Anderson D.C., and Springer T.A. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150, 95 glycoproteins. Annu Rev Med 38 (1987) 175-194
Anderson D.C., Schmalsteig F.C., Finegold M.J., Hughes B.J., Rothlein R., Miller L.J., et al. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis 152 (1985) 668-689
Springer T.A., Sastre L., and Anderson D.C. The LFA-1, Mac-1 leucocyte adhesion glycoprotein family and its deficiency in a heritable human disease. Biochem Soc Trans 13 (1985) 3-6
Springer T.A., Rothlein R., Anderson D.C., Burakoff S.J., and Krensky A.M. The function of LFA-1 in cell-mediated killing and adhesion: studies on heritable LFA-1, Mac-1 deficiency and on lymphoid cell self-aggregation. Adv Exp Med Biol 184 (1985) 311-322
Roos D., and Law S.K. Hematologically important mutations: leukocyte adhesion deficiency. Blood Cells Mol Dis 27 (2001) 1000-1004
Kishimoto T.K., Hollander N., Roberts T.M., Anderson D.C., and Springer T.A. Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150, 95 glycoproteins cause leukocyte adhesion deficiency. Cell 50 (1987) 193-202
Wardlaw A.J., Hibbs M.L., Stacker S.A., and Springer T.A. Distinct mutations in two patients with leukocyte adhesion deficiency and their functional correlates. J Exp Med 172 (1990) 335-345
Gu Y.C., Bauer Jr. T.R., Ackermann M.R., Smith C.W., Kehrli Jr. M.E., Starost M.F., et al. The genetic immunodeficiency disease, leukocyte adhesion deficiency, in humans, dogs, cattle, and mice. Comp Med 54 (2004) 363-372
Hibbs M.L., Wardlaw A.J., Stacker S.A., Anderson D.C., Lee A., Roberts T.M., et al. Transfection of cells from patients with leukocyte adhesion deficiency with an integrin beta subunit (CD18) restores lymphocyte function-associated antigen-1 expression and function. J Clin Invest 85 (1990) 674-681
Kishimoto T.K., and Springer T.A. Human leukocyte adhesion deficiency: molecular basis for a defective immune response to infections of the skin. Curr Probl Dermatol 18 (1989) 106-115
Kuijpers T.W., Van Lier R.A., Hamann D., de Boer M., Thung L.Y., Weening R.S., et al. Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional beta2 integrins. J Clin Invest 100 (1997) 1725-1733
Kijas J.M., Bauer Jr. T.R., Gafvert S., Marklund S., Trowald-Wigh G., Johannisson A., et al. A missense mutation in the beta-2 integrin gene (ITGB2) causes canine leukocyte adhesion deficiency. Genomics 61 (1999) 101-107
Giger U., Boxer L.A., Simpson P.J., Lucchesi B.R., and Todd III R.F. Deficiency of leukocyte surface glycoproteins Mo1, LFA-1, and Leu M5 in a dog with recurrent bacterial infections: an animal model. Blood 69 (1987) 1622-1630
Shuster D.E., Kehrli Jr. M.E., Ackermann M.R., and Gilbert R.O. Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proc Natl Acad Sci USA 89 (1992) 9225-9229
Hogg N., and Bates P.A. Genetic analysis of integrin function in man: LAD-1 and other syndromes. Matrix Biol 19 (2000) 211-222
Wilson R.W., Ballantyne C.M., Smith C.W., Montgomery C., Bradley A., O'Brien W.E., et al. Gene targeting yields a CD18-mutant mouse for study of inflammation. J Immunol 151 (1993) 1571-1578
Scharffetter-Kochanek K., Lu H., Norman K., van Nood N., Munoz F., Grabbe S., et al. Spontaneous skin ulceration and defective T cell function in CD18 null mice. J Exp Med 188 (1998) 119-131
Weitzman J.B., Wells C.E., Wright A.H., Clark P.A., and Law S.K. The gene organisation of the human beta 2 integrin subunit (CD18). FEBS Lett 294 (1991) 97-103
Back A.L., Kwok W.W., and Hickstein D.D. Identification of two molecular defects in a child with leukocyte adherence deficiency. J Biol Chem 267 (1992) 5482-5487
Arnaout M.A., Dana N., Gupta S.K., Tenen D.G., and Fathallah D.M. Point mutations impairing cell surface expression of the common beta subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency. J Clin Invest 85 (1990) 977-981
Hogg N., Stewart M.P., Scarth S.L., Newton R., Shaw J.M., Law S.K., et al. A novel leukocyte adhesion deficiency caused by expressed but nonfunctional beta2 integrins Mac-1 and LFA-1. J Clin Invest 103 (1999) 97-106
Karsan A., Cornejo C.J., Winn R.K., Schwartz B.R., Way W., Lannir N., et al. Leukocyte adhesion deficiency type II is a generalized defect of de novo GDP-fucose biosynthesis. Endothelial cell fucosylation is not required for neutrophil rolling on human nonlymphoid endothelium. J Clin Invest 101 (1998) 2438-2445
Wild M.K., Luhn K., Marquardt T., and Vestweber D. Leukocyte adhesion deficiency II: therapy and genetic defect. Cells Tissues Organs 172 (2002) 161-173
Luhn K., Wild M.K., Eckhardt M., Gerardy-Schahn R., and Vestweber D. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 28 (2001) 69-72
Sturla L., Rampal R., Haltiwanger R.S., Fruscione F., Etzioni A., and Tonetti M. Differential terminal fucosylation of N-linked glycans versus protein O-fucosylation in leukocyte adhesion deficiency type II (CDG IIc). J Biol Chem 278 (2003) 26727-26733
Frydman M., Etzioni A., Eidlitz-Markus T., Avidor I., Varsano I., Shechter Y., et al. Rambam-Hasharon syndrome of psychomotor retardation, short stature, defective neutrophil motility, and Bombay phenotype. Am J Med Genet 44 (1992) 297-302
Etzioni A., and Tonetti M. Leukocyte adhesion deficiency II-from A to almost Z. Immunol Rev 178 (2000) 138-147
Alon R., Aker M., Feigelson S., Sokolovsky-Eisenberg M., Staunton D.E., Cinamon G., et al. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 101 (2003) 4437-4445
Alon R., and Etzioni A. LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol 24 (2003) 561-566
Kinashi T., Aker M., Sokolovsky-Eisenberg M., Grabovsky V., Tanaka C., Shamri R., et al. LAD-III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds. Blood 103 (2004) 1033-1036
Nagahata H. Bovine leukocyte adhesion deficiency (BLAD): a review. J Vet Med Sci 66 (2004) 1475-1482
Nagahata H., Miura T., Tagaki K., Ohtake M., Noda H., Yasuda T., et al. Prevalence and allele frequency estimation of bovine leukocyte adhesion deficiency (BLAD) in Holstein-Friesian cattle in Japan. J Vet Med Sci 59 (1997) 233-238
Cox E., Mast J., MacHugh N., Schwenger B., and Goddeeris B.M. Expression of beta 2 integrins on blood leukocytes of cows with or without bovine leukocyte adhesion deficiency. Vet Immunol Immunopathol 58 (1997) 249-263
Sipes K.M., Edens H.A., Kehrli Jr. M.E., Miettinen H.M., Cutler J.E., Jutila M.A., et al. Analysis of surface antigen expression and host defense function in leukocytes from calves heterozygous or homozygous for bovine leukocyte adhesion deficiency. Am J Vet Res 60 (1999) 1255-1261
Jobling A.I., Ryan J., and Augusteyn R.C. The frequency of the canine leukocyte adhesion deficiency (CLAD) allele within the Irish Setter population of Australia. Aust Vet J 81 (2003) 763-765
Bauer Jr. T.R., Gu Y.C., Creevy K.E., Tuschong L.M., Embree L., Holland S.M., et al. Leukocyte adhesion deficiency in children and Irish setter dogs. Pediatr Res 55 (2004) 363-367
