Ecoenzymatic stoichiometry; Greenhouse vegetable production; Microbial carbon use efficiency; Nitrogen fertilizer; Resource limitations; Root C and N exudation rates; Fertilizers; Nitrogen; Carbon; Soil; Soil/chemistry; Plant Roots/metabolism; Nitrogen/metabolism; Soil Microbiology; Carbon/metabolism; Carbon use efficiencies; Greenhouse vegetables; Microbial carbons; Root C and N exudation rate; Root exudation; Vegetable productions; Plant Roots; Environmental Engineering; Environmental Chemistry; Waste Management and Disposal; Pollution
Abstract :
[en] Root exudation and its mediated nutrient cycling process driven by nitrogen (N) fertilizer can stimulate the plant availability of various soil nutrients, which is essential for microbial nutrient acquisition. However, the response of soil microbial resource limitations to long-term N fertilizer application rates in greenhouse vegetable systems has rarely been investigated. Therefore, we selected a 15-year greenhouse vegetable system, and investigated how N fertilizer application amount impacts on root carbon and nitrogen exudation rates, microbial resource limitations and microbial carbon use efficiency (CUEST). Four N treatments were determined: high (N3), medium (N2), low (N1), and a control without N fertilization (N0). Compared to the control (N0), the results showed that the root C exudation rates decreased significantly by 42.9 %, 57.3 % and 33.6 %, and the root N exudation rates decreased significantly by 29.7 %, 42.6 %, and 24.1 % under N1, N2, and N3 treatments, respectively. Interactions between fertilizer and plant roots altered microbial C, N, P limitations and CUEST; Microbial C and N/P limitations were positively correlated with root C and N exudation rates, negatively correlated with microbial CUEST. Random Forest analysis revealed that the root C and N exudation rates were key factors for soil microbial resource limitations and microbial CUEST. Through the structural equation model (SEM) analysis, soil NH4+ content had significant direct effects on the root exudation rates after long-term N fertilizer application. An increase in root exudation rates led to enhanced microbial resource limitations in the rhizosphere soils, potentially due to increased competition. This enhancement may reduce microbial carbon use efficiency (CUE), that is, microbial C turnover, thereby reducing soil C sequestration. Overall, this study highlights the critical role of root exudation rates in microbial resource limitations and CUE changes in plant-soil systems, and further improves our understanding of plant-microbial interactions.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lian, Jinshan ; Université de Liège - ULiège > TERRA Research Centre
Li, Guihua; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Innovation for Comprehensive Utilization of Saline-Alkali Land, Shandong 257000, China. Electronic address: liguihua@caas.cn
Zhang, Jianfeng; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Innovation for Comprehensive Utilization of Saline-Alkali Land, Shandong 257000, China. Electronic address: zhangjianfeng@caas.cn
Massart, Sébastien ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Language :
English
Title :
Nitrogen fertilization affected microbial carbon use efficiency and microbial resource limitations via root exudates.
Earmarked Fund for China Agriculture Research System
Funding text :
We acknowledge all the colleagues for their unremitting efforts on the long-term experiments. This research was funded by the National Natural Science Foundation of China (grant number: 22176215 ), the Earmarked fund for CARS (grant number: CARS 23-B18 ), and the program of China Scholarship Council (grant number: 202303250059 ).
Abay, P., Gong, L., Luo, Y., Zhu, H., Ding, Z., Soil extracellular enzyme stoichiometry reveals the nutrient limitations in soil microbial metabolism under different carbon input manipulations. Sci. Total Environ., 913, 2024, 169793, 10.1016/j.scitotenv.2023.169793.
Allison, S.D., Vitousek, P.M., Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 37 (2005), 937–944, 10.1016/j.soilbio.2004.09.014.
Archer, E., rfPermute: estimate permutation p-values for random Forest importance metrics. R package version, 2(1), 2016, 5 https://cran.r-project.org/package=rfPermute.
