[en] We herein demonstrate that in the Holstein-Friesian dairy cattle population, microsatellites are as polymorphic on the X chromosome as on the autosomes but that the level of linkage disequilibrium between these markers is higher on the X chromosome than on the autosomes. The latter observation is not compatible with the small male-to-female ratio that prevails in this population and results in a higher gonosomal than autosomal effective population size. It suggests that the X chromosome undergoes distinct selective or mutational forces. We describe and characterize a novel Markovian approach to exploit this linkage disequilibrium to compute the probability that two chromosomes are identical-by-descent conditional on flanking marker data. We use the ensuing probabilities in a restricted maximum-likelihood approach to search for quantitative trait loci (QTL) affecting 48 traits of importance to the dairy industry and provide evidence for the presence of QTL affecting 5 of these traits on the bovine X chromosome.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Sandor, Cynthia ; Université de Liège - ULiège > Département de productions animales > Génomique animale
Farnir, Frédéric ; Université de Liège - ULiège > Département de productions animales > Biostatistique, économie, sélection animale
Hansoul, Sarah ; Université de Liège - ULiège > Département de productions animales > Génomique animale
Coppieters, Wouter ; Université de Liège - ULiège > Département de productions animales > Département de productions animales
Meuwissen, T.
Georges, Michel ; Université de Liège - ULiège > Département de productions animales > Génomique animale
Language :
English
Title :
Linkage disequilibrium on the bovine X chromosome: Characterization and use in quantitative trait locus mapping
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
ALTSHULER, D., L. D. BROOKS, A. CHAKRAVARTI, F. S. COLLINS, M. J. DALY et al., 2005 A haplotype map of the human genome. Nature 437: 1299-1320.
BLOTT, S., J. J. KIM, S. MOISIO, A. SCHMIDT-KUNTZEL, A. CORNET et al., 2003 Molecular dissection of a quantitative trait locus: a phenylalanine-to- tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163: 253-266.
BOICHARD, D., 1996 Analyse généalogique des races bovines laitières françaises. INRA Prod. Anim. 9: 323-335.
CABALLERO, A., 1994 Developments in the prediction of effective population size. Heredity 73: 657-679.
COPPIETERS, W., J. RIQUET, J.-J. ARRANZ, P. BERZI, N. CAMBISANO et al., 1998 AQTL withmajor effect onmilk yield and compositionmaps to bovine chromosome 14. Mamm. Genome 9: 540-544.
DIB, C., S. FAURÉ, C. FIZAMES, D. SAMSON, N. DROUOT et al., 1996 A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380: 152-154.
ELLEGREN, H., 2000 Heterogeneous mutation processes in human microsatellite DNA sequences. Nat. Genet. 24: 400-402.
FARNIR, F., W. COPPIETERS, J.-J. ARRANZ, P. BERZI, N. CAMBISANO et al., 2000 Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 10: 220-227.
FARNIR, F., B. GRISART, W. COPPIETERS, J. RIQUET, P. BERZI et al., 2002 Simultaneous mining of linkage and linkage disequilibrium to fine-map QTL in outbred half-sib pedigrees: revisiting the location of a QTL with major effect on milk production on bovine chromosome 14. Genetics 161: 275-287.
GEORGES, M., D. NIELSEN, M. MACKINNON, A. MISHRA, R. OKIMOTO et al., 1995 Mapping quantitative trait loci controlling milk production by exploiting progeny testing. Genetics 139: 907-920.
GRISART, B., F. FARNIR, L. KARIM, N. CAMBISANO, J. J. KIM et al., 2004 Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc. Natl. Acad. Sci. USA 101: 2398-2403.
HAYES, B. J., P. M. VISSCHER, H. C. MCPARTLAN and M. E. GODDARD, 2003 Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 13: 635-643.
HIENDLEDER, S., H. THOMSEN, N. REINSCH, J. BENNEWITZ, B. LEYHE-HORN et al., 2003 Mapping of QTL for body conformation and behavior in cattle. J. Hered. 94: 496-506.
IHARA, N., A. TAKASUGA, K. MIZOSHITA, H. TAKEDA, M. SUGIMOTO et al., 2004 A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res. 14: 1987-1998.
JOHNSON, D. L., and R. THOMPSON, 1995 Restricted maximum likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information. J. Dairy Sci. 78: 448-456.
KIM, J. J., and M. GEORGES, 2002 Evaluation of a new fine-mapping method exploiting linkage disequilibrium: a case study analysing a QTL with major effect on milk composition on bovine chromosome 14. Asian-Aust. J. Anim. Sci. 15: 1250-1256.
KUHN, C. H., J. BENNEWITZ, N. REINSCH, N. XU, H. THOMSEN et al., 2003 Quantitative trait loci mapping of functional traits in the German Holstein cattle population. J. Dairy Sci. 86: 360-368.
LYNCH, M., and B. WALSH, 1998 Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA.
MEUWISSEN, T. H., and M. E. GODDARD, 2000 Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155: 421-430.
MEUWISSEN, T. H., and M. E. GODDARD, 2001 Prediction of identity by descent probabilities from marker-haplotypes. Genet. Sel. Evol. 33: 605-634.
MEUWISSEN, T. H., B. J. HAYES and M. E. GODDARD, 2001 Prediction of total genetic value using genomewide dense marker maps. Genetics 157: 1819-1829.
MOUNT, D. W., 2001 Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
SACHIDANANDAM, R., D. WEISSMAN, S. C. SCHMIDT, J. M. KAKOL, L. D. STEIN et al., 2001 A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409: 928-933.
SCHAFFNER, S. F., 2004 The X chromosome in population genetics. Nat. Rev. Genet. 5: 43-51.
SONSTEGARD, T. S., W. BARENDSE, G. L. BENNETT, G. A. BROCKMANN, S. DAVIS et al., 2001 Consensus and comprehensive linkage maps of the bovine sex chromosomes. Anim. Genet. 32: 115-117.
WRIGHT, S., 1969 The theory of gene frequencies, p. 213 in Evolution and the Genetics of Populations, Vol. 2. University of Chicago Press, Chicago/London.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.