Foureman P., Whiteley M., and Giger U. Canine leukocyte adhesion deficiency: presence of the Cys36Ser beta-2 integrin mutation in an affected US Irish Setter cross-breed dog and in US Irish Red and White Setters. J Vet Intern Med 16 (2002) 518-523
Debenham S.L., Millington A., Kijast J., Andersson L., and Binns M. Canine leucocyte adhesion deficiency in Irish red and white setters. J Small Anim Pract 43 (2002) 74-75
Lally E.T., Hill R.B., Kieba I.R., and Korostoff J. The interaction between RTX toxins and target cells. Trends Microbiol 7 (1999) 356-361
Henderson B., Nair S.P., Ward J.M., and Wilson M. Molecular pathogenicity of the oral opportunistic pathogen Actinobacillus actinomycetemcomitans. Annu Rev Microbiol 57 (2003) 29-55
Slots J., and Ting M. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontol 2000 20 (1999) 82-121
van Winkelhoff A.J., and Slots J. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in nonoral infections. Periodontol 2000 20 (1999) 122-135
Genco R., Offenbacher S., and Beck J. Periodontal disease and cardiovascular disease: epidemiology and possible mechanisms. J Am Dent Assoc 133 Suppl (2002) 14S-22S
Haraszthy V.I., Zambon J.J., Trevisan M., Zeid M., and Genco R.J. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 71 (2000) 1554-1560
Narayanan S.K., Nagaraja T.G., Chengappa M.M., and Stewart G.C. Leukotoxins of gram-negative bacteria. Vet Microbiol 84 (2002) 337-356
Lally E.T., Kieba I.R., Sato A., Green C.L., Rosenbloom J., Korostoff J., et al. RTX toxins recognize a beta2 integrin on the surface of human target cells. J Biol Chem 272 (1997) 30463-30469
Korostoff J., Yamaguchi N., Miller M., Kieba I., and Lally E.T. Perturbation of mitochondrial structure and function plays a central role in Actinobacillus actinomycetemcomitans leukotoxin-induced apoptosis. Microb Pathog 29 (2000) 267-278
Pickett C.L., and Whitehouse C.A. The cytolethal distending toxin family. Trends Microbiol 7 (1999) 292-297
Lara-Tejero M., and Galan J.E. Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol 10 (2002) 147-152
De Rycke J., and Oswald E. Cytolethal distending toxin (CDT): a bacterial weapon to control host cell proliferation?. FEMS Microbiol Lett 203 (2001) 141-148
Dungworth D. The respiratory system. In: Jubb K., Kennedy P., and Palmer N. (Eds). Pathology of Domestic Animals (1992), Academic Press, San Diego 589-663
Lopez A. Respiratory system, thoracic cavity and pleura. In: McGavin M., Carlton W., and Zachary J. (Eds). Thomson's Special Veterinary Pathology (2001), Mosby, St. Louis, Missouri 125-196
Yates W.D. A review of infectious bovine rhinotracheitis, shipping fever pneumonia and viral-bacterial synergism in respiratory disease of cattle. Can J Comp Med 46 (1982) 225-263
Yates W.D., Jericho K.W., and Doige C.E. Effect of bacterial dose on pneumonia induced by aerosol exposure of calves to bovine herpesvirus-1 and Pasteurella haemolytica. Am J Vet Res 44 (1983) 238-243
Yates W.D., Jericho K.W., and Doige C.E. Effect of viral dose on experimental pneumonia caused by aerosol exposure of calves to bovine herpesvirus 1 and Pasteurella haemolytica. Can J Comp Med 47 (1983) 57-63
Edwards A.J. Respiratory diseases of feedlot cattle in the central USA. Bovine Pract (1996) 5-7
Jensen R., Pierson R.E., Braddy P.M., Saari D.A., Lauerman L.H., England J.J., et al. Shipping fever pneumonia in yearling feedlot cattle. J Am Vet Med Assoc 169 (1976) 500-506
