Boclinville, Aurore ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Sung, H., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71:3 (2021), 209–249, 10.3322/caac.21660.
McBride, A.A., Human papillomaviruses: diversity, infection and host interactions. Nat. Rev. Microbiol. 20:2 (2022), 95–108, 10.1038/s41579-021-00617-5.
de Sanjosé, S., Brotons, M., Pavón, M.A., The natural history of human papillomavirus infection. Best Pract. Res. Clin. Obstet. Gynaecol. 47 (2018), 2–13, 10.1016/j.bpobgyn.2017.08.015.
Mühr, L.S.A., Eklund, C., Dillner, J., Towards quality and order in human papillomavirus research. Virology 519 (2018), 74–76, 10.1016/j.virol.2018.04.003.
Burd, E.M., Human papillomavirus and cervical cancer. Clin. Microbiol. Rev. 16:1 (2003), 1–17, 10.1128/cmr.16.1.1-17.2003.
Buck, C.B., Thompson, C.D., Pang, Y.-Y.S., Lowy, D.R., Schiller, J.T., Maturation of papillomavirus capsids. J. Virol. 79:5 (2005), 2839–2846, 10.1128/jvi.79.5.2839-2846.2005.
Buck, C.B., et al. Arrangement of L2 within the papillomavirus capsid. J. Virol. 82:11 (2008), 5190–5197, 10.1128/jvi.02726-07.
Wang, J.W., Roden, R.B.S., L2, the minor capsid protein of papillomavirus. Virology 445:1–2 (2013), 175–186, 10.1016/j.virol.2013.04.017.
Chen, J., et al. Critical residues involved in the coassembly of L1 and L2 capsid proteins of human papillomavirus 16. J. Virol., 97(3), 2023, 10.1128/jvi.01819-22.
Le Cann, P., Coursaget, P., Iochmann, S., Touze, A., Self-assembly of human papillomavirus type 16 capsids by expression of the L1 protein in insect cells. FEMS Microbiol. Lett. 117:3 (1994), 269–274, 10.1111/j.1574-6968.1994.tb06778.x.
Raynal, B., Lenormand, P., Baron, B., Hoos, S., England, P., Quality assessment and optimization of purified protein samples: why and how?. Microb. Cell Fact. 13 (2014), 1–10, 10.1186/s12934-014-0180-6.
Berrow, N., et al. Quality control of purified proteins to improve data quality and reproducibility: results from a large-scale survey. Eur. Biophys. J. 50:3–4 (2021), 453–460, 10.1007/s00249-021-01528-2.
Zeltins, A., Construction and characterization of virus-like particles: a review. Mol. Biotechnol. 53:1 (2013), 92–107, 10.1007/s12033-012-9598-4.
Wu, J., McElroy, W., Pawliszyn, J., Heger, C.D., Imaged capillary isoelectric focusing: applications in the pharmaceutical industry and recent innovations of the technology. TrAC, Trends Anal. Chem., 150, 2022, 116567, 10.1016/j.trac.2022.116567.
Kahle, J., Wätzig, H., Determination of protein charge variants with (imaged) capillary isoelectric focusing and capillary zone electrophoresis. Electrophoresis 39:20 (2018), 2492–2511, 10.1002/elps.201800079.
Zhou, C.M., Characterization of human papillomavirus by capillary isoelectric focusing with whole-column imaging detection. Electrophoresis 34:20–21 (2013), 3046–3053, 10.1002/elps.201300161.
Du, J., et al. Finger printing human norovirus-like particles by capillary isoelectric focusing with whole column imaging detection. Virus Res., 311, 2022, 198700, 10.1016/j.virusres.2022.198700.
Goodridge, L., Goodridge, C., Wu, J., Griffiths, M., Pawliszyn, J., Isoelectric point determination of Norovirus virus-like particles by Capillary isoelectric focusing with whole column imaging detection. Anal. Chem. 76:1 (2004), 48–52, 10.1021/ac034848S.
Zhang, X., et al. Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in hecolin®. Vaccine 32:32 (2014), 4039–4050, 10.1016/j.vaccine.2014.05.064.
Liu, Z., Pawliszyn, J., Behaviors of the MS2 virus and related antibodies in capillary isoelectric focusing with whole-column imaging detection. Electrophoresis 26:3 (2005), 556–562, 10.1002/elps.200410075.
