Exploration of the influence of environmental changes on the conformational and amyloidogenic landscapes of the zinc finger protein DPF3a by combining biophysical and molecular dynamics approaches. - 2025
Exploration of the influence of environmental changes on the conformational and amyloidogenic landscapes of the zinc finger protein DPF3a by combining biophysical and molecular dynamics approaches.
[en] In the past few years, the double PHD fingers 3 (DPF3) protein isoforms (DPF3b and DPF3a) have been identified as new amyloidogenic intrinsically disordered proteins (IDPs). Although such discovery is coherent and promising in light of their involvement in proteinopathies, their amyloidogenic pathway remains largely unexplored. As environmental variations in pH and ionic strength are relevant to DPF3 pathophysiological landscape, we therefore enquired the effect of these physicochemical parameters on the protein structural and prone-to-aggregation properties, by focusing on the more disordered DPF3a isoform. In the present study, we exploited in vitro and in silico strategies by combining spectroscopy, microscopy, and all-atom molecular dynamics methods. Very good consistency and complementary information were found between the experiments and the simulations. Acidification unequivocally abrogated DPF3a fibrillation upon maintaining the protein in highly hydrated and expanded conformers due to extensive repulsion between positively charged regions. In contrast, alkaline pH delayed the aggregation process due to loss in intramolecular contacts and chain decompaction, the extent of which was partly reduced thanks to the compensation of negative charge by arginine side chains. Through screening attractive electrostatic interactions, high ionic strength conditions (300 and 500 mM NaCl) shifted the conformational ensemble towards more swollen, heterogeneous, and less H-bonded structures, which were responsible for slowing down the conversion into β-sheeted species and restricting the fibril elongation. For defining the self-assembly pathway of DPF3a, we unveiled that the protein amyloidogenicity intimately communicates with its conformational landscape, which is particularly sensitive to modification of its physicochemical environment. As such, understanding how to modulate DPF3a conformational ensemble will help designing novel protein-specific strategies for targeting neurodegeneration.
Disciplines :
Chemistry
Author, co-author :
Mignon, Julien; Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium, Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium, Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium. Electronic address: julien.mignon@unamur.be
Leyder, Tanguy; Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium, Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium, Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium. Electronic address: tanguy.leyder@unamur.be
Monari, Antonio; Université Paris Cité and CNRS, ITODYS, 75006 Paris, France. Electronic address: antonio.monari@u-paris.fr
Mottet, Denis ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Michaux, Catherine; Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium, Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium, Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium. Electronic address: catherine.michaux@unamur.be
Language :
English
Title :
Exploration of the influence of environmental changes on the conformational and amyloidogenic landscapes of the zinc finger protein DPF3a by combining biophysical and molecular dynamics approaches.
Publication date :
May 2025
Journal title :
International Journal of Biological Macromolecules
F.R.S.-FNRS - Fonds de la Recherche Scientifique Waalse Gewest ANR - Agence Nationale de la Recherche FRIA - Fund for Research Training in Industry and Agriculture France. Commissariat Général à l'Investissement
Funding text :
The authors are grateful to the Research Unit in Biology of Microorganisms (URBM), as well as to the L.O.S. and Morph-Im platforms of the University of Namur. The authors are also appreciative of the PTCI high-performance computing resource of the University of Namur. This work benefited from computational resources provided by the Consortium des \u00C9quipements de Calcul Intensif (C\u00C9CI), funded by the Belgian National Fund for Scientific Research (F.R.S.-FNRS) under grant n\u00B02.5020.11 and by the Walloon Region, and made available on Lucia, the Tier-1 supercomputer of the Walloon Region, infrastructure funded by the Walloon Region under the grant agreement n\u00B01910247. J. M. and T. L. thank the FNRS for their Research Fellow fellowship and Fund for Research training in Industry and Agriculture (FRIA) Doctoral grant, respectively. A. M. thanks ANR and CGI for their financial support of the present work through Labex SEAM ANR 11 LABEX 086, ANR 11 IDEX 05 02. The support of the IdEx \u201CUniversit\u00E9 Paris 2019\u201D ANR-18-IDEX-0001 is also acknowledged. D. M. and C. M. thank the FNRS for their Senior Research Associate position. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A., Cancer statistics, 2023, CA. Cancer J. Clin. 73 (2023), 17–48, 10.3322/caac.21763.
