Black shale; Cyclostratigraphy; Devonian; Frasnian-Famennian boundary; Orbital forcing; West Valley core; Appalachian basin; Biodiversity crisis; Black shales; Carbon isotope excursions; Devonians; Frasnian-famennian boundary; Total Organic Carbon; West valley core; Oceanography; Global and Planetary Change
Abstract :
[en] The Kellwasser Crisis near the Frasnian-Famennian boundary (∼372 Ma) is linked to one of the major Phanerozoic biodiversity crises. It is associated with sea-level changes, carbon-cycle perturbations, and pulsed oceanic anoxia, that led to black shale deposition characterized by positive carbon isotope excursions, akin to the Kellwasser horizons in Germany. Despite growing evidence of astronomically forced climatic stresses influencing Devonian marine systems, the trigger mechanism(s) of the Kellwasser Event remain debated. The West Valley core (WVC) comprises middle Frasnian to lower Famennian strata, including the Rhinestreet and Kellwasser events, characterized by black shales, elevated total organic carbon (TOC) content, and a positive δ13Corg carbon isotope excursion in the Kellwasser Crisis interval. In this work, we performed cyclostratigraphic analysis of Ti, Ti/Al and TOC, which reveals a strong astronomical imprint, particularly eccentricity amplitude modulation patterns. The TOC record was tuned to the stable 405-kyr eccentricity period, yielding a 5.67-Myr-long floating astrochronology, with event durations for the Rhinestreet and Kellwasser intervals consistent with previous reports. Subsequent analysis confirmed an equally strong eccentricity imprint on the titanium content, strongly implying a link between organic matter preservation, detrital sediment supply and astronomical forcing. Additionally, a dominant imprint of the 1.2-Myr and 2.4-Myr obliquity cycles on sea-level variation supports astronomical control on the Kellwasser Crisis. Finally, new insights into the phase relationship between the Rhinestreet and Kellwasser events and astronomically forced climate changes are globally contextualized within a new cyclostratigraphic model, emphasizing the role of eccentricity and obliquity in pacing marine anoxia.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Huygh, Jarno ; Université de Liège - ULiège > Geology
Algeo, Thomas J.; Department of Geosciences, University of Cincinnati, Cincinnati, United States ; State Key Laboratory of Geomicrobiology and Environmental Changes (GMEC), China University of Geosciences, Wuhan, China ; State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, China
Sageman, Bradley B.; Department of Earth, Environmental and Planetary Sciences, Northwestern University, Evanston, United States
Arts, Michiel ; Université de Liège - ULiège > Département de géologie > Sedimentology, Cycles and paleo-Climate (SediCClim)
Ver Straeten, Charles A.; New York State Museum, Albany, United States
Over, D. Jeffrey; Department of Geological, Environmental, and Planetary Sciences, SUNY Geneseo, Geneseo, United States
Gérard, Justin; Earth and Life Institute, Louvain-la-Neuve, Belgium
Sablon, Loïc; Earth and Life Institute, Louvain-la-Neuve, Belgium
Crucifix, Michel ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires ; Earth and Life Institute, Louvain-la-Neuve, Belgium
This is a contribution to the \u201CProjet de Recherche\u201D funded by the Belgian National Fund of Sciencific Research (FNRS) , contract T.0037.22 \u201CWarmAnoxia\u201D. Michiel Arts is financially supported by the FNRS -PDR T.0051.19 grant \u201CSiluCarb\u201D. FNRS had no involvement in the study design, analysis and interpretation of data, writing of the manuscript or decision to submit this study for publication.
Algeo, T. J. and Liu, J., 2020. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol.; 540, 119549. Doi: 10.1016/j.chemgeo.2020.119549.
Algeo, T. J., and Lyons, T. W., 2006. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanogr.; 21, PA1016, doi:10.1029/2004PA001112.
Algeo, T. J. and Scheckler, S. E., 1998. Terrestrial–marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Phil. Trans; 353, 113–130.
Algeo, T. J. and Scheckler, S. E., 2010. Land plant evolution and weathering rate changes in the Devonian. J. Earth Sci.; 21, 75-78. doi:10.1007/s12583-010-0173-2.
