Root processes counteract the suppression of nitrogen-induced priming effects by enhancing microbial activity and catabolism in greenhouse vegetable production systems - 2026
Root processes counteract the suppression of nitrogen-induced priming effects by enhancing microbial activity and catabolism in greenhouse vegetable production systems
[en] Nitrogen (N) fertilization regulates soil organic carbon (SOC) decomposition by altering the priming effect (PE) and root activities, affecting subsequently soil carbon sequestration and crop productivity. However, the effects of long-term N fertilization on the direction and magnitude of SOC and underlying mechanisms priming in the rhizosphere compared with bulk soils remain unclear. In this study, paired rhizosphere and bulk soil samples were collected from a 15-year greenhouse tomato production system under four chemical N fertilizer treatments: 0 (N0), 102 (N1), 327 (N2), and 552 (N3) kg N ha–1 yr–1, in addition to uniform manure and straw amendment at 123 kg N ha-1 yr-1. These samples were incubated for 49 days with or without the addition of 13C-labeled glucose, and the incorporation of glucose-derived 13C into CO2 and phospholipid fatty acids (PLFAs) was monitored to elucidate the mechanisms underlying the PE. The results showed a significant interaction between N fertilization and soil niche. The relative PE was significantly higher under the N0 treatment (1.82–2.02 %) compared with the strongly negative values observed under N1–N3 treatments (-0.81 % to -10.18 %) in both rhizosphere and bulk soils, indicating that increased N availability suppressed SOC decomposition. However, rhizosphere soils exhibited significantly weaker negative PE (-2.66 %) than bulk soils (-4.36 %), primarily due to lower dissolved organic nitrogen (DON) levels and higher microbial abundance and activity, suggesting that rhizosphere processes partially counteracted the suppressive effect of N fertilization. A reduction in relative PE correlated with increases in dissolved organic nitrogen (DON), glucose-derived microbial biomass carbon (13MBC), and microbial carbon use efficiency (CUE). Overall, long-term N fertilization suppressed SOC priming by enhancing soil N availability and microbial C assimilation capacity. However, root-mediated microbial legacy effects in the rhizosphere counteracted this suppression, highlighting the importance of N–soil niche interactions in regulating SOC turnover. These findings offer novel insights into soil carbon cycling dynamics and have implications for targeted soil carbon sequestration strategies in intensive greenhouse agriculture.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lian, Jinshan ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land. Innovation for Comprehensive Utilization of Saline-Alkali Land, China
Massart, Sébastien ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Li, Guihua ; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land. Innovation for Comprehensive Utilization of Saline-Alkali Land, China
Zhang, Jianfeng; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land. Innovation for Comprehensive Utilization of Saline-Alkali Land, China ; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
Language :
English
Title :
Root processes counteract the suppression of nitrogen-induced priming effects by enhancing microbial activity and catabolism in greenhouse vegetable production systems
CSC - China Scholarship Council NSCF - National Natural Science Foundation of China Earmarked Fund for China Agriculture Research System
Funding text :
We acknowledge all the colleagues for their unremitting efforts on the long-term experiments. We also sincerely thank Dr. Xiao Liu for her valuable help in improving the English language of this manuscript. This research was funded by the National Natural Science Foundation of China (grant number: 22176215), the Earmarked fund for CARS (grant number: CARS 23-B18), Key Technology Research and Development Program of Shandong Province (grant number: 2023TZXD087) and the program of China Scholarship Council (grant number:202303250059).
Averill, C., Waring, B., Nitrogen limitation of decomposition and decay: how can it occur?. Glob. Chang Biol. 24 (2018), 1417–1427, 10.1111/gcb.13980.
Aye, N.S., Butterly, C.R., Sale, P.W.G., Tang, C., Interactive effects of initial ph and nitrogen status on soil organic carbon priming by glucose and lignocellulose. Soil Biol. Biochem. 123 (2018), 33–44, 10.1016/j.soilbio.2018.04.027.
Bei, S., Li, X., Kuyper, T.W., Chadwick, D.R., Zhang, J., Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community. Sci. Total Environ., 815, 2022, 152882, 10.1016/j.scitotenv.2021.152882.