Vogel J.G., and Parrott C. Mortality survey in feedyards: the incidence of death from digestive, respiratory and other causes in feedyards on the Great plains. Comp Cont Educ Prac Vet (1994) 227-234
Slocombe R.F., Malark J., Ingersoll R., Derksen F.J., and Robinson N.E. Importance of neutrophils in the pathogenesis of acute pneumonic pasteurellosis in calves. Am J Vet Res 46 (1985) 2253-2258
Walker R.D., Hopkins F.M., Schultz T.W., McCracken M.D., and Moore R.N. Changes in leukocyte populations in pulmonary lavage fluids of calves after inhalation of Pasteurella haemolytica. Am J Vet Res 46 (1985) 2429-2433
Zecchinon L., Fett T., and Desmecht D. How Mannheimia haemolytica defeats host defence through a kiss of death mechanism. Vet Res 36 (2005) 133-156
Ambagala T.C., Ambagala A.P., and Srikumaran S. The leukotoxin of Pasteurella haemolytica binds to beta(2) integrins on bovine leukocytes. FEMS Microbiol Lett 179 (1999) 161-167
Jeyaseelan S., Hsuan S.L., Kannan M.S., Walcheck B., Wang J.F., Kehrli M.E., et al. Lymphocyte function-associated antigen 1 is a receptor for Pasteurella haemolytica leukotoxin in bovine leukocytes. Infect Immun 68 (2000) 72-79
Deshpande M.S., Ambagala T.C., Ambagala A.P., Kehrli Jr. M.E., and Srikumaran S. Bovine CD18 is necessary and sufficient to mediate Mannheimia (Pasteurella) haemolytica leukotoxin-induced cytolysis. Infect Immun 70 (2002) 5058-5064
Li J., Clinkenbeard K.D., and Ritchey J.W. Bovine CD18 identified as a species specific receptor for Pasteurella haemolytica leukotoxin. Vet Microbiol 67 (1999) 91-97
Fett T., Zecchinon L., Baise E., and Desmecht D. The bovine (Bos taurus) CD11a-encoding cDNA: molecular cloning, characterisation and comparison with the human and murine glycoproteins. Gene 325 (2004) 97-101
Thumbikat P., Dileepan T., Kannan M.S., and Maheswaran S.K. Characterization of Mannheimia (Pasteurella) haemolytica leukotoxin interaction with bovine alveolar macrophage beta2 integrins. Vet Res 36 (2005) 771-786
Dileepan T., Thumbikat P., Walcheck B., Kannan M.S., and Maheswaran S.K. Recombinant expression of bovine LFA-1 and characterization of its role as a receptor for Mannheimia haemolytica leukotoxin. Microb Pathog 38 (2005) 249-257
Dileepan T., Kannan M.S., Walcheck B., Thumbikat P., and Maheswaran S.K. Mapping of the binding site for Mannheimia haemolytica leukotoxin within bovine CD18. Infect Immun 73 (2005) 5233-5237
Zecchinon L., Fett T., Baise E., and Desmecht D. Characterization of the caprine (Capra hircus) beta-2 integrin CD18-encoding cDNA and identification of mutations potentially responsible for the ruminant-specific virulence of Mannheimia haemolytica. Mol Membr Biol 21 (2004) 289-295
Gopinath R.S., Ambagala T.C., Deshpande M.S., Donis R.O., and Srikumaran S. Mannheimia (Pasteurella) haemolytica leukotoxin binding domain lies within amino acids 1 to 291 of bovine CD18. Infect Immun 73 (2005) 6179-6182
White J.M., and Littman D.R. Viral receptors of the immunoglobulin superfamily. Cell 56 (1989) 725-728
Springer T.A. Adhesion receptors of the immune system. Nature 346 (1990) 425-434
Nordoy I., Aukrust P., Muller F., and Froland S.S. Abnormal levels of circulating adhesion molecules in HIV-1 infection with characteristic alterations in opportunistic infections. Clin Immunol Immunopathol 81 (1996) 16-21
Shrikant P., Benos D.J., Tang L.P., and Benveniste E.N. HIV glycoprotein 120 enhances intercellular adhesion molecule-1 gene expression in glial cells. Involvement of Janus kinase/signal transducer and activator of transcription and protein kinase C signaling pathways. J Immunol 156 (1996) 1307-1314