Algeo, T. J., and Shen, J., 2024. Theory and classification of mass extinction causation. Natl. Sci. Rev., 11, nwad237. doi:10.1093/nsr/nwad237.
Algeo, T. J., Berner, R. A., Maynard, J. B., Scheckler, S. E., 1995. Late Devonian oceanic anoxic events and biotic crises: “rooted” in the evolution of vascular land plants? GSA Today 5, 3, 45-66.
Algeo, T. J., Maynard, J. B., Scheckler, S. E., 2001. Effects of the Middle to Late Devonian spread of vascular land plants on weathering regimes, marine biotas, and global climate. In: Gensel, P. G., Edwards, D. (Eds.), Plants Invade the Land, chapter 12, 213-236. doi:10.7312/gens11160-013
Algeo, T. J., Remírez, M. N., Zhao, H. Schwark, L., Gordon, G., Anbar, A., Bates, S., Lyons, T., Over, D.J.,, Sageman, B. B., 2025. Transient glacio-eustatic fall and its climato-environmental effects during the Frasnian-Famennian transition. Glob. Planet. Change – this issue.
Arts, M.C.M., 2023. WaverideR: Extracting Signals from Wavelet Spectra. https://CRAN.R-project.org/package=WaverideR
Arts, M.C.M., Corradini, C., Pondrelli, M., Pas, D., Da Silva, A.-C., 2024. Age and orbital forcing in the upper Silurian Cellon section (Carnic Alps, Austria) uncovered using the WaverideR R package. Front. Earth Sci., 12, Doi: 10.3389/feart.2024.1357751
Averbuch, O., Tribovillard, N., Devleeschouwer, X., Riquier, L., Mistiaen, B., Van Vliet-Lanoe, B., 2005. Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian–Famennian boundary (c. 376 Ma)? Terra Nova; 17; 1, 25-34. doi:10.1111/j.1365-3121.2004.00580.x
Becker, R. T., Marshall, J. E. A., Da Silva, A.-C., 2020. The Devonian Period. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D. And Ogg, G. (Eds.), The Geologic Time Scale 2020, chapter 22, 733-810. Doi: 10.1016/B978-0-12-824360-2.00022-X.
Bennet, W. W., Canfield, D. E., 2020. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments. Earth Sci. Rev.; 204, 103175. Doi: 10.1016/j.earscirev.2020.103175.
Berger, A. L., 1973. La théorie astronomique des paléoclimats, PhD thesis, p315, Université catholique de Louvain. https://hdl.handle.net/2078.1/233872
Berger, A. L., 1988. Milankovitch Theory and Climate. Rev. Geophys.; 26, 4, 624-657. Doi: 10.1029/RG026i004p00624
Bretagnon, P., 1974. Termes à longues périodes dans le système solair, Astron. Astroph., 30, 141-154.
Brett, C. E., Zambito, J. J. IV, McLaughlin, P. I., Emsbo, P., 2020. Revised perspectives on Devonian biozonation and environmental volatility in the wake of recent time-scale revisions. Palaeogeogr. Palaeoclimatol. Palaeoecol.; 549, 108843. Doi: 10.1016/j.palaeo.2018.06.037.
Calvert, S. E. and Pedersen, T. F., 2007. Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. In: Hillaire-Marcel, C. and De Vernal, A. (Eds.), Proxies in late Cenozoic Paleoceanography, chapter 14, Dev. In Mar. Geol.; 1, 567-643. ISSN 1572-5480, doi:10.1016/S1572-5480(07)01019-6.
Carmichael, S. K., Waters, J. A., Köningshof, P., Suttner, T. J., Kido, E., 2019. Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression. Glob. Planet. Change; 183, 102984. Doi: 10.1016/j.gloplacha.2019.102984.
Croudace, I. W. and Rothwell, R. G., 2015. Micro-XRF studies of sediment cores, Applications of a non-destructive tool for the environmental sciences. In: Smol, J. P. (Ed.), Dev. in Paleoenv. Res.; 17, ISSN 1571-5299.