Blagodatskaya, E., Kuzyakov, Y., Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: a critical review. Biol. Fertil. Soils 45 (2008), 115–131, 10.1007/s00374-008-0334-y.
Chen, P., Mo, C., He, C., Cui, H., Lin, J., Yang, J., Shift of microbial turnover time and metabolic efficiency strongly regulates rhizosphere priming effect under nitrogen fertilization in paddy soil. Sci. Total Environ., 800, 2021, 149590, 10.1016/j.scitotenv.2021.149590.
Chen, S., Waghmode, T.R., Sun, R., Kuramae, E.E., Hu, C., Liu, B., Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome, 7, 2019, 136, 10.1186/s40168-019-0750-2.
Cheng, W., Parton, W.J., Gonzalez-Meler, M.A., Phillips, R., Asao, S., McNickle, G.G., Brzostek, E., Jastrow, J.D., Synthesis and modeling perspectives of rhizosphere priming. New Phytol. 201 (2014), 31–44, 10.1111/nph.12440.
Crocker, K., Lee, K.K., Chakraverti-Wuerthwein, M., Li, Z., Tikhonov, M., Mani, M., Gowda, K., Kuehn, S., Environmentally dependent interactions shape patterns in gene content across natural microbiomes. Nat. Microbiol. 9 (2024), 2022–2037, 10.1038/s41564-024-01752-4.
Dai, Z., Su, W., Chen, H., Barberán, A., Zhao, H., Yu, M., Yu, L., Brookes, P.C., Schadt, C.W., Chang, S.X., Xu, J., Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of actinobacteria and proteobacteria in agro-ecosystems across the globe. Glob. Chang Biol. 24 (2018), 3452–3461, 10.1111/gcb.14163.
Domeignoz-Horta, L.A., Pold, G., Liu, X.-J.A., Frey, S.D., Melillo, J.M., DeAngelis, K.M., Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun., 11, 2020, 3684, 10.1038/s41467-020-17502-z.
Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. 112 (2015), E911–E920, 10.1073/pnas.1414592112.
Fang, Y., Nazaries, L., Singh, B.K., Singh, B.P., Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Glob. Change Biol. 24 (2018), 2775–2790, 10.1111/gcb.14154.
Feng, J., Zhu, B., Global patterns and associated drivers of priming effect in response to nutrient addition. Soil Biol. Biochem., 153, 2021, 108118, 10.1016/J.SOILBIO.2020.108118.
Feng, J., Tang, M., Zhu, B., Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient. Glob. Chang Biol. 27 (2021), 2793–2806, 10.1111/gcb.15587.
Finn, D., Page, K., Catton, K., Strounina, E., Kienzle, M., Robertson, F., Armstrong, R., Dalal, R., Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry. Soil Biol. Biochem. 91 (2015), 160–168, 10.1016/j.soilbio.2015.09.001.
Finzi, A.C., Abramoff, R.Z., Spiller, K.S., Brzostek, E.R., Darby, B.A., Kramer, M.A., Phillips, R.P., Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob. Change Biol. 21 (2015), 2082–2094, 10.1111/gcb.12816.
Fontaine, S., Mariotti, A., Abbadie, L., The priming effect of organic matter: a question of microbial competition?. Soil Biol. Biochem. 35 (2003), 837–843, 10.1016/S0038-0717(03)00123-8.
Fontaine, S., Henault, C., Aamor, A., Bdioui, N., Bloor, J.M.G., Maire, V., Mary, B., Revaillot, S., Maron, P.A., Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 43 (2011), 86–96, 10.1016/J.SOILBIO.2010.09.017.
Geisseler, D., Scow, K.M., Long-term effects of mineral fertilizers on soil microorganisms – a review. Soil Biol. Biochem. 75 (2014), 54–63, 10.1016/j.soilbio.2014.03.023.
Gunina, A., Kuzyakov, Y., Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biol. Biochem. 90 (2015), 87–100, 10.1016/j.soilbio.2015.07.021.
He, C., Harindintwali, J.D., Cui, H., Cui, Y., Chen, P., Mo, C., Zhu, Q., Zheng, W., Alessi, D.S., Wang, F., Jiang, Z., Yang, J., Deciphering the dual role of bacterial communities in stabilizing rhizosphere priming effect under intra-annual change of growing seasons. Sci. Total Environ., 903, 2023, 166777, 10.1016/j.scitotenv.2023.166777.
Hicks, L.C., Meir, P., Nottingham, A.T., Reay, D.S., Stott, A.W., Salinas, N., Whitaker, J., Carbon and nitrogen inputs differentially affect priming of soil organic matter in tropical lowland and montane soils. Soil Biol. Biochem. 129 (2019), 212–222, 10.1016/J.SOILBIO.2018.10.015.
Jia, X., Zhong, Y., Liu, J., Zhu, G., Shangguan, Z., Yan, W., Effects of nitrogen enrichment on soil microbial characteristics: from biomass to enzyme activities. Geoderma, 366, 2020, 114256, 10.1016/j.geoderma.2020.114256.
Kachurina, O.M., Zhang, H., Raun, W.R., Krenzer, E.G., Simultaneous determination of soil aluminum, ammonium- and nitrate-nitrogen using 1 m potassium chloride extraction. Commun. Soil Sci. Plant Anal. 31 (2000), 893–903, 10.1080/00103620009370485.
Kianpoor Kalkhajeh, Y., Huang, B., Hu, W., Ma, C., Gao, H., Thompson, M.L., Bruun Hansen, H.C., Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. Agric. Ecosyst. Environ., 307, 2021, 107230, 10.1016/j.agee.2020.107230.
Kuzyakov, Y., Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42 (2010), 1363–1371, 10.1016/J.SOILBIO.2010.04.003.
Kuzyakov, Y., Blagodatskaya, E., Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83 (2015), 184–199, 10.1016/j.soilbio.2015.01.025.
Kuzyakov, Y., Xu, X., Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol. 198 (2013), 656–669, 10.1111/nph.12235.
Kuzyakov, Y., Friedel, J.K., Stahr, K., Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32 (2000), 1485–1498, 10.1016/S0038-0717(00)00084-5.
Lee, K.K., Liu, S., Crocker, K., Wang, J., Huggins, D.R., Tikhonov, M., Mani, M., Kuehn, S., Functional regimes define soil microbiome response to environmental change. Nature, 2025, 10.1038/s41586-025-09264-9.
Lenka, S., Trivedi, P., Singh, B., Singh, B.P., Pendall, E., Bass, A., Lenka, N.K., Effect of crop residue addition on soil organic carbon priming as influenced by temperature and soil properties. Geoderma 347 (2019), 70–79, 10.1016/J.GEODERMA.2019.03.039.
Li, J., Yuan, X., Ge, L., Li, Q., Li, Z., Wang, L., Liu, Y., Rhizosphere effects promote soil aggregate stability and associated organic carbon sequestration in rocky areas of desertification. Agric. Ecosyst. Environ., 304, 2020, 107126, 10.1016/j.agee.2020.107126.
Li, Q., Shi, J., Li, G., Hu, J., Ma, R., Extracellular enzyme stoichiometry and microbial resource limitation following various grassland reestablishment in abandoned cropland. Sci. Total Environ., 870, 2023, 10.1016/j.scitotenv.2023.161746.
Lian, J., Li, G., Zhang, J., Massart, S., Nitrogen fertilization affected microbial carbon use efficiency and microbial resource limitations via root exudates. Sci. Total Environ., 950, 2024, 174933, 10.1016/j.scitotenv.2024.174933.
Liang, L., Ridoutt, B.G., Lal, R., Wang, D., Wu, W., Peng, P., Hang, S., Wang, L., Zhao, G., Nitrogen footprint and nitrogen use efficiency of greenhouse tomato production in north China. J. Clean. Prod. 208 (2019), 285–296, 10.1016/j.jclepro.2018.10.149.