Asmar, F., Eiland, F., Nielsen, N.E., Effect of extracellular-enzyme activities on solubilization rate of soil organic nitrogen. Biol. Fertil. Soils 17 (1994), 32–38, 10.1007/BF00418669.
Baptist, F., Aranjuelo, I., Legay, N., Lopez-Sangil, L., Molero, G., Rovira, P., Nogués, S., Rhizodeposition of organic carbon by plants with contrasting traits for resource acquisition: responses to different fertility regimes. Plant and Soil 394 (2015), 391–406, 10.1007/s11104-015-2531-4.
Bell, T.H., Klironomos, J.N., Henry, H.A.L., Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition. Soil Sci. Soc. Am. J. 74 (2010), 820–828, 10.2136/sssaj2009.0036.
Bengtson, P., Barker, J., Grayston, S.J., Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol. Evol. 2 (2012), 1843–1852, 10.1002/ece3.311.
Bi, B., Wang, Y., Wang, K., Zhang, H., Fei, H., Pan, R., Han, F., Changes in microbial metabolic C- and N- limitations in the rhizosphere and bulk soils along afforestation chronosequence in desertified ecosystems. J. Environ. Manage., 303, 2022, 114215, 10.1016/j.jenvman.2021.114215.
Blagodatskaya, Е., Kuzyakov, Y., Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol. Fertil. Soils 45 (2008), 115–131, 10.1007/s00374-008-0334-y.
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32, 10.1023/A:1010933404324.
Bremner, J.M., Mulvaney, C.S., 1983. Nitrogen—Total, in: Methods of Soil Analysis, Agronomy Monographs. pp. 595–624. doi: https://doi.org/10.2134/agronmonogr9.2.2ed.c31.
Brookes, P.C., Landman, A., Pruden, G., Jenkinson, D.S., Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17 (1985), 837–842, 10.1016/0038-0717(85)90144-0.
Canarini, A., Kaiser, C., Merchant, A., Richter, A., Wanek, W., Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci., 10, 2019, 10.3389/fpls.2019.00157.
Carrara, J.E., Walter, C.A., Hawkins, J.S., Peterjohn, W.T., Averill, C., Brzostek, E.R., Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Glob. Chang. Biol. 24 (2018), 2721–2734, 10.1111/gcb.14081.
Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., Wang, Zhenlin, Zhang, Weijian, Yan, X., Yang, J., Deng, X., Gao, Q., Zhang, Q., Guo, S., Ren, J., Li, S., Ye, Y., Wang, Zhaohui, Huang, J., Tang, Q., Sun, Y., Peng, X., Zhang, J., He, M., Zhu, Y., Xue, J., Wang, G., Wu, Liang, An, N., Wu, Liangquan, Ma, L., Zhang, Weifeng, Zhang, F., Producing more grain with lower environmental costs. Nature 514 (2014), 486–489, 10.1038/nature13609.
Chen, M., Xu, J., Li, Z., Li, D., Wang, Q., Zhou, Y., Guo, W., Ma, D., Zhang, J., Zhao, B., Long-term nitrogen fertilization-induced enhancements of acid hydrolyzable nitrogen are mainly regulated by the most vital microbial taxa of keystone species and enzyme activities. Sci. Total Environ., 874, 2023, 162463, 10.1016/j.scitotenv.2023.162463.
Chowdhury, S., Farrell, M., Bolan, N., Photoassimilated carbon allocation in a wheat plant-soil system as affected by soil fertility and land-use history. Plant and Soil 383 (2014), 173–189, 10.1007/s11104-014-2173-y.
Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E., The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?. Glob. Chang. Biol. 19 (2013), 988–995, 10.1111/gcb.12113.
Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E., Haddix, M.L., Wall, D.H., Parton, W.J., Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 8 (2015), 776–779, 10.1038/ngeo2520.