Da Silva, A.-C., Sinnesael, M., Claeys, P., Davies, J. H. F. L., de Winter, N. J., Percival, L. M. E., Schaltegger, U., De Vleeschouwer, D., 2020. Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating. Sci. Rep.; 10, 12940. Doi: 10.1038/s41598-020-69097-6.
De Vleeschouwer, D., Da Silva, A.-C., Boulvain, F., Crucifix, M. & Claeys, P., 2012. Precessional and half-precessional climate forcing of Mid-Devonian monsoon-like dynamics. Clim. Past.; 8, 337–351.
De Vleeschouwer, D., Rakociński, M., Racki, G., Bond, D. P. G., Sobień, K., Claeys, P., 2013. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland). Earth Planet. Sci. Lett.; 365, 25-37. Doi: 10.1016/j.epsl.2013.01.016.
De Vleeschouwer, D., Crucifix, M., Bounceur, N. & Claeys, P., 2014. The impact of astronomical forcing in the Late Devonian greenhouse climate. Glob. Planet. Change; 120, 65–80.
De Vleeschouwer, D., Da Silva, A.-C., Sinnesael, M., Chen, D., Day, J. E., Whalen, M. T., Guo, Z., Claeys, P., 2017. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nat. Comm.; 8, 2268. doi:10.1038/s41467-017-02407-1.
De Vleeschouwer, D., Percival, L. M. E., Wichern, N. M. A., Batenburg, S. J., 2024. Pre-Cenozoic cyclostratigraphy and palaeoclimate responses to astronomical forcing. Nat. Rev. Earth Environ.; 5, 56-75. Doi: 10.1038/s43017-023-00505-x.
Gérard, J., Sablon, L., Huygh, J. J. C., Da Silva, A.-C., Pohl, A., Vérard, C., Crucifix, M., 2025. Exploring the mechanisms of Devonian oceanic anoxia: impact of ocean dynamics, palaeogeography, and orbital forcing. Clim. Past; 21, 239-260. Doi: 10.5194/cp-21-239-2025.
Gérard, J., Pohl, A., Sablon, L., Huygh, J. J. C., Da Silva, A.-C., Crucifix, M., (in review). Spatially contrasted response of Devonian anoxia to astronomical forcing. EGUsphere, 2025-4238 (preprint). Doi: 10.5194/egusphere-2025-4238
Hays, J. D., Imbrie, J. & Shackleton, N. J., 1976. Variations in the Earth'’s orbit: pacemaker of the ice ages. Science 194, 1121–1132.
Hilgen, F., Lourens, L., and Pälike, H., 2020. Should unit-stratotypes and astrochronozones be formally defined? A dual proposal (including postscriptum). Newsl. Stratigr.; 53, 19.
Hinnov, L. A., 2000. New perspectives on orbitally forced stratigraphy. Annu. Rev. Earth Planet. Sci., 28, 419-475. doi:10.1146/annurev.earth.28.1.419
Huang, C., Joachimski, M. M., Gong, Y., 2018. Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from high-resolution conodont δ18OPO4 record from South China. Earth Planet. Sci. Lett.; 495, 174-184. Doi: 10.1016/j.epsl.2018.05.016.
Jaminski, J., Algeo, T.J., Maynard, J.B., Hower, J.C., 1998. Climatic origin of dm-scale compositional cyclicity in the Cleveland Member of the Ohio Shale (Upper Devonian), Central Appalachian Basin, USA. In: Schieber, J., et al. (eds.), Shales and Mudstones, vol. 1, Schweizerbart'’sche, Stuttgart, Germany, 217-242.
Joachimski, M.M. and Buggisch, W., 2002. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology; 30: 711-714. Doi: 10.1130/0091-7613(2002)030<0711:CAOSIC>2.0.CO;2.
Kabanov, P., Hauck, T. E., Gouwy, S. A., Grasby, S. E., van der Boon, A., 2023. Oceanic anoxic events, photic-zone euxinia, and controversy of sea-level fluctuations during the Middle-Late Devonian. Earth Sci. Rev.; 241, 104415. Doi: 10.1016/j.earscirev.2023.104415.
Lash, G. G. and Blood, D. R., 2006. The Upper Devonian Rhinestreet black shale of western New York State – evolution of a hydrocarbon system. In: 78th Meeting, New York State Geological Association, Sunday B1 field trip, p. 223–289.