Liu, X., Lu, X., Zhao, W., Yang, S., Wang, J., Xia, H., Wei, X., Zhang, J., Chen, L., Chen, Q., The rhizosphere effect of native legume albizzia julibrissin on coastal saline soil nutrient availability, microbial modulation, and aggregate formation. Sci. Total Environ., 806, 2022, 150705, 10.1016/j.scitotenv.2021.150705.
Luo, R., Kuzyakov, Y., Liu, D., Fan, J., Luo, J., Lindsey, S., He, J.-S., Ding, W., Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls. Soil Biol. Biochem., 144, 2020, 107764, 10.1016/j.soilbio.2020.107764.
Lyu, M., Xie, J., Giardina, C.P., Vadeboncoeur, M.A., Feng, X., Wang, M., Ukonmaanaho, L., Lin, T.-C., Kuzyakov, Y., Yang, Y., Understory ferns alter soil carbon chemistry and increase carbon storage during reforestation with native pine on previously degraded sites. Soil Biol. Biochem. 132 (2019), 80–92, 10.1016/j.soilbio.2019.02.004.
Ma, T., Zhan, Y., Chen, W., Hou, Z., Chai, S., Zhang, J., Zhang, X., Wang, R., Liu, R., Wei, Y., Microbial traits drive soil priming effect in response to nitrogen addition along an alpine forest elevation gradient. Sci. Total Environ., 907, 2024, 167970, 10.1016/j.scitotenv.2023.167970.
Manzoni, S., Taylor, P., Richter, A., Porporato, A., Ågren, G.I., Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196 (2012), 79–91, 10.1111/j.1469-8137.2012.04225.x.
Meyer, N., Welp, G., Rodionov, A., Borchard, N., Martius, C., Amelung, W., Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil. Soil Biol. Biochem. 119 (2018), 152–161, 10.1016/j.soilbio.2018.01.024.
Pausch, J., Kuzyakov, Y., Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 24 (2018), 1–12, 10.1111/gcb.13850.
Qin, W., Feng, J., Zhang, Q., Yuan, X., Zhou, H., Zhu, B., Nitrogen and phosphorus addition mediate soil priming effects via affecting microbial stoichiometric balance in an alpine meadow. Sci. Total Environ., 908, 2024, 168350, 10.1016/j.scitotenv.2023.168350.
Rocci, K.S., Cleveland, C.C., Eastman, B.A., Georgiou, K., Grandy, A.S., Hartman, M.D., Hauser, E., Holland-Moritz, H., Kyker-Snowman, E., Pierson, D., Reich, P.B., Schlerman, E.P., Wieder, W.R., Aligning theoretical and empirical representations of soil carbon-to-nitrogen stoichiometry with process-based terrestrial biogeochemistry models. Soil Biol. Biochem., 189, 2024, 109272, 10.1016/j.soilbio.2023.109272.
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., Persistence of soil organic matter as an ecosystem property. Nature 478 (2011), 49–56, 10.1038/nature10386.
Shahbaz, M., Kuzyakov, Y., Sanaullah, M., Heitkamp, F., Zelenev, V., Kumar, A., Blagodatskaya, E., Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biol. Fertil. Soils 53 (2017), 287–301, 10.1007/s00374-016-1174-9.
Sinsabaugh, R.L., Manzoni, S., Moorhead, D.L., Richter, A., Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16 (2013), 930–939, 10.1111/ele.12113.
Su, Z., Shangguan, Z., Nitrogen addition decreases the soil cumulative priming effect and favours soil net carbon gains in robinia pseudoacacia plantation soil. Geoderma, 433, 2023, 116444, 10.1016/j.geoderma.2023.116444.
Villarino, S.H., Pinto, P., Jackson, R.B., Piñeiro, G., Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions. Sci. Adv., 7, 2025, eabd3176, 10.1126/sciadv.abd3176.
Wang, C., Shi, Z., Li, A., Geng, T., Liu, L., Liu, W., Long-term nitrogen input reduces soil bacterial network complexity by shifts in life history strategy in temperate grassland. iMeta, 2024, 10.1002/imt2.194.