Cui, Y., Fang, L., Guo, X., Wang, X., Zhang, Y., Li, P., Zhang, X., Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern loess plateau, China. Soil Biol. Biochem. 116 (2018), 11–21, 10.1016/j.soilbio.2017.09.025.
Cui, Y., Wang, X., Zhang, X., Ju, W., Duan, C., Guo, X., Wang, Y., Fang, L., Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem., 147, 2020, 107814, 10.1016/j.soilbio.2020.107814.
Cui, J., Zhang, S., Wang, X., Xu, X., Ai, C., Liang, G., Zhu, P., Zhou, W., Enzymatic stoichiometry reveals phosphorus limitation-induced changes in the soil bacterial communities and element cycling: evidence from a long-term field experiment. Geoderma, 426, 2022, 116124, 10.1016/j.geoderma.2022.116124.
Cui, H., He, C., Zheng, W., Jiang, Z., Yang, J., Effects of nitrogen addition on rhizosphere priming: the role of stoichiometric imbalance. Sci. Total Environ., 914, 2024, 169731, 10.1016/j.scitotenv.2023.169731.
DeForest, J.L., The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil Biol. Biochem. 41 (2009), 1180–1186, 10.1016/j.soilbio.2009.02.029.
Deng, L., Peng, C., Huang, C., Wang, K., Liu, Q., Liu, Y., Hai, X., Shangguan, Z., Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the loess plateau, China. Geoderma 353 (2019), 188–200, 10.1016/j.geoderma.2019.06.037.
Dijkstra, F.A., Bader, N.E., Johnson, D.W., Cheng, W., Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability?. Soil Biol. Biochem. 41 (2009), 1080–1087, 10.1016/j.soilbio.2009.02.013.
Dijkstra, F.A., Carrillo, Y., Pendall, E., Morgan, J.A., Rhizosphere priming: a nutrient perspective. Front. Microbiol., 4, 2013, 10.3389/fmicb.2013.00216.
Dorais, M., Papadopoulos, A.P., Gosselin, A., Greenhouse tomato fruit quality. Hortic. Rev., 2000, 239–319, 10.1002/9780470650806.ch5.
Duncan, D.B., Multiple range and multiple F tests. Biometrics 11:1 (1955), 1–42, 10.2307/3001478.
Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. 112 (2015), E911–E920, 10.1073/pnas.1414592112.
Fusseder, A., Kraus, M., Individuelle Wurzelkonkurrenz und Ausnutzung der immobilen Makronährstoffe im Wurzelraum von Mais. Flora 178 (1986), 11–18, 10.1016/S0367-2530(17)30199-8.
Geyer, K.M., Dijkstra, P., Sinsabaugh, R., Frey, S.D., Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biol. Biochem. 128 (2019), 79–88, 10.1016/j.soilbio.2018.09.036.
Gomez, K.A., Gomez, A.A., Statistical Procedures for Agricultural Research. second ed., 1984, John Wiley & Sons, New York.
Hagerty, S.B., Allison, S.D., Schimel, J.P., Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry 140 (2018), 269–283, 10.1007/s10533-018-0489-z.
Henry, A., Doucette, W., Norton, J., Bugbee, B., Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Qual. 36 (2007), 904–912, 10.2134/jeq2006.0425sc.
Hodge, A., Campbell, C.D., Fitter, A.H., An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413 (2001), 297–299, 10.1038/35095041.
Hu, L., Bentler, P.M., Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Modeling 6 (1999), 1–55, 10.1080/10705519909540118.
Hu, W., Zhang, Y., Huang, B., Teng, Y., Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. Chemosphere 170 (2017), 183–195, 10.1016/j.chemosphere.2016.12.047.
Inselsbacher, E., Hinko-Najera Umana, N., Stange, F.C., Gorfer, M., Schüller, E., Ripka, K., Zechmeister-Boltenstern, S., Hood-Novotny, R., Strauss, J., Wanek, W., Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biol. Biochem. 42 (2010), 360–372, 10.1016/j.soilbio.2009.11.019.