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., Jemal, A., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74 (2024), 229–263, 10.3322/caac.21834.
Lampropoulos, I.C., Malli, F., Sinani, O., Gourgoulianis, K.I., Xiromerisiou, G., Worldwide trends in mortality related to Parkinson's disease in the period of 1994–2019: analysis of vital registration data from the WHO Mortality Database. Front. Neurol., 13, 2022, 10.3389/fneur.2022.956440.
Martinelli, A.H.S., Lopes, F.C., John, E.B.O., Carlini, C.R., Ligabue-Braun, R., Modulation of disordered proteins with a focus on neurodegenerative diseases and other pathologies. Int. J. Mol. Sci., 20, 2019, 10.3390/ijms20061322.
Xu, Y., Maya-Martinez, R., Radford, S.E., Controlling amyloid formation of intrinsically disordered proteins and peptides: slowing down or speeding up?. Essays Biochem. 66 (2022), 959–975, 10.1042/EBC20220046.
Ayyadevara, S., Ganne, A., Balasubramaniam, M., Shmookler Reis, R.J., Intrinsically disordered proteins identified in the aggregate proteome serve as biomarkers of neurodegeneration. Metab. Brain Dis. 37 (2022), 147–152, 10.1007/s11011-021-00791-8.
Uversky, V.N., Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J. 28 (2009), 305–325, 10.1007/s10930-009-9201-4.
Moses, D., Yu, F., Ginell, G.M., Shamoon, N.M., Koenig, P.S., Holehouse, A.S., Sukenik, S., Revealing the hidden sensitivity of intrinsically disordered proteins to their chemical environment. J. Phys. Chem. Lett. 11 (2020), 10131–10136, 10.1021/acs.jpclett.0c02822.
Moses, D., Ginell, G.M., Holehouse, A.S., Sukenik, S., Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem. Sci. 48 (2023), 1019–1034, 10.1016/j.tibs.2023.08.001.
Fnu, G., Weber, G.F., Alterations of ion homeostasis in cancer metastasis: implications for treatment. Front. Oncol., 11, 2021, 10.3389/fonc.2021.765329.
Ward, C., Meehan, J., Gray, M.E., Murray, A.F., Argyle, D.J., Kunkler, I.H., Langdon, S.P., The impact of tumour pH on cancer progression: strategies for clinical intervention. Explor. Target. Anti-Tumor Ther. 1 (2020), 71–100, 10.37349/etat.2020.00005.
Tafech, A., Stéphanou, A., On the importance of acidity in cancer cells and therapy. Biology (Basel), 13, 2024, 10.3390/biology13040225.
Michl, J., Monterisi, S., White, B., Blaszczak, W., Hulikova, A., Abdullayeva, G., Bridges, E., Yin, Z., Bodmer, W.F., Swietach, P., Acid-adapted cancer cells alkalinize their cytoplasm by degrading the acid-loading membrane transporter anion exchanger 2, SLC4A2. Cell Rep., 42, 2023, 10.1016/j.celrep.2023.112601.
Breydo, L., Uversky, V.N., Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics 3 (2011), 1163–1180, 10.1039/c1mt00106j.
Leal, S.S., Botelho, H.M., Gomes, C.M., Metal ions as modulators of protein conformation and misfolding in neurodegeneration. Coord. Chem. Rev. 256 (2012), 2253–2270, 10.1016/j.ccr.2012.04.004.
Mezzaroba, L., Alfieri, D.F., Colado Simão, A.N., Vissoci Reiche, E.M., The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 74 (2019), 230–241, 10.1016/j.neuro.2019.07.007.
Brännström, K., Islam, T., Sandblad, L., Olofsson, A., The role of histidines in amyloid β fibril assembly. FEBS Lett. 591 (2017), 1167–1175, 10.1002/1873-3468.12616.
Wang, H., Wu, J., Sternke-Hoffmann, R., Zheng, W., Mörman, C., Luo, J., Multivariate effects of pH, salt, and Zn2+ ions on Aβ40 fibrillation. Commun. Chem., 5, 2022, 10.1038/s42004-022-00786-1.