Park S.W., Royal III W., Semba R.D., Wiegand G.W., and Griffin D.E. Expression of adhesion molecules and CD28 on T lymphocytes during human immunodeficiency virus infection. Clin Diagn Lab Immunol 5 (1998) 583-587
Sattentau Q.J., Clapham P.R., Weiss R.A., Beverley P.C., Montagnier L., Alhalabi M.F., et al. The human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS 2 (1988) 101-105
Sattentau Q.J., and Weiss R.A. The CD4 antigen: physiological ligand and HIV receptor. Cell 52 (1988) 631-633
Sattentau Q.J. The role of the CD4 antigen in HIV infection and immune pathogenesis. AIDS 2 Suppl 1 (1988) S11-S16
Weiss R.A., Clapham P.R., McClure M.O., McKeating J.A., McKnight A., Dalgleish A.G., et al. Human immunodeficiency viruses: neutralization and receptors. J Acquir Immune Defic Syndr 1 (1988) 536-541
Fortin J.F., Cantin R., and Tremblay M.J. T cells expressing activated LFA-1 are more susceptible to infection with human immunodeficiency virus type 1 particles bearing host-encoded ICAM-1. J Virol 72 (1998) 2105-2112
Beausejour Y., and Tremblay M.J. Susceptibility of HIV type 1 to the fusion inhibitor T-20 is reduced on insertion of host intercellular adhesion molecule 1 in the virus membrane. J Infect Dis 190 (2004) 894-902
Giguere J.F., Bounou S., Paquette J.S., Madrenas J., and Tremblay M.J. Insertion of host-derived costimulatory molecules CD80 (B7.1) and CD86 (B7.2) into human immunodeficiency virus type 1 affects the virus life cycle. J Virol 78 (2004) 6222-6232
Bounou S., Giguere J.F., Cantin R., Gilbert C., Imbeault M., Martin G., et al. The importance of virus-associated host ICAM-1 in human immunodeficiency virus type 1 dissemination depends on the cellular context. FASEB J 18 (2004) 1294-1296
Hildreth J.E., and Orentas R.J. Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science 244 (1989) 1075-1078
Pantaleo G., Butini L., Graziosi C., Poli G., Schnittman S.M., Greenhouse J.J., et al. Human immunodeficiency virus (HIV) infection in CD4+ T lymphocytes genetically deficient in LFA-1: LFA-1 is required for HIV-mediated cell fusion but not for viral transmission. J Exp Med 173 (1991) 511-514
Barbeau B., Fortin J.F., Genois N., and Tremblay M.J. Modulation of human immunodeficiency virus type 1-induced syncytium formation by the conformational state of LFA-1 determined by a new luciferase-based syncytium quantitative assay. J Virol 72 (1998) 7125-7136
Poloni F., Puddu P., Moretti F., Flego M., Romagnoli G., Tombesi M., et al. Identification of a LFA-1 region involved in the HIV-1-induced syncytia formation through phage-display technology. Eur J Immunol 31 (2001) 57-63
Hioe C.E., Chien Jr. P.C., Lu C., Springer T.A., Wang X.H., Bandres J., et al. LFA-1 expression on target cells promotes human immunodeficiency virus type 1 infection and transmission. J Virol 75 (2001) 1077-1082
Tardif M.R., and Tremblay M.J. Regulation of LFA-1 activity through cytoskeleton remodeling and signaling components modulates the efficiency of HIV type-1 entry in activated CD4+ T lymphocytes. J Immunol 175 (2005) 926-935
Anderson M.E., and Siahaan T.J. Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Peptides 24 (2003) 487-501
Landau N.R., Warton M., and Littman D.R. The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature 334 (1988) 159-162
