[en] Until recently, the most common parametric approaches to study the combined effects of several genetic polymorphisms located within a gene or in a small genomic region are, at the genotype level, logistic regressions and at the haplotype level, haplotype analyses. An alternative modeling approach, based on the case/control principle, is to regard exposures (e.g., genetic data such as derived from Single Nucleotide Polymorphisms - SNPs) as random and disease status as fixed and to use a marginal multivariate model that accounts for inter-relationships between exposures. One such model is the multivariate Dale model. This model is based on multiple logistic regressions. That is why the model, applied in a case/control setting, leads to straightforward interpretations that are similar to those drawn in a classical logistic modeling framework.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Van Steen, Kristel ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Tahri, N.
Molenberghs, G.
Language :
English
Title :
Introducing the multivariate dale model in population-based genetic association studies
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agresti, A. (1990). Categorical Data Analysis. Wiley, New York.
Anderson, J. A. (1972). Separate sample logistic discrimination. Biometrika 59, 19-35.
Breslow, N. E. and Day, N. E. (1980). Statistical Methods in Cancer Research. Vol 32. IARC Scientific Publications.
Clayton, D. and Jones, H. (1999). Transmission/disequilibrium tests for extended marker haplotypes. American Journal of Hitman Genetics 65, 1161-1169.
Corbex, M., Poirier, O., Fumeron, F., Betoulle, D., Evans, A., Ruidavets, J. B., Arveiler, D., Luc, G., Tiret, L., and Cambien, F. (2000). Extensive association analysis between the CETP gene and coronary heart disease phenotypes reveals several putative functional polymorphisms and gene-environment interaction. Genetic Epidemiology 19, 64-80.
Cordell, H. J. and Clayton, D. G. (2002). Stepwise procedures for polymorphisms with a gene. American Journal of Human Genetics 70, 124-141.
Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., and Pericak-Vance, M. A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921-923.
Czika, W. A, Weir, B. C., Edwards, S. R., Thompson, R. W., Nielsen, D. M., Brocklebank, J. C., Zinkus, C., Martin, E. R., and Hobler, K. E. (2001). Applying data mining techniques to the mapping of complex disease genes. Genetic Epidemiology 21 Suppl 1, S435-S440.
Dale, J. R. (1986). Global odds ratio models for bivariate, discrete, ordered responses. Biometrics 42, 909-917.
Diggle, P. J., Heagerty, P., Liang, K. Y., and Zeger, S. L. (2002). Analysis of Longitudinal Data. Clarendon Press, Oxford.
Drysdale, C. M., McGraw, D. W., Stack, C. B., Stephens, J. C., Judson, R. S., Nandabalan, K., Arnold, K., Ruano, G., and Liggett, S. B. (2000). Complex promoter and coding region 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proceedings of the National Academy of Sciences USA 97, 10483-10488.
Excoffier, L. and Slatkin, M. (1995). Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution 12, 921-927.
Fahrmeir, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based on Generalized Linear Models. Springer-Verlag, Heidelberg.
Fallin, D., Cohen, A., Essioux, L., Chumakov, I., Blumenfeld, M., Cohen, and Schork, N. J. (2001). Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Research 11, 143-151.
Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., Myers, R. H., Pericak-Vance, M. A., Risch, N., and van Duijn, C. M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. Journal of the American Medical Association 278(16), 1349-56.
Fitzmaurice, G. M., Laird, N. M., and Rotnitzky, A. (1993). Regression models for discrete longitudinal responses. Statistical Science 8, 284-309.
GAUSS for Windows NT/95 Version 3.2.32 (Dec 19, 1997). Copyright 1984-1997 Aptech Systems, Inc. Maple Valley, WA.
Geys, H., Molenberghs, G., and Ryan, L. M. (1997). Pseudo-likelihood inference for clustered binary data. Communications in Statistics: Theory and Methods 26, 2743-2767.
Geys, H., Molenberghs, G., and Lipsitz, S. R. (1998). A note on the comparison of pseudo-likelihood adn generalized estimating equations for marginal odds ratio models. Journal of the American Statistical Association 94, 734-745.
