology and clinical experience with risperidone. Exp. Opin. Pharmacother. 2000, 1, 1441-1453.
Brown, L. A.; Levin, G. M. Sertindole, a new atypical antipsychotic for the treatment of schizophrenia. Pharmacotherapy 1998, 18, 69-83.
Kane, J. M. Sertindole: A review of clinical efficacy. Int. Clin. Psychopharmacol. 1998, 13, S59-S63.
Bhana, N.; Foster, R. H.; Olney, R.; Plosker, G. L. Olanzapine. An updated review of its use in the management of schizophrenia. Drugs 2001, 61, 111-161.
Fulton, B.; Goa, K. L. Olanzapine. A review of its pharmacological properties and therapeutic efficacy in the management of schizophrenia and related psychoses. Drugs 1997, 53, 281-298.
Goldstein, J. M. Quetiapine fumarate (Seroquel): A new atypical antipsychotic. Drugs Today 1999, 35, 193-210.
Kasper, S.; Müller-Spahn, F. Review of quetiapine and its clinical applications in schizophrenia. Exp. Opin. Pharmacother. 2000, 1, 783-801.
Tandon, R.; Harrigan, E.; Zorn, S. H. Ziprasidone: A novel antipsychotic with unique pharmacology and therapeutic potential. J. Serotonin Res. 1997, 4, 159-177.
Cooper, S. J.; Tweed, J.; Raniwalla, J.; Butler, A.; Welch, C. A placebo-controlled comparison of zotepine versus chlropromazine in patients with acute exacerbation of schizophrenia. Acta Psychiatr. Scand. 2000, 101, 218-225.
Kane, J.; Honigfeld, G.; Singer, J.; Meltzer, H. Clozapine for the treatment-resistant schizophrenic. A double blind comparison with chlorpromazine. Arch. Gen. Psychiatry 1988, 45, 789-796.
Meltzer, H. Y.; Okayli, G. Reduction of suicidality during clozapine treatment of neuroleptic resistant schizophrenia: Impact on risk-benefit assessment. Am. J. Psychiatry 1995, 152, 183-190.
Haller, E.; Binder, R. L. Clozapine and seizures. Am. J. Psychiatry 1990, 147, 1069-1071.
Copp, P. J.; Lament, R.; Tennent, T. G. Amitriptyline in clozapine-induced sialorrhea. Br. J. Psychiatry 1991, 159, 166.
Cunningham Owens, D. G. Adverse effects of antipsychotic agents. Do newer agents offer advantages? Drugs 1996, 51, 895-930.
Lieberman, J. A.; Johns, C. A.; Kane, J. M.; Rai, K.; Pisciotta, A. V.; Saltz B. L.; Howard, A. Clozapine-induced agranulocytosis: Non-cross reactivity with other psychotropic drugs. J. Clin. Psychiatry 1988, 49, 271-277.
Grohmann, R.; Schmidt, L. G.; Spieb-Kiefer, C.; Rüther, E. Agranulocytosis and significant leucopenia with neuroleptic drugs: Results from the AMÜP program. Psychopharmacology 1989, 99, S109-S112.
Pisciotta, A. V. Drug induced agranulocytosis peripheral destruction of polymorphonuclear leukocytes and their marrow precursors. Blood Rev. 1990, 4, 226-237.
Bürki, H. R.; Sayer, A. C.; Ruch, W.; Asper, H. Effects of clozapine and other dibenzo-epines on central dopaminergic and cholinergic systems. Structure-activity relationships. Arzneimittelforschung 1977, 27, 1561-1565.
Meltzer, H. Y.; Matsubara, S.; Lee, J. C. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J. Pharmacol. Exp. Ther. 1989, 251, 238-246.
Richelson, E.; Souder, T. Binding of antipsychotic drugs to human brain receptors. Focus on newer generation compounds. Life Sci. 2000, 68, 29-39.
Schotte, A.; Janssen, P. F. M.; Gommeren, W.; Luyten, W. H. M. L.; Gompel, P. V.; Lesage, A. S.; De Loore, K.; Leysen, J. E. Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology 1996, 124, 57-73.
Chakrabarti, J. K.; Hotten, T. M.; Pullar, I. A.; Steggles, D. J. Synthesis and pharmacological evaluation of CNS activities of [1,2,3]triazolo[4,5-b][1,5]-, imidazolo[4,5-b][1,5]-, and pyrido[2,3-b][1,5]benzodiazepines. 10-Piperazinyl-4H-1,2,3-triazolo[4,5-b]-[1,5]benzodiazepines with neuroleptic activity. J. Med. Chem. 1989, 32, 2375-2381.