Klapper, G., Kirchgasser, W.T., 2016. Frasnian Late Devonian conodont biostratigraphy in New York. J. Paleontol. 90 (3), 525–554.
Laskar, J., 1990. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones, Icarus, 88, 266-291. doi:10.1016/0019-1035(90)90084-m
Laskar, J., 2020. Astrochronology. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D. And Ogg, G. (Eds.), The Geologic Time Scale 2020, chapter 4, 139-158.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys.; 428, 1, 261-285. Doi: 10.1051/0004-6361:20041335.
Li, M., Hinnov, L. A., Huang, C., Ogg, J. G., 2018. Sedimentary noise and sea levels linked to land–ocean water exchange and obliquity forcing. Nat. Comm.; 9, 1004. doi:10.1038/s41467-018-03454-y.
Liu, J.S., Algeo, T.J., Jaminski, J., Kuhn, T., Joachimski, M.M., 2019. Evaluation of high-frequency paleoenvironmental variation using an optimized cyclostratigraphic framework: Example for CS-Fe analysis of Devonian-Mississippian black shales (Central Appalachian Basin, USA). Chem. Geol., 525, 303-320.
Lourens, L. J., Hilgen, F. J., 1997. Long-periodic variations in the Earth'’s obliquity and their relation to third-order eustatic cycles and late Neogene glaciations. Quat. Int.; 40, 43-52.
Lu, M., Lu, Y., Ikejiri, T., Sun, D., Carroll, R., Blair, E.H., Algeo, T.J. and Sun, Y., 2021. Periodic oceanic euxinia and terrestrial fluxes linked to astronomical forcing during the Late Devonian Frasnian–Famennian mass extinction. Earth and Planetary Science Letters, 562, 116839.
Ma, K., Hinnov, L. A., Zhang, X., Gong, Y., 2022. Astronomical climate changes trigger Late Devonian bio- and environmental events in South China. Glob. Planet. Change; 215, 103874. Doi: 10.1016/j.gloplacha.2022.103874.
McLennan, S. M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst.; 2, 2000GC000109. Doi: 10.1029/2000GC000109.
Meyers, S.R., 2014. Astrochron: An R Package for Astrochronology. https://cran.r-project.org/package=astrochron
Meyers, S. R., 2015. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization. Paleoceanogr.; 30, 12, 1625-1640. Doi: 10.1002/2015PA002850.
Meyers, S. R., 2019. Cyclostratigraphy and the problem of astrochronologic testing. Earth Sci. Rev.; 190, 190-223. Doi: 10.1016/j.earscirev.2018.11.015.
Meyers, S. R. and Hinnov, L. A., 2010. Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise. Paleoceanogr.; 25, PA3207. doi:10.1029/2009PA001834.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Cristie-Blick, N., Pekar, S. F., 2005. The Phanerozoic Record of Global Sea-Level Change. Science; 310, 1293-1298. doi: 10.1126/science.1116412.
Mudelsee, M., 2010. Climate Time Series Analysis, Classical statistical and bootstrap methods. ISSN 1383-9601.
Murphy, A. E., Sageman, B. B., Hollander, D. J., 2000. Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: A mechanism for the Late Devonian mass extinction. Geology; 28, 5, 427-430.
Over, D. J., 1997. Conodont biostratigraphy of the Java Formation (Upper Devonian) and the Frasnian-Famennian boundary in western New York State. GSA Spec. Pap.; 321.
Over, D. J., Baird, G. C., Kirchgasser, W. T., 2023. The Frasnian Strata - Lower Upper Devonian – of New York State. Chapter 1 in: Ver Straeten, C.A., Over D. J., and Woodrow, D. (Eds.), Devonian of New York, Volume 3: Frasnian to Famennian (Upper Devonian) stages and the Devonian terrestrial system in New York, Bull. Am. Paleontol.; 1-28. doi:10.32857/bap.2023.407.01.
