Poster (Scientific congresses and symposiums)
Video-Driven Graph Network-Based Simulators
Szewczyk, Franciszek; Louppe, Gilles; Sabatelli, Matthia
2024Machine Learning and the Physical Sciences Workshop (NeurIPS 2024)
Peer reviewed
 

Files


Full Text
NeurIPS_ML4PS_2024_127.pdf
Author postprint (2.79 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Computer Science - Computer Vision and Pattern Recognition; Computer Science - Learning
Abstract :
[en] Lifelike visualizations in design, cinematography, and gaming rely on precise physics simulations, typically requiring extensive computational resources and detailed physical input. This paper presents a method that can infer a system's physical properties from a short video, eliminating the need for explicit parameter input, provided it is close to the training condition. The learned representation is then used within a Graph Network-based Simulator to emulate the trajectories of physical systems. We demonstrate that the video-derived encodings effectively capture the physical properties of the system and showcase a linear dependence between some of the encodings and the system's motion.
Disciplines :
Computer science
Author, co-author :
Szewczyk, Franciszek
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Sabatelli, Matthia
Language :
English
Title :
Video-Driven Graph Network-Based Simulators
Publication date :
2024
Event name :
Machine Learning and the Physical Sciences Workshop (NeurIPS 2024)
Event place :
Vancouver, Canada
Event date :
2024-12-15
Audience :
International
Peer review/Selection committee :
Peer reviewed
Available on ORBi :
since 29 January 2026

Statistics


Number of views
2 (1 by ULiège)
Number of downloads
1 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi