[en] Clinical assessments for Parkinson's disease depend on clinician-administered scales, which have limitations in sensitivity and real-world applicability. Wearable inertial sensors offer a promising approach for objective and continuous monitoring of PD motor symptoms. This study aimed to evaluate the feasibility and accuracy of a magneto-inertial wearable device in detecting key PD motor manifestations-tremor, akinesia, and dyskinesia-on an individual movement basis. Ten PD patients undergoing pre-surgical evaluation for deep brain stimulation were included in a pilot multicentric study. Participants performed a Levodopa challenge test while wearing an inertial measurement unit on the most affected wrist and ankle. MDS-UPDRS Part III and video recordings were obtained to compare sensor performance to expert evaluations. Algorithms analyzed acceleration and angular velocity data to detect tremor, akinesia and dyskinesia. The sensor demonstrated high sensitivity (100%) and specificity (≥ 93%) for tremor and akinesia detection, with an overall accuracy exceeding 94%. Performance metrics were less promising for dyskinesia detection. Levodopa significantly reduced tremor (p = 0.0247) and increased dyskinesia (p = 0.0169), confirming sensor responsiveness to pharmacological effects. Magneto-inertial wearable device showed promising accuracy for the objective assessment of PD motor symptoms in a controlled environment. These findings support further validation in real-life conditions.
Disciplines :
Neurology
Author, co-author :
Poleur, Margaux ; Université de Liège - ULiège > Département des sciences cliniques
Gidaro, Teresa; Institute of Myology, GH La Pitié-Salpêtrière, Paris, France
DELSTANCHE, Stéphanie ; Centre Hospitalier Universitaire de Liège - CHU > > Service de neurologie (CHR)
Gurruchaga, Jean-Marc; Groupe de recherche clinique translationnelle OPTIMA, Institut Mondor de Recherche Biomédical, Henri Mondor Academic Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Est Créteil, INSERM Laboratory U955 of Translational NeuroPsychiatry, Institut Mondor de Recherche Biomédicale, Créteil, France
Tricot, Alexis; SYSNAV, Vernon, France
Bancel, Léopold; SYSNAV, Vernon, France
Palfi, Stéphane; Groupe de recherche clinique translationnelle OPTIMA, Institut Mondor de Recherche Biomédical, Henri Mondor Academic Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Est Créteil, INSERM Laboratory U955 of Translational NeuroPsychiatry, Institut Mondor de Recherche Biomédicale, Créteil, France
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques ; Department of Paediatrics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
Degos, Bertrand; Neurology Department, Réseau NS-PARK/FCRIN, Avicenne Hospital, APHP, Universitaires de Paris-Seine Saint Denis (HUPSSD), Sorbonne Paris Nord, Bobigny, Hôpitaux, France ; Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, UMR7241/INSERM U1050, Collège de France, CNRS, Université PSL, 75005, Paris, France
Language :
English
Title :
Wearable inertial device for monitoring Parkinson's disease symptoms: a pilot study in a controlled environment.
Erkkinen MG Kim M-O Geschwind MD Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases Cold Spring Harb Perspect Biol 2018 10 a033118 10.1101/cshperspect.a033118 28716886 5880171
Postuma RB et al. MDS clinical diagnostic criteria for Parkinson’s disease Mov. Disord. 2015 30 1591 1601 10.1002/mds.26424 26474316
Tolosa E Wenning G Poewe W The diagnosis of Parkinson’s disease Lancet Neurol. 2006 5 75 86 10.1016/S1474-4422(05)70285-4 16361025
D’Costa DF Sheehan LJ Phillips PA Moore-Smith B The levodopa test in Parkinson’s disease Age Ageing 1995 24 210 212 10.1093/ageing/24.3.210 7645440
Armstrong MJ Okun MS Diagnosis and Treatment of Parkinson Disease: A Review JAMA 2020 323 548 560 10.1001/jama.2019.22360 32044947
Ahlskog JE Muenter MD Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature Mov. Disord. 2001 16 448 458 10.1002/mds.1090 11391738
Goetz CG et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results Mov. Disord. 2008 23 2129 2170 10.1002/mds.22340 19025984
Marras C Lang AE Outcome measures for clinical trials in Parkinson’s disease: Achievements and shortcomings Expert Rev Neurother 2004 4 985 993 10.1586/14737175.4.6.985 15853525