Thomassen, Y.E., Van Eikenhorst, G., Van Der Pol, L.A., Bakker, W.A.M., Isoelectric point determination of live polioviruses by capillary isoelectric focusing with whole column imaging detection. Anal. Chem. 85:12 (2013), 6089–6094, 10.1021/ac400968q.
Bettonville, V., et al. Study of intact virus-like particles of human papillomavirus by capillary electrophoresis. Electrophoresis 37:4 (Feb. 2016), 579–586, 10.1002/elps.201500431.
Boclinville, A., et al. Interaction studies between human papillomavirus virus-like particles and laminin 332 by affinity capillary electrophoresis assisted by bio-layer interferometry. Talanta, 270, 2024, 125602, 10.1016/j.talanta.2023.125602.
Naik, N.G., Lo, Y.W., Wu, T.Y., Lin, C.C., Kuo, S.C., Chao, Y.C., Baculovirus as an efficient vector for gene delivery into mosquitoes. Sci. Rep., 8(1), 2018, 17778, 10.1038/s41598-018-35463-8.
Mach, H., et al. Disassembly and reassembly of yeast‐derived recombinant human papillomavirus virus‐like particles (HPV VLPs). J. Pharmacol. Sci. 95:10 (2006), 2195–2206, 10.1002/jps.20696.
Mccarthy, M.P., White, W.I., Palmer-Hill, F., Koenig, S., Suzich, J.A., Quantitative disassembly and reassembly of human papillomavirus type 11 viruslike particles in vitro. J. Virol. 72:1 (1998), 32–41, 10.1128/jvi.72.1.32-41.1998.
Shi, L., et al. Stabilization of human papillomavirus virus-like particles by non-ionic surfactants. J. Pharmacol. Sci. 94:7 (2005), 1538–1551, 10.1002/jps.20377.
He, X.Z., Que, A.H., Mo, J.J., Analysis of charge heterogeneities in mAbs using imaged CE. Electrophoresis 30:5 (2009), 714–722, 10.1002/elps.200800636.
Conti, M., Galassi, M., Bossi, A., Righetti, P.G., Capillary isoelectric focusing: the problem of protein solubility. J. Chromatogr. A 757 (1997), 237–245, 10.1016/S0021-9673(96)00666-8.
ICH Q2(R2). Validation of analytical procedures. Final Version Adopted on, 2024.
Sapp, M., Volpers, C., Müller, M., Streeck, R.E., Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles. J. Gen. Virol. 76 (1995), 2407–2412, 10.1099/0022-1317-76-9-2407.
Swiss Institute of Bioinformatics. ExPASy (Bioinformatics Resource Tool): compute pI/Mw Tool. https://web.expasy.org/compute_pi/.
Broutian, T.R., Brendle, S.A., Christensen, N.D., Differential binding patterns to host cells associated with particles of several human alphapapillomavirus types. J. Gen. Virol. 91 (2010), 531–540, 10.1099/vir.0.012732-0.
Selinka, H.-C., et al. Inhibition of transfer to secondary receptors by Heparan Sulfate-Binding drug or antibody induces noninfectious uptake of human papillomavirus. J. Virol. 81:20 (2007), 10970–10980, 10.1128/jvi.00998-07.
Deschuyteneer, M., et al. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in CervarixTM, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum. Vaccines 6:5 (2010), 407–419, 10.4161/hv.6.5.11023.
Patterson, A., et al. Heterogeneity of HPV16 virus-like particles indicates a complex assembly energy surface. Virology, 600, 2024, 110211, 10.1016/j.virol.2024.110211.
Goetschius, D.J., Hartmann, S.R., Subramanian, S., Bator, C.M., Christensen, N.D., Hafenstein, S.L., High resolution cryo EM analysis of HPV16 identifies minor structural protein L2 and describes capsid flexibility. Sci. Rep., 11, 2021, 10.1038/s41598-021-83076-5.
Golushko, I.Y., Roshal, D.S., Konevtsova, O.V., Rochal, S.B., Podgornik, R., Electrostatic interactions and structural transformations in viral shells. Nanoscale 16:43 (2024), 20182–20193, 10.1039/d4nr02612h.
Sobczak, J.M., et al. The next generation virus-like particle platform for the treatment of peanut allergy. Allergy: European Journal of Allergy and Clinical Immunology 78:7 (2023), 1980–1996, 10.1111/all.15704.