[en] Thermal protection systems that integrate management capabilities of thermal radiation are essential to not jeopardize payload operativity and survivability, and to secure shelters and Moon bases when astronauts are operating on the Moon's surface. This work envisions the potentiality of lightweight, high-performance insulation material, exploring the role of a composite aerogel material based on MXenes, lunar regolith, and polyimide (PI) as a passive thermal protection system for payloads during lunar exploration. Advanced numerical simulations were conducted to assess the thermal performance of these composites under lunar environmental conditions, modelling temperature fluctuations across both lunar day and night. The results indicate that lunar regolith and MXenes enhance the heat retention properties of the insulation aerogel material, minimizing heat loss during the lunar night, suggesting the importance of having composite materials to provide solutions for maintaining the integrity and operability of payloads in the harsh lunar environment, extendable to harsh environments on Earth.
Disciplines :
Physics
Author, co-author :
Zabatta, Aniello; Centre for Research and Engineering in Space Technologies, Université Libre de Bruxelles, Brussels, Belgium
Machrafi, Hatim ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles ; Centre for Research and Engineering in Space Technologies, Université Libre de Bruxelles, Brussels, Belgium
Iorio, Carlo Saverio; Centre for Research and Engineering in Space Technologies, Université Libre de Bruxelles, Brussels, Belgium
Vincent-Bonnieu, Sebastien ; ESA/ESTEC, European Space Research and Technology Centre, Noordwijk, Netherlands
Language :
English
Title :
Mxene-based composite aerogel materials as passive thermal shields at Moon conditions using 3D modelling
BELSPO - Belgian Federal Science Policy Office ESA - European Space Agency
Funding text :
The authors would like to thank the European Space Agency (grant number 4000141524/23/NL/MGu/my) and the Belgian Science Policy Office \u2013 BELSPO (PRODEX grant BE-MAD) for the financial support.
Williams, J.-P., Paige, D.A., Greenhagen, B.T., Sefton-Nash, E., The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment. Icarus 283 (2017), 300–325, 10.1016/j.icarus.2016.08.012.
Landis, G.A., Degradation of the lunar vacuum by a moon base. Acta Astronaut. 21 (1990), 183–187, 10.1016/0094-5765(90)90110-7.
Jelle, B.P., Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. Energy Build. 43 (2011), 2549–2563, 10.1016/j.enbuild.2011.05.015.
H.M. Duong, D.K. Le, Q.B. Thai, T.P. Luu, N.H. Do, S.T. Nguyen, P.K. Le, Chapter 9 - Advanced thermal properties of carbon-based aerogels, in: D.V. Papavassiliou, H.M. Duong, F. Gong (Eds.), Therm. Behav. Appl. Carbon-Based Nanomater., Elsevier, 2020: pp. 221–269. doi:10.1016/B978-0-12-817682-5.00009-X.
Linhares, T., de Amorim, M.T.P., Durães, L., Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. J. Mater. Chem. A 7 (2019), 22768–22802, 10.1039/C9TA04811A.
Climent, B., Torroba, O., González-Cinca, R., Ramachandran, N., Griffin, M.D., Heat storage and electricity generation in the Moon during the lunar night. Acta Astronaut. 93 (2014), 352–358, 10.1016/j.actaastro.2013.07.024.
Fleith, P., Cowley, A., Canals Pou, A., Valle Lozano, A., Frank, R., López Córdoba, P., González-Cinca, R., In-situ approach for thermal energy storage and thermoelectricity generation on the Moon: Modelling and simulation. Planet. Space Sci., 181, 2020, 104789, 10.1016/j.pss.2019.104789.
Liu, Z., Wang, J., Wang, Z., Yan, T., Cheng, K., Xu, J., Qin, J., Numerical analysis on lunar heat storage system: Multi-objective optimization, heat storage capacity, and thermal insulation performance. J. Energy Storage, 59, 2023, 106508, 10.1016/j.est.2022.106508.
Bheekhun, N., Abu Talib, Abd.R., Hassan, M.R., Aerogels in aerospace: an overview. Adv. Mater. Sci. Eng. 2013 (2013), 1–18, 10.1155/2013/406065.
Meador, M.A.B., Malow, E.J., Silva, R., Wright, S., Quade, D., Vivod, S.L., Guo, H., Guo, J., Cakmak, M., Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl. Mater. Interfaces 4 (2012), 536–544, 10.1021/am2014635.