Jackson, M.L., Soil Chemical Analysis-Advanced Course: A Manual of Methods Useful for Instruction and Research in Soil Chemistry, Physical Chemistry of Soils, Soil Fertility, and Soil Genesis. 1973.
Johansson, G., Below-ground carbon distribution in barley (Hordeum vulgare L.) with and without nitrogen fertilization. Plant and Soil 144 (1992), 93–99, 10.1007/BF00018849.
Jones, D.L., Nguyen, C., Finlay, R.D., Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant and Soil 321 (2009), 5–33, 10.1007/s11104-009-9925-0.
Ju, W., Moorhead, D.L., Shen, G., Cui, Y., Fang, L., Soil aggregate development and associated microbial metabolic limitations alter grassland carbon storage following livestock removal. Soil Biol. Biochem., 177, 2023, 108907, 10.1016/j.soilbio.2022.108907.
Kachurina, O.M., Zhang, H., Raun, W.R., Krenzer, E.G., Simultaneous determination of soil aluminum, ammonium- and nitrate-nitrogen using 1 M potassium chloride extraction. Commun. Soil Sci. Plant Anal. 31 (2000), 893–903, 10.1080/00103620009370485.
Kuzyakov, Y., Blagodatskaya, E., Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83 (2015), 184–199, 10.1016/j.soilbio.2015.01.025.
Kuzyakov, Y., Cheng, W., 2004. Photosynthesis controls of CO2 efflux from maize rhizosphere. Plant and Soil 2004 263:1 263, 85–99. doi: https://doi.org/10.1023/B:PLSO.0000047728.61591.FD.
Kuzyakov, Y., Domanski, G., Carbon input by plants into the soil. Review. J. Plant Nutr. Soil Sci. 163 (2000), 421–431, 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R.
Kuzyakov, Y., Razavi, B.S., Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol. Biochem. 135 (2019), 343–360, 10.1016/j.soilbio.2019.05.011.
Kuzyakov, Y., Xu, X., Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol. 198 (2013), 656–669, 10.1111/nph.12235.
Kuzyakov, Y., Friedel, J.K., Stahr, K., Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32 (2000), 1485–1498, 10.1016/S0038-0717(00)00084-5.
Lareen, A., Burton, F., Schäfer, P., Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90 (2016), 575–587, 10.1007/s11103-015-0417-8.
Li, J., Yuan, X., Ge, L., Li, Q., Li, Z., Wang, L., Liu, Y., Rhizosphere effects promote soil aggregate stability and associated organic carbon sequestration in rocky areas of desertification. Agric. Ecosyst. Environ., 304, 2020, 107126, 10.1016/j.agee.2020.107126.
Li, J., Sang, C., Yang, J., Qu, L., Xia, Z., Sun, H., Jiang, P., Wang, X., He, H., Wang, C., Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biol. Biochem., 156, 2021, 108207, 10.1016/j.soilbio.2021.108207.
Li, N., Xu, X., Zhu, Z., Guo, L., Ju, C., Zhang, Q., Chen, J., Geng, Q., Yang, B., Wang, G., Shen, C., Cao, G., Long-term N addition leads to microbial C, but not N limitation of poplar plantation soils in eastern China. For. Ecol. Manage., 542, 2023, 121074, 10.1016/j.foreco.2023.121074.
Liu, X., Zhang, S., Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil. Plant and Soil 440 (2019), 11–24, 10.1007/s11104-019-04054-5.
Liu, H., Tang, C., Li, C., The effects of nitrogen form on root morphological and physiological adaptations of maize, white lupin and faba bean under phosphorus deficiency. AoB Plants, 8, 2016, plw058, 10.1093/aobpla/plw058.
Lynch, J.M., Whipps, J.M., Substrate flow in the rhizosphere. Plant and Soil 129 (1990), 1–10, 10.1007/BF00011685.
