Technical Note: Harmonized retrieval of column-integrated atmospheric water vapor from the FTIR network - First examples for long-term records and station trends
Sussmann, R.; Borsdorff, T.; Rettinger, M.et al.
2009 • In Atmospheric Chemistry and Physics, 9 (22), p. 8987-8999
water vapor; remote sensing; FTIR spectroscopy; long-term trends; integrated water vapor; atmospheric variability
Abstract :
[en] We present a method for harmonized retrieval of integrated water vapor (IWV) from existing, long-term, measurement records at the ground-based mid-infrared solar FTIR spectrometry stations of the Network for the Detection of Atmospheric Composition Change (NDACC). Correlation of IWV from FTIR with radiosondes shows an ideal slope of 1.00(3). This optimum matching is achieved via tuning one FTIR retrieval parameter, i.e., the strength of a Tikhonov regularization constraining the derivative (with respect to height) of retrieved water profiles given in per cent difference relative to an a priori profile. All other FTIR-sonde correlation parameters (intercept = 0.02(12) mm, bias = 0.02(5) mm, standard deviation of coincident IWV differences (stdv) = 0.27 mm, R = 0.99) are comparable to or better than results for all other ground-based IWV sounding techniques given in the literature. An FTIR-FTIR side-by-side intercomparison reveals a strong exponential increase in stdv as a function of increasing temporal mismatch starting at Δt ≈ 1 minute. This is due to atmospheric water vapor variability. Based on this result we derive an upper limit for the precision of the FTIR IWV retrieval for the smallest Δt (= 3.75 min) still giving a statistically sufficient sample (32 coincidences), i.e., precision (IWVFTIR) < 0.05 mm (or 2.2 % of the mean IWV). The bias of the IWV retrievals from the two different FTIR instruments is nearly negligible (0.02(1) mm). The optimized FTIR IWV retrieval is set up in the standard NDACC algorithm SFIT 2 without changes to the code. A concept for harmonized transfer of the retrieval between different stations deals with all relevant control parameters; it includes correction for differing spectral point spacings (via regularization strength), and final quality selection of the retrievals (excluding the highest residuals (measurement minus model), 5% of the total). As first application examples long-term IWV data sets are retrieved from the FTIR records of the Zugspitze (47.4 °N, 11.0 °E, 2964 m a.s.l.) and Jungfraujoch (46.5 °N, 8.0 °E, 3580 m a.s.l.) NDACC sites. Station-trend analysis comprises a linear fit after subtracting an intra-annual model (3 Fourier components) and constructing an uncertainty interval [95 % confidence] via bootstrap resampling. For the Zugspitze a significant trend of 0.79 [0.65, 0.92] mm/decade is found for the time interval [1996 - 2008], whereas for the Jungfraujoch no significant trend is found. This confirms recent findings that strong variations of IWV trends do occur above land on the local to regional scale (≈250 km) in spite of homogeneous surface temperature trends. This paper provides a basis for future exploitation of more than a dozen existing, multi-decadal FTIR measurement records around the globe for climate studies.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Sussmann, R.
Borsdorff, T.
Rettinger, M.
Camy-Peyret, C.
Demoulin, Philippe ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Duchatelet, Pierre ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Servais, Christian ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Language :
English
Title :
Technical Note: Harmonized retrieval of column-integrated atmospheric water vapor from the FTIR network - First examples for long-term records and station trends
Bates, J. and Jackson, D.: Trends in Upper-Tropospheric Humidity, Geopyhs. Res. Lett., 28, 1695-1698, 2001.
Christy, J. R., Spencer, R. W., and Lobl, E. S.: Analysis of the merging procedure for the MSU daily temperature time series, J. Climate, 11, 2016-2041, 1998.
Durre, I., Williams Jr., C. N., Yin, X., and Vose, R. S.: Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update, J. Geophys. Res., 114, D05112, doi:10.1029/2008JD010989, 2009.
Elliott, W. P., Ross, R. J., and Blackmore, W. H.: Recent changes in NWS upper-air observations with emphasis on changes from VIZ to Vaisala radiosondes, B. Am. Meteor. Soc., 83, 1003-1017, 2002.