Chen, W., Zhou, X., Wan, M., Tang, Y., Recent progress on polyimide aerogels against shrinkage: a review. J. Mater. Sci. 57 (2022), 13233–13263, 10.1007/s10853-022-07505-0.
Liu, M., Wang, Y., Ji, J., Chang, X., Xu, Q., Liu, X., Qin, J., A facile method to fabricate the polyimide aerogels with controllable microstructure by freeze-drying. Mater. Lett., 267, 2020, 127558, 10.1016/j.matlet.2020.127558.
Zhang, P., Dai, W., Niu, R., Zhang, G., Liu, G., Liu, X., Bo, Z., Wang, Z., Zheng, H., Liu, C., Yang, H., Bai, Y., Zhang, Y., Yan, D., Zhou, K., Gao, M., Overview of the Lunar In Situ Resource utilization Techniques for Future Lunar Missions. Space Sci. Technol., 3, 2023, 0037, 10.34133/space.0037.
NASA's Polar Ice Experiment Paves Way for Future Moon Missions – NASA, (n.d.). https://www.nasa.gov/centers-and-facilities/kennedy/nasas-polar-ice-experiment-paves-way-for-future-moon-missions/ (accessed April 17, 2025).
Trautner, R., Barber, S.J., Fisackerly, R., Heather, D., Houdou, B., Howe, C., Iacobellis, S., Leese, M., Mariani, A., Meogrossi, G., Murray, N., Panza, C., Reiss, P., Rusconi, A., Abernethy, F., Cann, N., Chinnery, H., Gscheidle, C., Landsberg, P., Lindner, R., Morse, A.D., Mortimer, J., Nicolae, L., Picchi, P., Sheridan, S., Verchovsky, A., PROSPECT: a comprehensive sample acquisition and analysis package for lunar science and exploration. Front. Space Technol., 5, 2024, 1331828, 10.3389/frspt.2024.1331828.
Cannon, K.M., Dreyer, C.B., Sowers, G.F., Schmit, J., Nguyen, T., Sanny, K., Schertz, J., Working with lunar surface materials: Review and analysis of dust mitigation and regolith conveyance technologies. Acta Astronaut. 196 (2022), 259–274, 10.1016/j.actaastro.2022.04.037.
Fan, W., Zhang, X., Zhang, Y., Zhang, Y., Liu, T., Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos. Sci. Technol. 173 (2019), 47–52, 10.1016/j.compscitech.2019.01.025.
Li, Y., Xiong, C., Huang, H., Peng, X., Mei, D., Li, M., Liu, G., Wu, M., Zhao, T., Huang, B., 2D Ti3C2Tx MXenes: Visible Black but Infrared White Materials. Adv. Mater., 33, 2021, 2103054, 10.1002/adma.202103054.
Li, X., Li, M., Li, X., Fan, X., Zhi, C., Low infrared emissivity and strong stealth of Ti-based MXenes. Research, 2022, 2022, 10.34133/2022/9892628 2022/9892628.
Han, M., Zhang, D., Singh, A., Hryhorchuk, T., Eugene Shuck, C., Zhang, T., Bi, L., McBride, B., Shenoy, V.B., Gogotsi, Y., Versatility of infrared properties of MXenes. Mater. Today 64 (2023), 31–39, 10.1016/j.mattod.2023.02.024.
Dhamodharan, D., Al-Harthi, M.A., Ramya, B., Bafaqeer, A., Alam, F., MXenes: a promising material with multifunctional applications. J. Environ. Chem. Eng., 12, 2024, 112316, 10.1016/j.jece.2024.112316.
Wasilewski, T.G., Lunar thermal mining: phase change interface movement, production decline and implications for systems engineering. Planet. Space Sci., 199, 2021, 105199, 10.1016/j.pss.2021.105199.
Heat Transfer Modeling Software for Analyzing Thermal Effects, COMSOL (n.d.). https://www.comsol.com/heat-transfer-module (accessed September 30, 2024).
Vasavada, A., Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits. Icarus 141 (1999), 179–193, 10.1006/icar.1999.6175.
Malla, R.B., Brown, K.M., Determination of temperature variation on lunar surface and subsurface for habitat analysis and design. Acta Astronaut. 107 (2015), 196–207, 10.1016/j.actaastro.2014.10.038.