Percival, L.M.E., Davies, J. H. F. L., Schaltegger, U., De Vleeschouwer, D., Da Silva, A.-C., Föllmi, K. B., 2018. Precisely dating the Frasnian-Famennian boundary: implications for the cause of the Late Devonian mass extinction. Sci. Rep.; 8, 9578. doi:10.1038/s41598-018-27847-7.
Percival, L. M. E., Selby, D., Bond, D. P. G., Rakociński, M., Racki, G., Marynowski, L., Adatte, T., Spangenberg, J. E., Föllmi, K. B., 2019. Pulses of enhanced continental weathering associated with multiple Late Devonian climate perturbations: Evidence from osmium-isotope compositions. Palaeogeogr. Palaeoclimatol. Palaeoecol.; 524, 240-249.
Percival, L. M. E., Selby, D., Bond, D. P. G., Rakociński, M., Marynowski, L., Hood, A. v. S., Addate, T., Spangenberg, J. E., Föllmi, K. B., 2020. Phosphorus-cycle disturbances during the Late Devonian anoxic events. Glob. Planet. Change; 184, 103070. Doi: 10.1016/j.gloplacha.2019.103070.
Pisarzowska, A. and Racki, G., 2020. Comparative carbon isotope chemostratigraphy of major Late Devonian biotic crises, chapter 8. Stratigr. Timescales; 5, 387-466.
Racki, G. A., 2020. Volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: more answers than questions? Glob. Planet. Change; 189, 103174. Doi: 10.1016/j.gloplacha.2020.103174.
Raup, D. M. and Sepkoski, J. J., Jr., 1982. Mass extinctions in the marine fossil record. Science; 215, 4539, 1501-1503. doi:10.1126/science.215.4539.1501.
Reershemius, T. and Planavsky, N. J., 2021. What controls the duration and intensity of ocean anoxic events in the Paleozoic and Mesozoic? Earth Sci. Rev.; 221; 103787. Doi: 10.1016/j.earscirev.2021.103787.
Sageman, B. B., Murphy, A. E., Werne, J. P., Ver Straeten, C. A., Hollander, D. J., Lyons, T. W., 2003. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin. Chem. Geol.; 195, 229-273. doi:10.1016/S0009-2541(02)00397-2.
Schindler, E., 1990. The late Frasnian (Upper Devonian) Kellwasser Crisis. In: Kauffman, E.G., Walliser, O.H. (Eds.), Extinction Events in Earth History: Proceedings of the Project 216: Global Biological Events in Earth History; 151–159. Doi: 10.1007/BFb0011143.
Schindler, E., 1993. Event-stratigraphic markers within the Kellwasser Crisis near the Frasnian/Famennian boundary (Upper Devonian) in Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol.; 104, 1, 115–125.
Smart, M. S., Filippelli, G., Gilhooly, W. P. III, 2023. Enhanced terrestrial nutrient release during the Devonian emergence and expansion of forests: evidence from lacustrine phosphorus and geochemical records. Geol. Soc. Am. Bull.; 135: 1879-1898. Doi: 10.1130/B36384.1.
Smith, D. G., 2023. The Orbital Cycle Factory: Sixty cyclostratigraphic spectra in need of re-evaluation. Palaeogeogr. Palaeoclimatol. Palaeoecol.; 628, 111744. Doi: 10.1016/j.palaeo.2023.111744.
Smith, G. J. and Jacobi, R. D., 2023. Upper Frasnian and Famennian stratigraphy in western New York State. Chapter 3 in: Ver Straeten, C.A., Over D. J., and Woodrow, D. (Eds.), Devonian of New York, volume 3: Frasnian to Famennian (Upper Devonian) stages and the Devonian terrestrial system in New York, Bull. Am. Paleontol.; 47-111. Doi:10.32857/bap.2023.407.03.
Tribovillard, N., 2021. Re-assessing copper and nickel enrichments as paleoproductivity proxies. Earth Sci. Bull.; 192, 54. Doi: 10.1051/bsgf/2021047.
Tribovillard, N., Algeo, T. J., Lyons, T. W., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol.; 232, 12-32. doi:10.1016/j.chemgeo.2006.02.012.
Van Cappellen, P. and Ingall, E. D., 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9, 5, 677-692. Doi: 10.1029/94PA01455
Van der Weijden, C. H., 2002. Pitfalls of normalization of marine geochemical data using a common divisor. Mar. Geol.; 184, 167-187.