Leysen, J. E.; Niemegeers, C. J. E.; Tollenaere, J. P.; Laduron, P. Serotonergic component of neuroleptic receptors. Nature 1978, 272, 168-171.
Waldmeier, P. C.; Delini-Stula, A. A. Serotonin-dopamine interactions in the nigrostriatal system. Eur. J. Pharmacol. 1979, 55, 363-373.
Saller, C. F.; Czupryna, M. J.; Salama, A. I. 5-HT2 receptor blockade by ICI 169,369 and other 5-HT2 antagonists modulates the effects of D-2 dopamine receptor blockade. J. Pharmacol. Exp. Ther. 1990, 253, 1162-1170.
Wadenberg, M.-L. G.; Hicks, P. B.; Richter, J. T.; Young, K. A. Enhancement of antipsychotic-like properties of raclopride in rats using the selective serotonin2A receptor antagonist MDL 100,907. Biol. Psychiatry 1998, 44, 508-515.
Andersen, K.; Perregaard, J.; Arnt, J.; Nielsen, J. B.; Begtrup, M. Selective, centrally acting serotonin 5-HT2 antagonists. 2. Substituted 3-(4-fluorophenyl)-1H-indoles. J. Med. Chem. 1992, 35, 4823-4831.
Bøgesø, K. P.; Arnt, J.; Hyttel, J.; Pedersen, H. Stereospecific and selective 5-HT2 antagonism in a series of 5-substituted trans-1-piperazino-3-phenylindans. J. Med. Chem. 1993, 36, 2761-2770.
Campiani, G.; Nacci, V.; Bechelli, S.; Ciani, S. M.; Garofalo, A.; Fiorini, I.; Wikström, H.; de Boer, P.; Liao, Y.; Tepper, P. G.; Cagnotto, A.; Mennini, T. New antipsychotic agents with serotonin and dopamine antagonist properties based on a pyrrolo- [2,1-b][1,3]benzothiazepine structure. J. Med. Chem. 1998, 41, 3763-3772.
Lowe, J. A., III. Atypical antipsychotics based on the D2/5-HT2 ratio hypotheses. Curr. Med. Chem. 1994, 1, 50-60.
Perregaard, J.; Arnt, J.; Bøgesø, K. P.; Hyttel, J.; Sanchez, C. Noncataleptogenic, centrally acting dopamine D-2 and serotonin 5-HT2 antagonists within a series of 3-substituted 1-(4-fluorophenyl)-1H-indoles. J. Med. Chem. 1992, 35, 1092-1101.
Meltzer, H. Y. Multireceptor atypical antipsychotic drugs. In Atypical Antipsychotics; Ellenbroek, B. A., Cools, A. R., Eds.; Birrkhaüser Verlag: Basel (CH), 2000; pp 191-213.
Stahl, S. M. Antipsychotic agents. In Essential Psychopharmacology. Neuroscientific Basis and Practical Applications, 2nd Ed.; Cambridge University Press: Cambridge, 2000; pp 401-458.
Van Tol, H. H. M.; Bunzow, J. R.; Guan, H. C.; Sunahara, R. K.; Seeman, P.; Niznik, H. B.; Civelli, O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991, 350, 610-614.
Hrib, N. J. The dopamine D4 receptor: A controversial therapeutic target. Drugs Future 2000, 25, 587-611.
Kebabian, J. W.; Tarazi, F. I.; Kula, N. S.; Baldessarini, R. J. Compounds selective for dopamine receptor subtypes. Drug Discov. Todays 1997, 2, 333-340.
Liégeois, J.-F.; Eyrolles, L.; Bruhwyler, J.; Delarge, J. Dopamine D4 receptors, a new opportunity for research on schizophrenia. Curr. Med. Chem. 1998, 5, 77-100.
Oak, J. N.; Oldenhof, J.; Van Tol, H. H. M. The dopamine D4 receptor: One decade of research. Eur. J. Pharmacol. 2000, 405, 303-327.
Tarazi, F. I.; Baldessarini, R. J. Brain dopamine D4 receptors: Basic and clinical status. Int. J. Neuropsychopharmacol. 1999, 2, 41-58.
Leysen, J. E.; Janssen, P. M. F.; Heylen, L.; Gommeren, W.; Van Gompel, P.; Lesage, A. S., Megens, A. A. H. P.; Schotte, A. Receptor interactions of new antipsychotics: Relation to pharmacodynamic and clinical effects. Int. J. Psychiatry Clin. Pract. 1998, 2, S3-S17.
Schmutz, J.; Picard, C. W. Tricyclic neuroleptics: Structure-activity relationships. Handbook Exp. Pharmacol. 1986, 55, 3-25.
Liao, Y.; DeBoer, P.; Meier, E.; Wikström, H. Synthesis and pharmacological evaluation of triflate-substituted analogues of clozapine: Identification of a novel atypical neuroleptic. J. Med. Chem. 1997, 40, 4146-4153.
Liao, Y.; Venhuis, B. J., Rodenhuis, N.; Timmerman, W.; Wikström, H. New(sulfonyloxy)piperazinyldibenzazepines as potential atypical antipsychotics: Chemistry and pharmacological evaluation. J. Med. Chem. 1999, 42, 2235-2244.
Liégeois, J.-F.; Bruhwyler, J.; Damas, J.; Nguyen, T. P.; Chleide, E.; Mercier, M.; Rogister, F.; Delarge, J. New pyridobenzodiazepine derivatives as potential antipsychotics: Synthesis and neurochemical study. J. Med. Chem. 1993, 36, 2107-2114.
Liégeois, J.-F.; Rogister, F.; Bruhwyler, J.; Damas, J.; Nguyen, T. P.; Inarejos, M. O.; Chleide, E.; Mercier, M.; Delarge, J. Pyridobenzoxazepine and pyridobenzothiazepine derivatives as potential central nervous system agents: Synthesis and neurochemical study. J. Med. Chem. 1994, 37, 519-525.
Liégeois, J.-F.; Bruhwyler, J.; Damas, J.; Rogister, F.; Masereel, B.; Géczy, J.; Delarge, J. Modulation of the clozapine structure increases its selectivity for the dopamine D4 receptor. Eur. J. Pharmacol. 1995, 273, R1-R3.
Bruhwyler, J.; Liégeois, J.-F.; Chleide, E.; Rogister, F.; Damas, J.; Delarge, J.; Mercier, M. Comparative study of typical neuroleptics, clozapine and new synthesized clozapine-analogues: correlations between neurochemistry and behaviour. Behav. Pharmacol. 1992, 3, 567-579.
Bruhwyler, J.; Chleide, E.; Houbeau, G.; Waegeneer, N.; Mercier, M. Differentiation of haloperidol and clozapine using a complex operant schedule in the dog. Pharmacol. Biochem. Behav. 1993, 44, 181-189.
Bruhwyler, J.; Liégeois, J.-F.; Bergman, J.; Carey, G.; Goudie, A.; Taylor, A.; Meltzer, H. Y.; Delarge, J.; Géczy, J. JL13, a pyridobenzoxazepine compound with potential atypical antipsychotic activity: A review of its behavioural properties. Pharmacol. Res. 1997, 36, 255-264.
Ellenbroek, B. A.; Liégeois, J.-F.; Bruhwyler, J.; Cools, A. R. The effects of JL 13, a pyridobenzoxazepine with potential atypical antipsychotic activity, in animal models for schizophrenia. J. Pharmacol. Exp. Ther. 2001, 298, 386-391.
Casey, D. E.; Bruhwyler, J.; Delarge, J.; Géczy, J.; Liégeois, J.-F. The behavioral effects of acute and chronic JL 13, a putative antipsychotic, in Cebus nonhuman primates. Psychopharmacology 2001, 157, 228-235.
Liégeois, J.-F.; Bruhwyler, J.; Hendrick, J.-C.; Delarge, J.; Legros, J.-J.; Damas, J. Minimal effects of JL 13, a pyridobenzoxazepine derivative with antipsychotic potential, on circulating prolactin levels in male rats. Neurosci. Lett. 2002, 319, 49-52.
Phillips, S. T.; de Paulis, T.; Baron, B. M.; Siegel, B. W.; Seeman, P.; Van Tol, H. H. M.; Guan, H.-C.; Smith, H. E. Binding of 5H-dibenzo[b,e][1,4]diazepine and chiral 5H-dibenzo[a,d]cycloheptene analogues of clozapine to dopamine and serotonin receptors. J. Med. Chem. 1994, 37, 2686-2696.
Phillips, S. T.; de Paulis, T.; Neergaard, J. R.; Baron, B. M.; Siegel, B. W.; Seeman, P.; Van Tol, H. H. M.; Guan, H.-C.; Smith, H. E. Binding of 5H-dibenzo[a,d]cycloheptene and dibenz[b,f]-oxepin analogues of clozapine to dopamine and serotonin receptors. J. Med. Chem. 1995, 38, 708-714.
Seeman, P. Antipsychotic drugs, dopamine D2 receptors, and schizophrenia. In Pharmacology and Toxicology Series: Neurotransmitter Receptors in Actions of Antipsychotic Medications; Lidow, M. S., Ed.; CRC Press: New York, 2000; pp 43-63.
Warawa, E. J.; Migler, B. M.; Ohnmacht, C. J.; Needles, A. L.; Gatos, G. C.; McLaren, F. M.; Nelson, C. L.; Kirkland, K. M. Behavioral approach to nondyskinetic dopamine antagonists: Identification of seroquel. J. Med. Chem. 2001, 44, 372-389.
Cooper, S. J.; Butler, A.; Tweed, J.; Welch, C.; Raniwalla, J. Zotepine in the prevention of recurrence: A randomised, double-blind, placebo-controlled study for chronic schizophrenia. Psychopharmacology 2000, 150, 237-243.
Steiner, G.; Franke, A.; Hädicke, E.; Lenke, D.; Teschendorf, H.-J.; Hofmann, H.-P.; Kreiskott, H.; Worstmann, W. Tricyclic epines. Novel (E)- and (Z)-11H-dibenz[b, e]azepines as potential central nervous system agents. Variation of the basic side chain. J. Med. Chem. 1986, 29, 1877-1888.
Fryer, R. I.; Earley, J. V.; Field, G. F.; Zally, W.; Sternbach, L. H. A synthesis of amidines from cyclic amides. J. Org. Chem. 1969, 34, 1143-1145.
Jilek, J. O.; Metysova, J.; Nemec, J.; Sedivy, Z.; Pomykacek, J.; Protiva, M. Potential neuroleptics: N-aralkyl, N-(aroylalkyl) and N-pyridyl derivatives of 10-piperazino-10,11-dihydrodibenzo[b,f]-thiepins. Collect. Czech. Chem. Commun. 1975, 40, 3386-3398.
Bürki, H. R.; Fischer, R.; Hunziker, F.; Künzle, F.; Petcher, T. J.; Schmutz, J.; Weber, H. P.; White, T. G. Dibenzo-epines: Effect of the basic side-chain on neuroleptic activity. Eur. J. Med. Chem. 1978, 13, 479-485.
Skoldinov, A. P.; Rayevskii, K. S.; Likhosherstov, A. M.; Stavrovskaja, A. W.; Rüger, C.; Rostock, A.; Röhnert, H. Synthese und neurologische wirkung neuer 11-substituierter 5H- dibenzo [b,e][1,4]diazepine. Pharmazie 1984, 39, 812-813.
Capuano, B.; Crosby, I. T.; Gable, R. W.; Lloyd, E. J. N-Piperonyl analogue of the atypical antipsychotic clozapine. Acta Crystallogr. C 2000, 56, 339-340.
Chakrabarti, J. K.; Horsman, L.; Hotten, T. M.; Pullar, I. A.; Tupper, D. E.; Wright, F. C. 4-Piperazinyl-10H-thieno[2,3-b][1,5]-benzodiazepines as potential neuroleptics. J. Med. Chem. 1980, 23, 878-884.
Bruhwyler, J.; Liégeois, J.-F.; Lejeune, C.; Rogister, F.; Delarge, J.; Géczy, J. New dibenzazepine derivatives with disinhibitory and/or antidepressant potential: Neurochemical and behavioural study in the open-field and forced swimming tests. Behav. Pharmacol. 1995, 6, 830-838.
Liégeois, J.-F.; Scuvée-Moreau, J.; Giesberg, I.; Damas, J.; Bruhwyler, J.; Géczy, J.; Delarge, J.; Dresse, A. Dibenzoazepine analogues: The electrophysiological properties of JL 3, a potential atypical antidepressant. Eur. J. Pharmacol. 1996, 310, 9-12.
Liégeois, J.-F.; Seutin, V.; Scuvée-Moreau, J.; Dresse, A.; Bruhwyler, J.; Géczy, J.; Delarge, J.; Damas, J. Effects of JL 3, a putative antidepressant, on rat noradrenergic and serotonergic systems. Eur. J. Pharmacol. 1999, 386, 211-216.
Hadj Tahar, A.; Bélanger, N.; Bangassoro, E.; Grégoire, L.; Bédard, P. J. Antidyskinetic effect of JL 18, a clozapine analogue, in parkinsonian monkeys. Eur. J. Pharmacol. 2000, 399, 183-186.