Çengel, Y.A., Ghajar, A.J., Heat and mass transfer: fundamentals & applications. fifth ed., 2015, McGraw Hill Education, New York, NY.
object Object, Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage, (n.d.). https://core.ac.uk/reader/10545383 (accessed September 30, 2024).
Chan, K.-Y., Shen, X., Yang, J., Lin, K.-T., Venkatesan, H., Kim, E., Zhang, H., Lee, J.-H., Yu, J., Yang, J., Kim, J.-K., Scalable anisotropic cooling aerogels by additive freeze-casting. Nat. Commun., 13, 2022, 5553, 10.1038/s41467-022-33234-8.
Borella, L., Rozo, A., Perfetti, C., Iorio, C.S., Characterization of composite freeze-dried aerogels with simulant lunar regolith for space applications. Materials, 16, 2023, 5797, 10.3390/ma16175797.
Feng, J., Wang, X., Jiang, Y., Du, D., Feng, J., Study on thermal conductivities of aromatic polyimide aerogels. ACS Appl. Mater. Interfaces 8 (2016), 12992–12996, 10.1021/acsami.6b02183.
Liu, M., Nothling, M.D., Zhang, S., Fu, Q., Qiao, G.G., Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Prog. Polym. Sci., 126, 2022, 101504, 10.1016/j.progpolymsci.2022.101504.
Wen, C., Liu, B., Wolfgang, J., Long, T.E., Odle, R., Cheng, S., Determination of glass transition temperature of polyimides from atomistic molecular dynamics simulations and machine-learning algorithms. J. Polym. Sci. 58 (2020), 1521–1534, 10.1002/pol.20200050.
dos Santos, W.N., de Sousa, J.A., Gregorio, R., Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym. Test. 32 (2013), 987–994, 10.1016/j.polymertesting.2013.05.007.
Song, Y.-J., Meng, S.-H., Wang, F.-D., Sun, C.-X., Tan, Z.-C., Thermochemical study on the properties of polyimide BPADA-m-PDA. Thermochim Acta 389 (2002), 19–24, 10.1016/S0040-6031(01)00848-6.
Simón-Herrero, C., Chen, X.-Y., Ortiz, M.L., Romero, A., Valverde, J.L., Sánchez-Silva, L., Linear and crosslinked polyimide aerogels: synthesis and characterization. J. Mater. Res. Technol. 8 (2019), 2638–2648, 10.1016/j.jmrt.2019.02.016.
Pei, D., Lv, B., Wang, J., Qi, S., Tian, G., Wu, D., Structure and properties of polyimide aerogels with different skeleton flexibilities. accessed September 6, 2024 Soft Mater., 2021 https://www.tandfonline.com/doi/abs/10.1080/1539445X.2020.1740735.
Guo, Y., Qin, S., Yao, X., Liu, S., Ji, Z., Ma, Z., Wang, X., Preparation of polyimide aerogels by freeze-extraction and chemical imidization for 3D printing. J. Appl. Polym. Sci., 139, 2022, e52891, 10.1002/app.52891.
Ma, S., Wang, C., Cong, B., Zhou, H., Zhao, X., Chen, C., Wang, D., Liu, C., Qu, C., Anisotropic all-aromatic polyimide aerogels with robust and high-temperature stable properties for flexible thermal protection. Chem. Eng. J., 431, 2022, 134047, 10.1016/j.cej.2021.134047.
Wang, J., Carson, J.K., North, M.F., Cleland, D.J., A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases. Int. J. Heat Mass Transf. 51 (2008), 2389–2397, 10.1016/j.ijheatmasstransfer.2007.08.028.
Goguen, J., Sharits, A., Chiaramonti, A., Lafarge, T., Garboczi, E., Three-dimensional characterization of particle size, shape, and internal porosity for Apollo 11 and Apollo 14 lunar regolith and JSC-1A lunar regolith soil simulant. Icarus, 420, 2024, 116166, 10.1016/j.icarus.2024.116166.
Shi, B., Ma, B., Wang, C., He, H., Qu, L., Xu, B., Chen, Y., Fabrication and applications of polyimide nano-aerogels. Compos. Part Appl. Sci. Manuf., 143, 2021, 106283, 10.1016/j.compositesa.2021.106283.