Clayton L.K., Sieh M., Pious D.A., and Reinherz E.L. Identification of human CD4 residues affecting class II MHC versus HIV-1 gp120 binding. Nature 339 (1989) 548-551
Peterson A., and Seed B. Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 54 (1988) 65-72
Staunton D.E., Dustin M.L., Erickson H.P., and Springer T.A. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 61 (1990) 243-254
Bella J., and Rossmann M.G. Review: rhinoviruses and their ICAM receptors. J Struct Biol 128 (1999) 69-74
Bella J., Kolatkar P.R., Marlor C.W., Greve J.M., and Rossmann M.G. The structure of the two amino-terminal domains of human intercellular adhesion molecule-1 suggests how it functions as a rhinovirus receptor. Virus Res 62 (1999) 107-117
Bella J., Kolatkar P.R., Marlor C.W., Greve J.M., and Rossmann M.G. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc Natl Acad Sci USA 95 (1998) 4140-4145
Rossmann M.G. The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance. J Biol Chem 264 (1989) 14587-14590
Koga H., Naito S., Nakashima M., Hasegawa S., Watanabe T., and Kumazawa J. A flow cytometric analysis of the expression of adhesion molecules on human renal cell carcinoma cells with different metastatic potentials. Eur Urol 31 (1997) 86-91
Izycka A., Jablonska E., Izycki T., and Chyczewska E. Expression of adhesion molecules LFA-1 and L-selectin on PMN and level of soluble sE-selectin and sL-selectin in the serum of patients with small cell lung cancer. Pneumonol Alergol Pol 70 (2002) 403-408
Jiang Z., Woda B.A., Savas L., and Fraire A.E. Expression of ICAM-1, VCAM-1, and LFA-1 in adenocarcinoma of the lung with observations on the expression of these adhesion molecules in non-neoplastic lung tissue. Mod Pathol 11 (1998) 1189-1192
Shimoyama S., Gansauge F., Gansauge S., Widmaier U., Oohara T., and Beger H.G. Overexpression of intercellular adhesion molecule-1 (ICAM-1) in pancreatic adenocarcinoma in comparison with normal pancreas. Pancreas 14 (1997) 181-186
Shirai A., Furukawa M., and Yoshizaki T. Expression of intercellular adhesion molecule (ICAM)-1 in adenoid cystic carcinoma of the head and neck. Laryngoscope 113 (2003) 1955-1960
Fujihara T., Sawada T., Hirakawa K., Chung Y.S., Yashiro M., Inoue T., et al. Establishment of lymph node metastatic model for human gastric cancer in nude mice and analysis of factors associated with metastasis. Clin Exp Metastasis 16 (1998) 389-398
Wang H.S., Hung Y., Su C.H., Peng S.T., Guo Y.J., Lai M.C., et al. CD44 cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (alpha Lbeta2) and VLA-4 (alpha4beta1). Exp Cell Res 304 (2005) 116-126
Opdam F.J., Kamp M., de Bruijn R., and Roos E. Jak kinase activity is required for lymphoma invasion and metastasis. Oncogene 23 (2004) 6647-6653
Walsh G.M., Hartnell A., Wardlaw A.J., Kurihara K., Sanderson C.J., and Kay A.B. IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11/18)-dependent manner. Immunology 71 (1990) 258-265
Lantero S., Spallarossa D., Silvestri M., Sabatini F., Scarso L., Crimi E., et al. In allergic asthma experimental exposure to allergens is associated with depletion of blood eosinophils overexpressing LFA-1. Allergy 57 (2002) 1036-1043
Lantero S., Alessandri G., Spallarossa D., Scarso L., and Rossi G.A. LFA-1 expression by blood eosinophils is increased in atopic asthmatic children and is involved in eosinophil locomotion. Eur Respir J 12 (1998) 1094-1098