Morishita, H.; Katsuragi, T. Existence and pharmacological properties of dopamine D4 receptors in guinea pig vas deferens. Eur. J. Pharmacol. 1999, 374, 255-261.
Nowak, J. Z.; Zawilska, J. B.; Rosiak, J.; Kalaony, T. Melatonin biosynthesis in the retina: Effect of UV-A light. Proc. Eur. Soc. Neurochem. Meet., 11th 1997, 605-609.
Seeman, P.; Corbett, R.; Van Tol, H. H. M. Atypical neuroleptics have low affinity for dopamine D2 receptors or are selective for D4 receptors. Neuropsychopharmacology 1997, 16, 93-110.
Petcher, T. J.; Weber, H.-P. Conformations of some semirigid neuroleptic drugs. Part 1. Crystal structures of loxapine, clozapine, and HUF-2046 monohydrate {2-chloro-11-(4-methylpiperazin-1-yl)dibenzo[b,f][1,4]oxazepine, 8-chloro-11-(4-methylpiperazin-1-yl)dibenzo [b,e][1,4]diazepine, and 2-chloro-11-(4-methylpiperazin-1-yl)dibenzo[b,e][1,4]diazepine monohydrate}. J. Chem. Soc., Perkin Trans. 2 1976, 1415-1420.
Sbit, M.; Dupont, L.; Dideberg, O.; Liégeois, J.-F.; Delarge, J. Structure de la clothiapine. Acta Crystallogr. C 1987, 43, 720-722.
Sbit, M.; Dupont, L.; Dideberg, O.; Liégeois, J.-F.; Delarge, J. Structure du 5-(4-méthylpipérazin-1-yl)pyrido[2,3-b]benzo-1,5- thiazépine. Acta Crystallogr. C 1988, 44, 319-321.
Dupont, L.; Dideberg, O.; Liégeois, J.-F.; Delarge, J. Structure du 10-(4-méthylpipérazin-1-yl)pyrido[4,3-b]benzo-1, 4-thiazépine. Acta Crystallogr. C 1991, 47, 1740-1742.
Ellenbroek, B. A.; Peeters, B. W.; Honig, W.; Cools, A. R. The paw test: A behavioral pardigm for differentiating between classical and atypical neuroleptic drugs. Psychopharmacology 1987, 93, 343-348.
Ellenbroek, B. A.; Lubbers, L. J.; Cools, A. R. Activity of seroquel (ICI 204,636) in animal models for atypical properties of antipsychotics - A comparison with clozapine. Neuropsychopharmacology 1996, 15, 406-416.
Porsolt, R. D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977, 229, 327-336.
Stockmeier, C. A.; DiCarlo, J. J.; Zhang, Y.; Thompson, P.; Meltzer, H. Y. Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors. J. Pharmacol. Exp. Ther. 1993, 266, 1374-1384.
Wadenberg, M.-L. G.; Sills, T. L.; Fletcher, P. J.; Kapur, S. Antipsychotic-like effects of amoxapine, without catalepsy, using the prepulse inhibition of the acoustic startle reflex test in rats. Biol. Psychiatry 2000, 47, 670-676.
Kapur, J.; Cho, R.; Jones, C.; McKay, G.; Zipursky, R. B. Is amoxapine an atypical antipsychotic? Positron-emission tomography investigation of its dopamine2 and serotonin2 occupancy. Biol. Psychiatry 1999, 45, 1217-1220.
Brookes, P.; Terry, R. J.; Walker, J. The chemotherapy of filariasis. Analogues of diethylcarbamazine (1-diethylcarbamoyl-4-methylpiperazine) derived from 2:4′ and 4:4′-dipiperidyl, homopiperazine, and 4-aminopiperidine. J. Chem. Soc. 1957, 3165-3172.
Dostert, P.; Imbert, T.; Langlois, M.; Bucher, B.; Mocquet, G. Studies on the neuroleptic benzamides. III. Synthesis and antidopaminergic properties of new 3-nortropane derivatives. Eur. J. Med. Chem. 1984, 19, 105-110.
Leysen, J. E.; Niemegeers, C. J. E.; Van Nueten, J. M.; Laduron, P. [3H]Ketanserin (R41468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol. Pharmacol. 1982, 21, 301-314.
Skarsfeldt, T.; Hyttel, J. The St 587-induced flexor reflex in pithed rats: A model to evaluate central α1-receptor blocking properties. Eur. J. Pharmacol. 1986, 125, 333-340.
Cheng, Y.-C.; Prusoff, W. H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50% inhibition (IC50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.