Wang, Q., Wang, J., Zhang, Z., Li, M., Wang, D., Zhang, P., Li, N., Yin, H., Microbial metabolic traits drive the differential contribution of microbial necromass to soil organic carbon between the rhizosphere of absorptive roots and transport roots. Soil Biol. Biochem., 197, 2024, 109529, 10.1016/j.soilbio.2024.109529.
Wang, Z., Li, D., Gruda, N.S., Duan, Z., Li, X., Fertilizer application rate and nutrient use efficiency in Chinese greenhouse vegetable production. Resour. Conserv. Recycl., 203, 2024, 107431, 10.1016/j.resconrec.2024.107431.
Whitaker, J., Ostle, N., Nottingham, A.T., Ccahuana, A., Salinas, N., Bardgett, R.D., Meir, P., McNamara, N.P., Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. J. Ecol. 102 (2014), 1058–1071, 10.1111/1365-2745.12247.
Wu, J., Joergensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., Measurement of soil microbial biomass c by fumigation-extraction—an automated procedure. Soil Biol. Biochem. 22 (1990), 1167–1169, 10.1016/0038-0717(90)90046-3.
Wu, J., Cheng, X., Luo, Y., Liu, W., Liu, G., Identifying Carbon-Degrading enzyme activities in association with soil organic carbon accumulation under Land-Use changes. Ecosystems 25 (2022), 1219–1233, 10.1007/s10021-021-00711-y.
Xu, X., Zhang, Q., Song, M., Zhang, X., Bi, R., Zhan, L., Dong, Y., Xiong, Z., Soil organic carbon decomposition responding to warming under nitrogen addition across Chinese vegetable soils. Ecotoxicol. Environ. Saf., 242, 2022, 113932, 10.1016/j.ecoenv.2022.113932.
Yang, S., Zhao, X., Wang, Q., Tian, P., Greater influences of nitrogen addition on priming effect in forest subsoil than topsoil regardless of incubation warming. Sci. Total Environ., 946, 2024, 174308, 10.1016/j.scitotenv.2024.174308.
Yang, Y., Xie, H., Mao, Z., Bao, X., He, H., Zhang, X., Liang, C., Fungi determine increased soil organic carbon more than bacteria through their necromass inputs in conservation tillage croplands. Soil Biol. Biochem., 167, 2022, 108587, 10.1016/j.soilbio.2022.108587.
Yin, L., Dijkstra, F.A., Phillips, R.P., Zhu, B., Wang, P., Cheng, W., Arbuscular mycorrhizal trees cause a higher carbon to nitrogen ratio of soil organic matter decomposition via rhizosphere priming than ectomycorrhizal trees. Soil Biol. Biochem., 157, 2021, 108246, 10.1016/j.soilbio.2021.108246.
Zhang, S., Xu, Y., Zheng, M., Yang, W., Wang, Y., Liu, S., Zhao, Y., Cha, X., Zhao, F., Han, X., Yang, G., Zhang, C., Ren, C., Regulation of nutrient addition-induced priming effect by both soil c accessibility and nutrient limitation in afforested ecosystem. Catena, 238, 2024, 107889, 10.1016/j.catena.2024.107889.
Zhang, Y., Gao, W., Ma, L., Luan, H., Tang, J., Li, R., Li, M., Huang, S., Wang, L., Long-term partial substitution of chemical fertilizer by organic amendments influences soil microbial functional diversity of phosphorus cycling and improves phosphorus availability in greenhouse vegetable production. Agric. Ecosyst. Environ., 341, 2023, 108193, 10.1016/j.agee.2022.108193.
Zheng, Y., Jin, J., Wang, X., Clark, G.J., Tang, C., Increasing nitrogen availability does not decrease the priming effect on soil organic matter under pulse glucose and single nitrogen addition in woodland topsoil. Soil Biol. Biochem., 172, 2022, 108767, 10.1016/j.soilbio.2022.108767.
Zhou, S., Wang, Jieying, Chen, L., Wang, Jun, Zhao, F., Microbial community structure and functional genes drive soil priming effect following afforestation. Sci. Total Environ., 825, 2022, 153925, 10.1016/j.scitotenv.2022.153925.