Fiorucci, I., Muscari, G., Bianchi, C., Di Girolamo, P., Esposito, F., Grieco, G., Summa, D., Bianchini, G., Palchetti, L., Cacciani, M., Di Iorio, T., Pavese, G., Cimini, D., de Zafa, R. L.: Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831, 2008.
Gardiner, T., Forbes, A., de Mazière, M., Vigouroux, C., Mahieu, E., Demoulin, P., Velazco, V., Notholt, J., Blumenstock, T., Hase, F., Kramer, I., Sussmann, R., Stremme, W., Mellqvist, J., Strand-berg, A., Ellingsen, K., and Gauss, M.: Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments, Atmos. Chem. Phys., 8, 6719-6727, 2008, http://www.atmos-chem-phys.net/8/6719/2008/.
Hurrell, J. W. and Trenberth, K. E.: Spurious trends in satellite MSU temperatures from merging different satellite records, Nature, 386, 164-167, 1997.
Hurrell, J. W. and Trenberth, K. E.: Difficulties in obtaining reliable temperature trends: reconciling the surface and satellite microwave sounding unit records, J. Climate, 11, 945-967, 1998.
Leiterer, U., Althausen, D., Franke, K., Katz, A., and Wegner, F.: Correction method for RS80-A Humicap humidity profiles and their validation by lidar backscattering profiles in tropical cirrus clouds, J. Atmos. Oceanic Technol., 22, 18-29, 2005.
Mahieu, E., Duchatelet, P., Demoulin, P., Walker, K. A., Dupuy, E., Froidevaux, L., Randall, C., Catoire, V., Strong, K., Boone, C. D., Bernath, P. F., Blavier, J.-F., Blumenstock, T., Coffey, M. De Mazière, M., Griffith, D., Hannigan, J., Hase, F., Jones, N., Jucks, K. W., Kagawa, A., Kasai, Y., Mebarki, Y., Mikuteit, S., Nassar, R., Notholt, J., Rinsland, C. P., Robert, C., Schrems, O., Senten, C., Smale, D., Taylor, J., Tétard, C., Toon, G. C., Warneke, T., Wood, S. W., Zander, R., and Servais, C.: Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon-and ground-based instrument observations, Atmos. Chem. Phys., 8, 6199-6221, 2008, http://www.atmos-chem-phys.net/8/6199/2008/.
Mieruch, S., Noël, S., Bovensmann, H., and Burrows, J. P.: Analysis of global water vapour trends from satellite measurements in the visible spectral range, Atmos. Chem. Phys., 8, 491-504, 2008, http://www.atmos-chem- phys.net/8/491/2008/.
Miloshevich, L. M., Vömel, H., Paukkunen, A., Heymsfield, A. J., and Oltmans, S. J.: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures, J. Atmos. Oceanic Technol., 18, 135-156, 2001.
Miloshevich, L. M., Paukkunen, A., Vömel, H., and Oltmans, S. J.: Development and validation of a time lag correction for Vaisala radiosonde humidity measurements, J. Atmos. Oceanic Technol., 21, 1305-1327, 2004.
Miloshevich, L. M., Vömel, H., Whiteman, D. N., Lesht, B. M., Schmidlin, F. J., and Russo, F.: Absolute accuracy of water vapour measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation, J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083, 2006. (Pubitemid 43950191)
Morland, J., Deuber, B., Feist, D. G., Martin, L., Nyeki, S., Kämpfer, N., Mätzler, C., Jeannet, P., and Vuilleumier, L.: The STARTWAVE atmospheric water database, Atmos. Chem. Phys., 6, 2039-2056, 2006, http://www.atmos-chem-phys.net/6/2039/2006/.
Palm, M., Melsheimer, C., Noël, S., Notholt, J., Burrows, J., and Schrems, O.: Integrated water vapor above Ny A° lesund, Spitsbergen: a multisensor intercomparison, Atmos. Chem. Phys. Discuss., 8, 21171-21199, 2008, http://www.atmos-chem-phys-discuss.net/8/21171/2008/.