Regnault A et al. Does the MDS-UPDRS provide the precision to assess progression in early Parkinson’s disease? Learnings from the Parkinson’s progression marker initiative cohort J Neurol 2019 266 1927 1936 10.1007/s00415-019-09348-3 31073716 6647182
McFarthing K et al. Parkinson’s Disease Drug Therapies in the Clinical Trial Pipeline: 2023 Update J Parkinsons Dis 2023 13 427 439 10.3233/JPD-239901 37302040 10357160
Piwek L Ellis DA Andrews S Joinson A The Rise of Consumer Health Wearables: Promises and Barriers PLoS Med 2016 13 e1001953 10.1371/journal.pmed.1001953 26836780 4737495
Yang C-C Hsu Y-L A review of accelerometry-based wearable motion detectors for physical activity monitoring Sensors 2010 10 7772 7788 10.3390/s100807772 22163626 3231187
Sica M et al. Continuous home monitoring of Parkinson’s disease using inertial sensors: A systematic review PLoS ONE 2021 16 e0246528 10.1371/journal.pone.0246528 33539481 7861548
Zhao H et al. Wearable sensors and features for diagnosis of neurodegenerative diseases: A systematic review Digit Health 2023 9 205520762311735
Moreau C et al. Overview on wearable sensors for the management of Parkinson’s disease NPJ Parkinsons Dis 2023 9 153 10.1038/s41531-023-00585-y 37919332 10622581
Rodríguez-Martín D et al. A New Paradigm in Parkinson’s Disease Evaluation With Wearable Medical Devices: A Review of STAT-ONTM Front Neurol 2022 13 912343 10.3389/fneur.2022.912343 35720090 9202426
Del Din S Kirk C Yarnall AJ Rochester L Hausdorff JM Body-Worn Sensors for Remote Monitoring of Parkinson’s Disease Motor Symptoms: Vision, State of the Art, and Challenges Ahead J Parkinsons Dis 2021 11 S35 S47 10.3233/JPD-202471 33523020 8385520
Kadirvelu B et al. A wearable motion capture suit and machine learning predict disease progression in Friedreich’s ataxia Nat Med 2023 29 86 94 10.1038/s41591-022-02159-6 36658420 9873563
Servais L et al. First regulatory qualification of a digital primary endpoint to measure treatment efficacy in DMD Nat Med 2023 29 2391 2392 10.1038/s41591-023-02459-5 37814063
Annoussamy M et al. Natural history of Type 2 and 3 spinal muscular atrophy: 2-year NatHis-SMA study Ann Clin Transl Neurol 2021 8 359 373 10.1002/acn3.51281 33369268
Gidaro T et al. Home-based gait analysis as an exploratory endpoint during a multicenter phase 1 trial in limb girdle muscular dystrophy type R2 and facioscapulohumeral muscular dystrophy Muscle Nerve 2022 65 237 242 10.1002/mus.27446 34687225
Lu L et al. Wearable Health Devices in Health Care: Narrative Systematic Review JMIR Mhealth Uhealth 2020 8 e18907 10.2196/18907 33164904 7683248
Woodrow H et al. A blinded, controlled trial of objective measurement in Parkinson’s disease NPJ Parkinsons Dis 2020 6 35 10.1038/s41531-020-00136-9 33298955 7680151
Capecci M Pepa L Verdini F Ceravolo MG A smartphone-based architecture to detect and quantify freezing of gait in Parkinson’s disease Gait Posture 2016 50 28 33 10.1016/j.gaitpost.2016.08.018 27567449
Stack E et al. Identifying balance impairments in people with Parkinson’s disease using video and wearable sensors Gait Posture 2018 62 321 326 10.1016/j.gaitpost.2018.03.047 29614464
Papapetropoulos SS Patient diaries as a clinical endpoint in Parkinson’s disease clinical trials CNS Neurosci Ther 2011 18 380 387 10.1111/j.1755-5949.2011.00253.x 22070400
Schalkamp A-K Peall KJ Harrison NA Sandor C Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis Nat Med 2023 29 2048 2056 10.1038/s41591-023-02440-2 37400639
European Medicines Agency. EMA qualification opinion for SV95C as primary endpoint in studies in ambulatory Duchenne Muscular Dystrophy studies. https://www.ema.europa.eu/en/documents/scientific-guideline/qualification-opinion-stride-velocity-95th-centile-primary-endpoint-studies-ambulatory-duchenne-muscular-dystrophy-studies_en.pdf.
Poleur M et al. Digital Outcome Measure Assessing the Motor Function of Patients with Amyotrophic Lateral Sclerosis Neurology 2024 102 5214 10.1212/WNL.0000000000205650
Poleur M et al. Reliability and External Validity of Digital Passive Gait Tracking in MS Neurology 2024 102 5890 10.1212/WNL.0000000000206099
Espay AJ et al. A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease obtained using mobile health technologies Mov Disord 2019 34 657 663 10.1002/mds.27671 30901495 6520192
Schade S Mollenhauer B Trenkwalder C Levodopa Equivalent Dose Conversion Factors: An Updated Proposal Including Opicapone and Safinamide Mov Disord Clin Pract 2020 7 343 345 10.1002/mdc3.12921 32258239 7111582