Lynch, J.P., Galindo-Castañeda, T., Schneider, H.M., Sidhu, J.S., Rangarajan, H., York, L.M., Root phenotypes for improved nitrogen capture. Plant and Soil, 2023, 10.1007/s11104-023-06301-2.
Manzoni, S., Flexible carbon-use efficiency across litter types and during decomposition partly compensates nutrient imbalances—results from analytical stoichiometric models. Front. Microbiol., 8, 2017, 10.3389/fmicb.2017.00661.
Manzoni, S., Taylor, P., Richter, A., Porporato, A., Ågren, G.I., Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196 (2012), 79–91, 10.1111/j.1469-8137.2012.04225.x.
Marx, M.-C., Wood, M., Jarvis, S.C., A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33 (2001), 1633–1640, 10.1016/S0038-0717(01)00079-7.
Moorhead, D.L., Sinsabaugh, R.L., Hill, B.H., Weintraub, M.N., Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem. 93 (2016), 1–7, 10.1016/j.soilbio.2015.10.019.
Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S., Richter, A.A., Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front. Microbiol., 5, 2014, 10.3389/fmicb.2014.00022.
Morales, M.E., Iocoli, G.A., Allegrini, M., Villamil, M.B., Zabaloy, M.C., Response of root exudates and bacterial community to N fertilization and termination methods in Avena sativa L. as a winter cover crop model. Eur. J. Soil Biol., 114, 2023, 103453, 10.1016/j.ejsobi.2022.103453.
Murphy, M., rfUtilities: random forests model selection and performance evaluation. R package version 2 (2018), 1–3 https://cran.r-project.org/package=rfUtilities.
Neumann, G., Bott, S., Ohler, M., Mock, H.-P., Lippmann, R., Grosch, R., Smalla, K., 2014. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front Microbiol 5. doi: https://doi.org/10.3389/fmicb.2014.00002.
Nguyen, C., Rhizodeposition of organic C by plant: Mechanisms and controls. Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., (eds.) Sustainable Agriculture, 2009, Springer, Netherlands, Dordrecht, 97–123, 10.1007/978-90-481-2666-8_9.
Norton, J.M., Firestone, M.K., N dynamics in the rhizosphere of Pinus ponderosa seedlings. Soil Biol. Biochem. 28 (1996), 351–362, 10.1016/0038-0717(95)00155-7.
Olsen, S.R., Sommers, L.E., 1983. Phosphorus, in: Methods of Soil Analysis, Agronomy Monographs. pp. 403–430. doi: https://doi.org/10.2134/agronmonogr9.2.2ed.c24.
Pausch, J., Kuzyakov, Y., Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Chang. Biol. 24 (2018), 1–12, 10.1111/GCB.13850.
Phillips, R.P., Erlitz, Y., Bier, R., Bernhardt, E.S., New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22 (2008), 990–999, 10.1111/j.1365-2435.2008.01495.x.
Phillips, R.P., Bernhardt, E.S., Schlesinger, W.H., Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol. 29 (2009), 1513–1523, 10.1093/treephys/tpp083.
Phillips, R.P., Finzi, A.C., Bernhardt, E.S., Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14 (2011), 187–194, 10.1111/j.1461-0248.2010.01570.x.
Phillips, R.P., Finzi, A.C., Bernhardt, E.S., Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14 (2011), 187–194, 10.1111/j.1461-0248.2010.01570.x.
Phillips, R.P., Meier, I.C., Bernhardt, E.S., Grandy, A.S., Wickings, K., Finzi, A.C., Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol. Lett. 15 (2012), 1042–1049, 10.1111/j.1461-0248.2012.01827.x.
Poeplau, C., Helfrich, M., Dechow, R., Szoboszlay, M., Tebbe, C.C., Don, A., Greiner, B., Zopf, D., Thumm, U., Korevaar, H., Geerts, R., Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands. Soil Biol. Biochem. 130 (2019), 167–176, 10.1016/j.soilbio.2018.12.019.