Chanez P., Vignola A.M., Lacoste P., Michel F.B., Godard P., and Bousquet J. Increased expression of adhesion molecules (ICAM-1 and LFA-1) on alveolar macrophages from asthmatic patients. Allergy 48 (1993) 576-580
Mosmann T.R., and Coffman R.L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7 (1989) 145-173
Iwamoto I., and Nakao A. Induction of Th2 cell tolerance to a soluble antigen by blockade of the LFA-1-dependent pathway prevents allergic inflammation. Immunol Res 14 (1995) 263-270
Nakao A., Nakajima H., Tomioka H., Nishimura T., and Iwamoto I. Induction of T cell tolerance by pretreatment with anti-ICAM-1 and anti-lymphocyte function-associated antigen-1 antibodies prevents antigen-induced eosinophil recruitment into the mouse airways. J Immunol 153 (1994) 5819-5825
Mueller D.L., Jenkins M.K., and Schwartz R.H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7 (1989) 445-480
Schwartz R.H. A cell culture model for T lymphocyte clonal anergy. Science 248 (1990) 1349-1356
Siu G., Hedrick S.M., and Brian A.A. Isolation of the murine intercellular adhesion molecule 1 (ICAM-1) gene. ICAM-1 enhances antigen-specific T cell activation. J Immunol 143 (1989) 3813-3820
Van Seventer G.A., Shimizu Y., Horgan K.J., and Shaw S. The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol 144 (1990) 4579-4586
Damle N.K., Klussman K., Linsley P.S., and Aruffo A. Differential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3, and VCAM-1 on resting and antigen-primed CD4+ T lymphocytes. J Immunol 148 (1992) 1985-1992
Kobayashi Y., Kawai K., Honda H., Tomida S., Niimi N., Tamatani T., et al. Antibodies against leukocyte function-associated antigen-1 and against intercellular adhesion molecule-1 together suppress the progression of experimental allergic encephalomyelitis. Cell Immunol 164 (1995) 295-305
Canonica G.W., Ciprandi G., Pesce G.P., Buscaglia S., Paolieri F., and Bagnasco M. ICAM-1 on epithelial cells in allergic subjects: a hallmark of allergic inflammation. Int Arch Allergy Immunol 107 (1995) 99-102
McGregor J.M., Barker J.N., Ross E.L., and MacDonald D.M. Epidermal dendritic cells in psoriasis possess a phenotype associated with antigen presentation: in situ expression of beta 2-integrins. J Am Acad Dermatol 27 (1992) 383-388
Kondo S., Kono T., Brown W.R., Pastore S., McKenzie R.C., and Sauder D.N. Lymphocyte function-associated antigen-1 is required for maximum elicitation of allergic contact dermatitis. Br J Dermatol 131 (1994) 354-359
Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85 (1996) 299-302
Steinman L. A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: a tale of smart bombs and the infantry. Proc Natl Acad Sci USA 93 (1996) 2253-2256
Hersmann G.H., Kriegsmann J., Simon J., Huttich C., and Brauer R. Expression of cell adhesion molecules and cytokines in murine antigen-induced arthritis. Cell Adhes Commun 6 (1998) 69-82
Kevil C.G., Hicks M.J., He X., Zhang J., Ballantyne C.M., Raman C., et al. Loss of LFA-1, but not Mac-1, protects MRL/MpJ-Fas(lpr) mice from autoimmune disease. Am J Pathol 165 (2004) 609-616
Yusuf-Makagiansar H., Anderson M.E., Yakovleva T.V., Murray J.S., and Siahaan T.J. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med Res Rev 22 (2002) 146-167
Moriyama H., Yokono K., Amano K., Nagata M., Hasegawa Y., Okamoto N., et al. Induction of tolerance in murine autoimmune diabetes by transient blockade of leukocyte function-associated antigen-1/intercellular adhesion molecule-1 pathway. J Immunol 157 (1996) 3737-3743