Ver Straeten, C. A., 2009. The classic Devonian of the Catskill Front: A foreland basin record of Acadian Orogenesis. In: Vollmer, F. (Ed), New York State Geological Association, 81st Annual Meeting Guidebook; 7, 1-54.
Ver Straeten, C. A., 2010. Lessons from the foreland basin: Appalachian basin perspectives on the Acadian orogeny. In: Tollo, R.P., Bartholomew, M.J., Hibbard, J.P. and Paul M. Karabinos, P.M. (Eds.), From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region, Geol. Soc. Am., 206, 251-282.
Ver Straeten, C. A., 2023. An introduction to the Devonian Period, and the Devonian in New York State and North America. In: Ver Straeten, C. A., Over, D. J. and Woodrow, D. (Eds.), Devonian of New York, Volume 1: Introduction and Přídolí to lower Givetian (Upper Silurian to Middle Devonian) stages. Bull. Am. Paleontol.; 403-404. doi:10.32857/bap.2023.403.03.
Ver Straeten, C. A., Brett, C. E., Sageman, B. B., 2011. Mudrock sequence stratigraphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol.; 304, 54-73. doi:10.1016/j.palaeo.2010.10.010.
Ver Straeten, C. A., Over, D. J., Baird, G. C., 2020. Arc-to-craton: Devonian air-fall tephras in the eastern United States. In: Avary, K. L., Hasson, K. O. and Diecchio, R. J. (Eds.), The Appalachian Geology of John M. Dennison: Rocks, People, and a Few Good Restaurants along the Way. Geol. Soc. Am. Spec. Pap.; 545, 35-53. Doi: 10.1130/2020.2545(03).
Walliser, O. H., 1996. Global events and event stratigraphy. ISBN-13: 978-3-642-79636-4. Springer; 225-250. doi:10.1007/978-3-642-79634-0.
Weedon, G. P., 2022. Problems with the current practice of spectral analysis in cyclostratigraphy: Avoiding false detection of regular cyclicity. Earth Sci. Rev.; 235, 104261. Doi: 10.1016/j.earscirev.2022.104261.
Whalen, M. T., De Vleeschouwer, D., Payne, J. H., Day, J. E., Over, D. J., Claeys, P., 2017. Pattern and timing of the Late Devonian biotic crisis in western Canada: Insights from carbon isotopes and astronomical calibration of magnetic susceptibility data. In: Playton, T. E., Kerans, C., Weissenberger, J. A. W. (Eds.), New advances in Devonian carbonates: Outcrop analogs, reservoirs and chronostratigraphy, SEPM; 107, 185-201. ISBN 978-1-56576-344-9. Doi: 10.2110/sepmsp.107
Wichern, N. M. A., Bialik, O. M., Nohl, T., Percival, L. M. E., Becker, T. R., Kaskes, P., Claeys, P., De Vleeschouwer, D., 2024. Astronomically paced climate and carbon cycle feedbacks in the lead-up to the Late Devonian Kellwasser Crisis. Clim. Past; 20, 415-448. Doi: 10.5194/cp-20-415-2024
Wigley, T. M. L., 1976, Spectral analysis and the astronomical theory of climatic change, Nature, 264, 629–631, doi:10.1038/264629a0
Zeebe, R. E. and Kocken, I. J., 2025. Applying astronomical solutions and Milanković forcing in the Earth sciences. Earth Sci. Rev.; 261, 104959. Doi: 10.1016/j.earscirev.2024.104959
Zeebe, R. E. and Lantink, M. L., 2024. A secular solar system resonance that disrupts the dominant cycle in Earth'’s orbital eccentricity (g2-g5): Implications for astrochronology. Astron. J.; 167:204. Doi: 10.3847/1538-3881/ad32cf.
Zeeden, C., Meyers, S., Hilgen, F., Lourens, L., Laskar, J., 2019. Time scale evaluation and the quantification of obliquity forcing. Quat. Sci. Rev.; 209, 100-113. Doi: 10.1016/j.quascirev.2019.01.018.