Preece, C., Peñuelas, J., Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant and Soil 409 (2016), 1–17, 10.1007/s11104-016-3090-z.
Qasim, W., Xia, L., Lin, S., Wan, L., Zhao, Y., Butterbach-Bahl, K., Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: a meta-analysis. Environ. Pollut., 272, 2021, 116372, 10.1016/j.envpol.2020.116372.
Ramirez, K.S., Craine, J.M., Fierer, N., Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Chang. Biol. 18 (2012), 1918–1927, 10.1111/j.1365-2486.2012.02639.x.
Ren, T., Christie, P., Wang, J., Chen, Q., Zhang, F., Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment. Sci. Hortic. 125 (2010), 25–33, 10.1016/j.scienta.2010.02.014.
Saiya-Cork, K.R., Sinsabaugh, R.L., Zak, D.R., The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34 (2002), 1309–1315, 10.1016/S0038-0717(02)00074-3.
Schenck zu Schweinsberg-Mickan, M., Jörgensen, R.G., Müller, T., Rhizodeposition: its contribution to microbial growth and carbon and nitrogen turnover within the rhizosphere. J. Plant Nutr. Soil Sci. 175 (2012), 750–760, 10.1002/jpln.201100300.
Schimel, J., Weintraub, M.N., Moorhead, D., Estimating microbial carbon use efficiency in soil: isotope-based and enzyme-based methods measure fundamentally different aspects of microbial resource use. Soil Biol. Biochem., 169, 2022, 108677, 10.1016/j.soilbio.2022.108677.
Schwalb, S.A., Li, S., Hemkemeyer, M., Heinze, S., Joergensen, R.G., Mayer, J., Mäder, P., Wichern, F., Long-term differences in fertilisation type change the bacteria:archaea:fungi ratios and reveal a heterogeneous response of the soil microbial ionome in a haplic Luvisol. Soil Biol. Biochem., 177, 2023, 108892, 10.1016/j.soilbio.2022.108892.
Shahzad, T., Chenu, C., Genet, P., Barot, S., Perveen, N., Mougin, C., Fontaine, S., Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 80 (2015), 146–155, 10.1016/j.soilbio.2014.09.023.
Shen, Q., Wen, Z., Dong, Y., Li, H., Miao, Y., Shen, J., The responses of root morphology and phosphorus-mobilizing exudations in wheat to increasing shoot phosphorus concentration. AoB Plants, 10, 2018, ply054, 10.1093/aobpla/ply054.
Sokol, N.W., Bradford, M.A., Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12 (2019), 46–53, 10.1038/s41561-018-0258-6.
Song, X., Li, J., Liu, X., Liang, G., Li, S., Zhang, M., Zheng, F., Wang, B., Wu, X., Wu, H., Altered microbial resource limitation regulates soil organic carbon sequestration based on ecoenzyme stoichiometry under long-term tillage systems. Land Degrad. Dev. 33 (2022), 2795–2808, 10.1002/ldr.4318.
Spohn, M., Kuzyakov, Y., Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol. Biochem. 61 (2013), 69–75, 10.1016/j.soilbio.2013.02.013.
Spohn, M., Ermak, A., Kuzyakov, Y., Microbial gross organic phosphorus mineralization can be stimulated by root exudates – a 33P isotopic dilution study. Soil Biol. Biochem. 65 (2013), 254–263, 10.1016/j.soilbio.2013.05.028.
Spohn, M., Pötsch, E.M., Eichorst, S.A., Woebken, D., Wanek, W., Richter, A., Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 97 (2016), 168–175, 10.1016/j.soilbio.2016.03.008.
Sun, L., Ataka, M., Han, M., Han, Y., Gan, D., Xu, T., Guo, Y., Zhu, B., Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytol. 229 (2021), 259–271, 10.1111/nph.16865.
