Breiman L, Friedman J, Olshen R, Stone C. Classification and Regression Trees. CRC Press: Boca Raton, FL, 1984.
Zhang H, Bonney G. Recursive Partitioning in the Health Sciences. Springer: New York, 2000.
Ruczinski I, Kooperberg C, LeBlanc ML. Exploring interactions in high-dimensional genomic data: an overview of logic regression. Journal of Multivariate Analysis 2004; 90:178-195.
Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics 2001; 69:138-147.
Andrew AS, Nelson HH, Kelsey KT, Moore JH, Meng AC, Casella DP, Tosteson TD, Schned AR, Karagas MR. Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis 2006; 27:1030-1037.
Chen M, Kamat AM, Huang M, Grossman HB, Dinney CP, Lerner S, Wu X, Gu J. High-order interactions among genetic polymorphisms in nucleotide excision repair pathway genes and smoking in modulating bladder cancer risk. Carcinogenesis 2007; 28:2160-2165.
Huang M, Dinney CP, Lin X, Lin J, Grossman HB, Wu X. High-order interactions among genetic variants in DNA base excision repair pathway genes and smoking in bladder cancer susceptibility. Cancer Epidemiology Biomarkers and Prevention 2007; 16:84-91.
Manuguerra M, Matullo G, Veglia F, Autrup H, Dunning AM, Garte S, Gormally E, Malaveille C, Guarrera S, Polidoro S, Saletta F, Peluso M, Airoldi L, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, Linseisen J, Boeing H, Trichopoulos D, Kalandidi A, Palli D, Krogh V, Tumino R, Panico S, Bueno-De-Mesquita HB, Peeters PH, Lund E, Pera G, Martinez C, Amiano P, Barricarte A, Tormo MJ, Quiros JR, Berglund G, Janzon L, Jarvholm B, Day NE, Allen NE, Saracci R, Kaaks R, Ferrari P, Riboli E, Vineis P. Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions. Carcinogenesis 2007; 28:414-422.
Andrew AS, Karagas MR, Nelson HH, Guarrera S, Polidoro S, Gamberini S, Sacerdote C, Moore JH, Kelsey KT, Demidenko E, Vineis P, Matullo G. DNA repair polymorphisms modify bladder cancer risk: a multi-factor analytic strategy. Human Heredity 2008; 65:105-118.
Jakulin A, Bratko I, Smrke D, Demsar J, Zupan B. Attribute interactions in medical data analysis. In Proceedings of the 9th Conference on Artificial Intelligence in Medicine in Europe (AIME 2003), Dojat M, Keravnou E, Barahona P (eds). Lecture Notes in Artificial Intelligence, vol. 2780. Springer: Berlin, 2003; 229-238.
Jakulin A, Bratko I. Quantifying and visualizing attribute interactions. 2003, http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0308002.
Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of Theoretical Biology 2006; 241:252-261.
Calle ML, Urrea V, Malats N, Van Steen K. MB-MDR: model-based multifactor dimensionality reduction for detecting interactions in high-dimensional genomic data. Technical Report No. 24, Department of Systems Biology, Universitat de Vic, 2007, http://www.recercat.net/handle/2072/5001.
Anastassiou D. Computational analysis of the synergy among multiple interacting genes. Molecular Systems Biology 2007; 3:1-83.
Varadan V, Miller DM, Anastassiou D. Computational inference of the molecular logic for synaptic connectivity in C. elegans. Bioinformatics 2006; 22:e497-e506.
Moore JH, Williams SM. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 2005; 27:637-646.
Chung Y, Lee SY, Elston RC, Park T. Odds ratio based multifactor-dimensionality reduction method for detecting gene-gene interactions. Bioinformatics 2007; 23:71-76.
Lou X, Chen G, Yan L, Ma JZ, Zhu J, Elston RC, Li MD. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. American Journal of Human Genetics 2007; 80:1125-1137.
Shannon CE. A mathematical theory of communication. The Bell System Technical Journal 1948; 27:379-423, 623-656.
McGill WJ. Multivariate information transmission. Psychometrika 1954; 19:97-116.
Han TS. Multiple mutual informations and multiple interactions in frequency data. Information and Control 1980; 46:26-45.
Chanda P, Zhang A, Brazeau D, Sucheston L, Freudenheim JL, Ambrosone C, Ramanathan M. Informationtheoretic metrics for visualizing gene-environment interactions. American Journal of Human Genetics 2007; 81:939-963.
Corning PA. The synergism hypothesis. On the concept of synergy and it's role in the evolution of complex systems. Journal of Social and Evolutionary Systems 1998; 21(2):133-172.
Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003; 19:376-382.
Benjamini Y, Hochberg Y. Controlling the false discovery rate-A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B-Methodological 1995; 57:289-300.
Van Steen K, Mcqueen MB, Herbert A, Raby B, Lyon H, Demeo DL, Murphy A, Su J, Datta S, Rosenow C, Christman M, Silverman Ek, Laird NM, Weiss St, Lange C. Genomic screening and replication using the same data set in family-based association testing. Nature Genetics 2005; 37(7):683-691.
Moore JH, White BC. Tuning ReliefF for Genome-Wide Genetic Analysis. Lecture Notes in Computer Science, vol. 4447. Springer: Berlin, 2007; 166-175.
Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning 2003; 53:23-69.