Philipona, R., Dürr, B., Marty, C., Ohmura, A., and Wild, M.: Radiative forcing-measured at Earth's surface-corroborate the increasing greenhouse effect, Geophys. Res. Lett., 31, L03202, doi:10.1029/2003GL018765, 2004.
Philipona, R., Dürr, B., Ohmura, A., and Ruckstuhl, C.: Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe, Geophys. Res. Lett., 32, L19809, doi:10.1029/ 2005GL023624, 2005. (Pubitemid 41694281)
Pougatchev, N. S., Connor, B. J., and Rinsland, C. P.: Infrared measurements of the ozone vertical distribution above Kitt Peak, J. Geophys. Res., 100, 16689-16697, 1995.
Rinsland, C. P., Boughner, R. E., Larsen, J. C., Stokes, G. M., and Brault, J. W.: Diurnal variations of atmospheric nitric oxide: ground-based infrared spectroscopic measurements and their interpretation with time dependent photochemical model calculations, J. Geophys. Res. 89, 9613-9622, 1984.
Randel, D. L., Vonder Haar, T. H., Ringerud, M. A., Stephens, G. L., Greenwald, T. J., and Combs, C. L.: A New Global Water Vapor Dataset, B. Am. Meteor. Soc., 77, 1233-1246, 1996.
Ross, R. J. and Elliott, W. P.: Radiosonde-Based Northern Hemisphere Tropospheric Water Vapor Trends, J. Climate, 14, 1602-1612, 2001.
Rothmann, L. S., Barbe, A., Benner, D. C., Brown, L. R., Camy-Peyret, C., Carleer, M. R., Chance, K., Clerbaux, C., Dana, V., Devi, V. M., Fayt, A., Flaud, J. M., Gamache, R. R., Goldman, A., Jacquemart, D., Jucks, K. W., Lafferty, W. J., Mandin, J. Y., Massie, S. T., Nemtchinov, V., Newnham, D. A., Perrin, A., Rins-land, C. P., Schroeder, J., Smith, K. M., Smith, M. A. H., Tang, K., Toth, R. A., Vander Auwera, J., Varanasi, P., and Yoshino, K.: The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, J. Quant. Spectr. Radiat. Transfer, 82, 5-44, 2003.
Schneider, M., Hase, F., and Blumenstock, T.: Water vapour profiles by ground-based FTIR spectroscopy: study for an optimised retrieval and its validation, Atmos. Chem. Phys., 6, 811-830, 2006, http://www.atmos-chem-phys. net/6/811/2006/.
Soden, B. J., Jackson, D. L., Ramaswamy, V., Schwarzkopf, M. D., and Huang, X.: The radiative signature of upper tropospheric moistening, Science, 310, 841-844, 2005.
Suortti, T. M., Kats, A., Kivi, R., Kämpfer, N., Leiterer, U., Milo-shevich, M. L., Neuber, R., Paukkunen, A., Ruppert, P., Vömel, H., and Yushkov, V.: Tropospheric Comparisons of Vaisala Radiosondes and Balloon-Borne Frost-Point and Lyman-α Hygrometers during the LAUTLOS-WAVVAP Experiment, J. At-mos. Oceanic Technol., 25, 149-166, 2008.
Sussmann, R. and Schäfer, K: Infrared spectroscopy of tropospheric trace gases: combined analysis of horizontal and vertical column abundances, Appl. Opt., 36, 735-741, 1997.
Sussmann, R. and Camy-Peyret, C.: Ground-Truthing Center Zugspitze, Germany for AIRS/IASI Validation, Phase I Report, EUMETSAT, 2002, 18 pp., http://www.imk-ifu.kit.edu/ downloads/AIRSVAL Phase I Report.pdf, 2002.
Sussmann, R. and Camy-Peyret, C.: Ground-Truthing Center Zugspitze, Germany for AIRS/IASI Validation, Phase II Report, EUMETSAT, 2003, 15 pp., http://www.imk-ifu.kit.edu/ downloads/AIRSVAL Phase II Report.pdf, 2003.