Dai, Y.-J., Tang, Y.-Q., Fang, W.-Z., Zhang, H., Tao, W.-Q., A theoretical model for the effective thermal conductivity of silica aerogel composites. Appl. Therm. Eng. 128 (2018), 1634–1645, 10.1016/j.applthermaleng.2017.09.010.
Zhao, J.-J., Duan, Y.-Y., Wang, X.-D., Wang, B.-X., An analytical model for combined radiative and conductive heat transfer in fiber-loaded silica aerogels. J. Non-Cryst. Solids 358 (2012), 1303–1312, 10.1016/j.jnoncrysol.2012.02.037.
Nie, J., Cui, Y., Senetakis, K., Guo, D., Wang, Y., Wang, G., Feng, P., He, H., Zhang, X., Zhang, X., Li, C., Zheng, H., Hu, W., Niu, F., Liu, Q., Li, A., Predicting residual friction angle of lunar regolith based on Chang'e-5 lunar samples. Sci. Bull. 68 (2023), 730–739, 10.1016/j.scib.2023.03.019.
Li, R., Zhou, G., Yan, K., Chen, J., Chen, D., Cai, S., Mo, P.-Q., Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation. Int. J. Min. Sci. Technol. 32 (2022), 1–15, 10.1016/j.ijmst.2021.09.003.
S.R. Deitrick, K.M. Cannon, Characterizing detailed grain shape and size distribution properties of lunar, (n.d.).
Zhang, H., Zhang, X., Zhang, G., Dong, K., Deng, X., Gao, X., Yang, Y., Xiao, Y., Bai, X., Liang, K., Liu, Y., Ma, W., Zhao, S., Zhang, C., Zhang, X., Song, J., Yao, W., Chen, H., Wang, W., Zou, Z., Yang, M., Size, morphology, and composition of lunar samples returned by Chang'E-5 mission. Sci. China Phys. Mech. Astron., 65, 2022, 229511, 10.1007/s11433-021-1818-1.
Luo, A., Cui, Y., Nie, J., Wang, G., Effects of adhesion and particle shape on mechanical behaviors of lunar regolith under low stress condition-3D DEM study. Comput. Geotech., 175, 2024, 106661, 10.1016/j.compgeo.2024.106661.
Roy, D.J.W., Merriman, J.D., Whittington, A.G., Hofmeister, A.M., Thermal properties of carbonatite and anorthosite from the Superior Province, Ontario, and implications for non-magmatic local thermal effects of these intrusions. Int. J. Earth Sci. 110 (2021), 1593–1609, 10.1007/s00531-021-02032-w.
Peplowski, P.N., Beck, A.W., Lawrence, D.J., Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons. J. Geophys. Res. Planets 121 (2016), 388–401, 10.1002/2015JE004950.
Wang, M., Liu, Y., Zhang, H., Wu, Y., Pan, L., Thermal conductivities of Ti3C2Tx MXenes and their interfacial thermal performance in MXene/epoxy composites – a molecular dynamics simulation. Int. J. Heat Mass Transf., 194, 2022, 123027, 10.1016/j.ijheatmasstransfer.2022.123027.
Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings - NASA Technical Reports Server (NTRS), (n.d.). https://ntrs.nasa.gov/citations/19840015630 (accessed October 9, 2024).
Liu, X., Zhang, W., Zhang, X., Zhou, Z., Wang, C., Pan, Y., Hu, B., Liu, C., Pan, C., Shen, C., Transparent ultrahigh-molecular-weight polyethylene/MXene films with efficient UV-absorption for thermal management. Nat. Commun., 15, 2024, 3076, 10.1038/s41467-024-47432-z.
Ventzek, P.L.G., Gilgenbach, R.M., Ching, C.H., Lindley, R.A., McColl, W.B., Copper vapor laser machining of polyimide and polymethylmethacrylate in atmospheric pressure air. J. Appl. Phys. 72 (1992), 3080–3083, 10.1063/1.351466.
R. Mishra, The Temperature Ratings Of Electronic Parts, Electron. Cool. (2004). https://www.electronics-cooling.com/2004/02/the-temperature-ratings-of-electronic-parts/ (accessed September 13, 2024).
Fateri, M., Sottong, R., Kolbe, M., Gamer, J., Sperl, M., Cowley, A., Thermal properties of processed lunar regolith simulant. Int. J. Appl. Ceram. Technol. 16 (2019), 2419–2428, 10.1111/ijac.13267.
