[en] Data assimilation is widely used in many disciplines such as meteorology, oceanography, and robotics to estimate the state of a dynamical system from noisy observations. In this work, we propose a lightweight and general method to perform data assimilation using diffusion models pre-trained for emulating dynamical systems. Our method builds on particle filters, a class of data assimilation algorithms, and does not require any further training. As a guiding example throughout this work, we illustrate our methodology on GenCast, a diffusion-based model that generates global ensemble weather forecasts.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Computer science
Author, co-author :
Savary, Thomas ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Rozet, François ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Louppe, Gilles ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data