Geys, H., Molenberghs, G., and Ryan, L. (1999). Pseudo-likelihood modeling of multivariate outcomes in developmental toxicology. Journal of the American Statistical Association 94, 734-745.
Hawley, M. E. and Kidd, K. K. (1995). HAPLO: A program using the EM algorithm to estimate the frequencies of multi-site haplotypes. Journal of Heredity 86, 409-411.
Horikawa, Y., Oda, N., Cox, N. J., Li, X., Orho-Melander, M., Hara, M., Hinokio, Y., Lindner, T. H., Mashima, H., Schwarz, P. E., del Bosque-Plata, L., Horikawa, Y., Oda, Y., Yoshiuchi, I., Colilla, S., Polonsky, K. S., Wei, S., Concannon, P., Iwasaki, N., Schulze, J., Baier, L. J., Bogardus, C., Groop, L., Boerwinkle, E., Hanis, C. L., and Bell, G. I. (2000). Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genetics 26, 163-75.
Knapp, M., Knopman, D., Solomon, P., Pendlebury, W., Davis, C., Gracon, S., and Tacrine Study Group (1994). A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer's disease. Journal of the American Medical Association 271, 985-991.
Krzanowski, W. J. (1988). Principles of Multivariate Analysis - A users's perspective. Clarendon Press, Oxford.
Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13-22.
Liang, K. Y., Zeger, S. L., and Qaqish, B. (1992). Multivariate regression analyses for categorical data (with discussion). Journal of the Royal Statistical Society, Series B 54, 3-40.
Lipsitz, S. R., Kim, K., and Zhao, L. (1994). Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine 13, 1149-1163.
Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New York.
Long, J. C., Williams, R. C., and Urbanek, M. (1995). An EM algorithm and testing strategy for multiple-locus haplotypes. American Journal of Human Genetics 56, 799-810.
Longmate, J. A. (2001). Complexity and power in case-control studies. American Journal of Human Genetics 68, 1229-1237.
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, London.
Molenberghs, G. and Lesaffre, E. (1994). Marginal modelling of correlated ordinal data using a multivariate Plackett distribution. Journal of the American Statistical Association 89, 633-644.
Neter, N., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). Applied Linear Statistical Models -fourth ed Chicago: IRWIN.
Palmgren, J. (1989). Regression Models for Bivariate Responses. Technical Report 101, School of Public Health and Community Medicine, Dept of Biostatistics, University of Washington, Seattle.
Pendergast, J. F., Gange, S. J., Newton, M. A., Lindstrom, M. J., Palta, M., and Fisher, M. R. (1996). A survey of methods for analyzing clustered binary response data. International Statistical Review 64, 89-118.
Plackett, R. L. (1965). A class of bivariate distributions. Journal of the American Statistical Association 60, 516-522.
Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics 44, 1033-1048.
Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika 66, 403-411.
Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., and Moore, J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics 69, 138-147.
Ryan, T. P. (1997). Modern Regression Methods. Wiley, New York.
Schaid, D. J., Rowland, C. M., Tines, D. E., Jacobson, R. M., and Poland, G. A. (2002). Score tests for association between traits and haplotypes when linkage phase is ambiguous. American Journal of Human Genetics 70, 425-434.
Stephens, M., Smith, N. J., and Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 69, 906-914.
Stram, D. O., Pearce, C. L., Bretsky, P., Freedman, M., Hirschhorn, J. N., Altshuler, D., Kolonel, L. N., Henderson, B. E., and Thomas, D. C. Modeling And E-M Estimation of Haplotype-Specific Relative Risks from Genotype Data for a Case-Control Study of Unrelated Individuals. In press for Human Heredity.
Templeton, A. R. (2000). Epistasis and Complex Traits -in Epistasis and the Evolutionary Process (eds M Wade B Brodle III and J Wolf) Oxford University Press, Oxford.
Zhao, L. P. and Prentice, R. L. (1990). Correlated binary regression using a quadratic exponential model. Biometrika 77, 642-648.
Zhao, L. P., Li, S. S., and Khalid, N. (2003). A method for the assessment of disease associations with single-nucleotide polymorphism haplotypes and environmental variables in case-control studies. American Journal of Human Genetics 72, 1231-1250.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.