Sussmann, R. and Buchwitz, M.: Initial validation of EN-VISAT/SCIAMACHY columnar CO by FTIR profile retrievals at the Ground-Truthing Station Zugspitze, Atmos. Chem. Phys., 5, 1497-1503, 2005, http://www.atmos-chem-phys.net/5/1497/ 2005/. (Pubitemid 41148969)
Sussmann, R., Stremme, W., Buchwitz, M., and de Beek, R.: Validation of ENVISAT/SCIAMACHY columnar methane by solar FTIR spectrometry at the Ground-Truthing Station Zugspitze, Atmos. Chem. Phys., 5, 2419-2429, 2005, http://www.atmos-chem-phys.net/5/2419/2005/. (Pubitemid 41479779)
Sussmann, R., Stremme, W., Burrows, J. P., Richter, A., Seiler, W., and Rettinger, M.: Stratospheric and tropospheric NO2 variability on the diurnal and annual scale: a combined retrieval from ENVISAT/SCIAMACHY and solar FTIR at the Permanent Ground-Truthing Facility Zugspitze/Garmisch, Atmos. Chem. Phys., 5, 2657-2677, 2005, http://www.atmos-chem-phys.net/5/2657/2005/.
Sussmann, R. and Borsdorff, T.: Technical Note: Interference errors in infrared remote sounding of the atmosphere, Atmos. Chem. Phys., 7, 3537-3557, 2007, http://www.atmos-chem-phys.net/7/3537/2007/.
Tikhonov, A.: On the solution of incorrectly stated problems and a method of regularization, Dokl. Acad. Nauk SSSR, 151, 501-504, 1963.
Tobin, D. C., Revercomb, H. E., Knuteson, R. O., Lesht, B. M, Strow, L. L., Hannon, S. E.: Feltz, W. F., Moy, L. A., Fetzer, E. J., and Cress, T. S.: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation, J. Geo-phys. Res., 111, D09S14, doi:10.1029/2005JD006103, 2006. (Pubitemid 43950193)
Trenberth, K. E., Fasullo, J., and Smith, L.: Trends and variability in column-integrated atmospheric water vapor, Clim. Dynam., 24, 741-758, doi:10.1007/s00382-005-0017-4, 2005. (Pubitemid 41222385)
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B., and Zhai, P.: Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., et al., 10 Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
Vonder Haar, T. H., Forsythe, J. M., McKague, D., Randel, D. L., Ruston, B. C., Woo, S.: Continuation of the NVAP global water vapor data sets for Pathfinder science analysis, Science and Technology Corporation Technical Report 3333, 44 pp., http://eosweb.larc.nasa.gov/PRODOCS/nvap/sci tech report 3333.pdf, 2003.
Vonder Haar, T. H., Forsythe, J. M., Juo, J., Randel, D. L., and Woo, S.: Water vapor trends and variability from the global NVAP dataset, 16th Symposium on Global Change and Climate Variations, 9-13 January 2005, San Diego, California, American Meteorological Society, P5.16, 2005.
Wagner, T., Beirle, S., Grzegorski, M., and Platt, U.: Global trends (1996-2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS-2 and their relation to near-surface temperature, J. Geophys. Res., 111, D12102, doi:10.1029/2005JD006523, 2006. (Pubitemid 44687616)
Wang, J., Cole, H. L., Carlson, D. J., Miller, E. R., Beierle, K., Paukkunen, A., and Laine, T. K.: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde-Application to TOGA COARE data, J. Atmos. Oceanic Technol., 19, 981-1002, 2002.
Wentz, F. J. and Schabel, M.: Effects of satellite orbital decay on MSU lower tropospheric temperature trends, Nature, 394, 661-664, 1998.
Wentz, F. J. and Schabel, M.: Precise climate monitoring using complementary satellite data sets, Nature, 403, 414-416, 2000.
Zander, R., Mahieu, E., Demoulin, P., Duchatelet, P., Roland, G., Servais, C., De Mazière, M., Reimann, S., and Rinsland, C. P.: Our changing atmosphere: Evidence based on long-term infrared solar observations at the Jungfraujoch since 1950, Sci. Total Environ., 391, 184-195, 2008.