Delfini, A., Pastore, R., Santoni, F., Piergentili, F., Albano, M., Alifanov, O., Budnik, S., Morzhukhina, A.V., Nenarokomov, A.V., Titov, D.M., Marchetti, M., Thermal analysis of advanced plate structures based on ceramic coating on carbon/carbon substrates for aerospace Re-Entry Re-Useable systems. Acta Astronaut. 183 (2021), 153–161, 10.1016/j.actaastro.2021.03.013.
Chen, Z., Chen, J., Hou, X., Chen, L., Mechanically robust and thermal-insulated polyimide aerogel films by polymerization-regulated strategy for flexible thermal protection. Chem. Eng. J., 496, 2024, 154251, 10.1016/j.cej.2024.154251.
Jang, W., Seo, J., Lee, C., Paek, S.-H., Han, H., Residual stress and mechanical properties of polyimide thin films. J. Appl. Polym. Sci. 113 (2009), 976–983, 10.1002/app.29558.
Tschegg, E., Humer, K., Weber, H.W., Mechanical properties and fracture behaviour of polyimide (SINTIMID) at cryogenic temperatures. Cryogenics 31 (1991), 878–883, 10.1016/0011-2275(91)90021-N.
Zhou, B., Li, Y., Li, Z., Ma, J., Zhou, K., Liu, C., Shen, C., Feng, Y., Fire/heat-resistant, anti-corrosion and folding Ti2C3Tx MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. J. Mater. Chem. C 9 (2021), 10425–10434, 10.1039/D1TC00289A.
Qu, D.-Y., Guo, F.-L., Hou, W.-D., Guan, T., Fu, Y.-T., Hao, J., Peng, C.-Y., Zhang, Y.-C., Li, Y.-Q., Liu, S.-T., Fu, S.-Y., Effects of introducing MXene nanosheets on the mechanical properties of carbon fiber reinforced epoxy composite at cryogenic temperature. Compos. Sci. Technol., 263, 2025, 111102, 10.1016/j.compscitech.2025.111102.
Yang, C., He, P., Wang, W., Han, R., Zhang, H., Nie, M., Liu, Y., Layer-by-layer assembled aramid nanofiber/MXene aerogel: Exceptional resistance to extreme temperatures and robust anisotropy for advanced applications. Compos. Sci. Technol., 257, 2024, 110833, 10.1016/j.compscitech.2024.110833.
Sun, K., Wang, F., Yang, W., Liu, H., Pan, C., Guo, Z., Liu, C., Shen, C., Flexible Conductive Polyimide Fiber/MXene Composite Film for Electromagnetic Interference Shielding and Joule heating with Excellent Harsh Environment Tolerance. ACS Appl. Mater. Interfaces 13 (2021), 50368–50380, 10.1021/acsami.1c15467.
Xie, M., Qian, G., Ye, Q., Zhang, Y., Wang, M., Deng, Z., Yu, Y., Chen, C., Li, H., Li, D., Dual-crosslinked reduced graphene oxide/polyimide aerogels possessing regulable superelasticity, fatigue resistance, and rigidity for thermal insulation and flame retardant protection in harsh conditions. J. Colloid Interface Sci. 676 (2024), 1011–1022, 10.1016/j.jcis.2024.07.095.
Yuan, R., Zhou, Y., Lu, X., Dong, Z., Lu, Q., Rigid and flexible polyimide aerogels with less fatigue for use in harsh conditions. Chem. Eng. J., 428, 2022, 131193, 10.1016/j.cej.2021.131193.
Yao, K., Song, C., Fang, H., Wang, F., Chen, L., Jiang, S., Zha, G., Hou, H., Freezing-extraction/vacuum-drying method for robust and fatigue-resistant polyimide fibrous aerogels and their composites with enhanced fire retardancy. Engineering 21 (2023), 152–161, 10.1016/j.eng.2021.08.024.
Huang, Z., Nomura, K., Nakano, A., Wang, J., Molecular dynamics simulations of dielectric breakdown of lunar Regolith: implications for water ice formation on lunar surface. Geophys. Res. Lett., 48, 2021, e2020GL091681, 10.1029/2020GL091681.
Liu, B., Guo, J., Wang, Y., Dobynde, M.I., The radiation impact of solar energetic particle events on the moon: a statistical study using data-based modeling results. Space Weather, 22, 2024, e2024SW004086, 10.1029/2024SW004086.