Tapia-Torres, Y., Elser, J.J., Souza, V., García-Oliva, F., Ecoenzymatic stoichiometry at the extremes: how microbes cope in an ultra-oligotrophic desert soil. Soil Biol. Biochem. 87 (2015), 34–42, 10.1016/j.soilbio.2015.04.007.
Ti, C., Luo, Y., Yan, X., Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China. Environ. Sci. Pollut. Res. 22 (2015), 18508–18518, 10.1007/s11356-015-5277-x.
Tinker, P.B., Nye, P.H., Solute Movement in the Rhizosphere. 2000, Oxford University Press.
Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A., Pérez-Clemente, R.M., Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep. 39 (2020), 3–17, 10.1007/s00299-019-02447-5.
Walkley, A., Black, I.A., An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37 (1934), 29–38.
Wang, J., Wu, Y., Li, J., He, Q., Bing, H., Soil enzyme stoichiometry is tightly linked to microbial community composition in successional ecosystems after glacier retreat. Soil Biol. Biochem., 162, 2021, 108429, 10.1016/j.soilbio.2021.108429.
Wang, W., Zhu, W., Li, X., Ma, S., 2023. Long-term nitrogen addition increased soil microbial carbon use efficiency in subalpine forests on the eastern edge of the Qinghai–Tibet Plateau. Plant and Soil 482, 553–565. doi: https://doi.org/10.1007/s11104-022-05710-z.
Wu, J., Joergensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol. Biochem. 22 (1990), 1167–1169, 10.1016/0038-0717(90)90046-3.
Wu, J., Cheng, X., Liu, G., Increased soil organic carbon response to fertilization is associated with increasing microbial carbon use efficiency: Data synthesis. Soil Biol. Biochem., 171, 2022, 108731, 10.1016/j.soilbio.2022.108731.
Yang, L., Huang, B., Mao, M., Yao, L., Niedermann, S., Hu, W., Chen, Y., Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China. Environ. Sci. Pollut. Res. 23 (2016), 17287–17297, 10.1007/s11356-016-6937-1.
Yang, L., Li, T., Li, X., Wang, Y., Wang, X., Nitrogen addition decreases root exudation of four temperate tree species seedlings, independent of the applied nitrogen form. Plant and Soil, 2023, 10.1007/s11104-023-06462-0.
Yang, X., Wang, B., Fakher, A., An, S., Kuzyakov, Y., Contribution of roots to soil organic carbon: from growth to decomposition experiment. Catena (Amst), 231, 2023, 107317, 10.1016/j.catena.2023.107317.
Yuan, X., Niu, D., Gherardi, L.A., Liu, Y., Wang, Y., Elser, J.J., Fu, H., Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment. Soil Biol. Biochem., 138, 2019, 107580, 10.1016/j.soilbio.2019.107580.
Zhang, J., Yang, X., Song, Y., Liu, H., Wang, G., Xue, S., Liu, G., Ritsema, C.J., Geissen, V., Revealing the nutrient limitation and cycling for microbes under forest management practices in the loess plateau – ecological stoichiometry. Geoderma, 361, 2020, 114108, 10.1016/j.geoderma.2019.114108.
Zhang, K., Zheng, D., Gu, Y., Xu, J., Wang, M., Mu, B., Wen, S., Tang, T., Rengel, Z., Shen, J., Utilizing soil organic phosphorus for sustainable crop production: insights into the rhizosphere. Plant and Soil, 2023, 10.1007/s11104-023-06136-x.
Zheng, L., Chen, H., Wang, Y., Mao, Q., Zheng, M., Su, Y., Xiao, K., Wang, K., Li, D., Responses of soil microbial resource limitation to multiple fertilization strategies. Soil Tillage Res., 196, 2020, 104474, 10.1016/j.still.2019.104474.