Scheres, S.H., Zhang, W., Falcon, B., Goedert, M., Cryo-EM structures of tau filaments. Curr. Opin. Struct. Biol. 64 (2020), 17–25, 10.1016/j.sbi.2020.05.011.
van der Kant, R., Louros, N., Schymkowitz, J., Rousseau, F., Thermodynamic analysis of amyloid fibril structures reveals a common framework for stability in amyloid polymorphs. Structure 30 (2022), 1178–1189, 10.1016/j.str.2022.05.002.
Ziaunys, M., Sakalauskas, A., Mikalauskaite, K., Smirnovas, V., Polymorphism of alpha-synuclein amyloid fibrils depends on ionic strength and protein concentration. Int. J. Mol. Sci., 22, 2021, 10.3390/ijms222212382.
Saraiva, M.A., Florêncio, M.H., Buffering capacity is determinant for restoring early α-synuclein aggregation. Biophys. Chem., 282, 2022, 10.1016/j.bpc.2022.106760.
Frey, L., Ghosh, D., Qureshi, B.M., Rhyner, D., Guerrero-Ferreira, R., Pokharna, A., Kwiatkowski, W., Serdiuk, T., Picotti, P., Riek, R., Greenwald, J., On the pH-dependence of α-synuclein amyloid polymorphism and the role of secondary nucleation in seed-based amyloid propagation. Elife, 12, 2024, 10.7554/elife.93562.4.
Rinauro, D.J., Chiti, F., Vendruscolo, M., Limbocker, R., Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol. Neurodegener., 19, 2024, 10.1186/s13024-023-00651-2.
Zeng, L., Zhang, Q., Li, S., Plotnikov, A.N., Walsh, M.J., Zhou, M.M., Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466 (2010), 258–262, 10.1038/nature09139.
Li, W., Zhao, A., Tempel, W., Loppnau, P., Liu, Y., Crystal structure of DPF3b in complex with an acetylated histone peptide. J. Struct. Biol. 195 (2016), 365–372, 10.1016/j.jsb.2016.07.001.
Local, A., Huang, H., Albuquerque, C.P., Singh, N., Lee, A.Y., Wang, W., Wang, C., Hsia, J.E., Shiau, A.K., Ge, K., Corbett, K.D., Wang, D., Zhou, H., Ren, B., Identification of H3K4me1-associated proteins at mammalian enhancers. Nat. Genet. 50 (2018), 73–82, 10.1038/s41588-017-0015-6.
Verrillo, G., Obeid, A.M., Genco, A., Scrofani, J., Orange, F., Hanache, S., Mignon, J., Leyder, T., Michaux, C., Kempeneers, C., Bricmont, N., Herkenne, S., Vernos, I., Martin, M., Mottet, D., Non-canonical role for the BAF complex subunit DPF3 in mitosis and ciliogenesis. J. Cell Sci., 137, 2024, 10.1242/jcs.261744.
Mignon, J., Mottet, D., Verrillo, G., Matagne, A., Perpète, E.A., Michaux, C., Revealing intrinsic disorder and aggregation properties of the DPF3a zinc finger protein. ACS Omega 6 (2021), 18793–18801, 10.1021/acsomega.1c01948.
Mignon, J., Mottet, D., Leyder, T., Uversky, V.N., Perp, E.A., Michaux, C., Structural characterisation of amyloidogenic intrinsically disordered zinc finger protein isoforms DPF3b and DPF3a. Int. J. Biol. Macromol. 218 (2022), 57–71, 10.1016/j.ijbiomac.2022.07.102.
Leyder, T., Mignon, J., Mottet, D., Michaux, C., Unveiling the metal-dependent aggregation properties of the C-terminal region of amyloidogenic intrinsically disordered protein isoforms DPF3b and DPF3a C-terminal region of amyloidogenic intrinsically disordered. Int. J. Mol. Sci., 23, 2022, 10.3390/ijms232315921.
Mignon, J., Leyder, T., Michaux, C., The intrinsically disordered DPF3 zinc finger protein: a promising new target in cancer therapy. J. Cancer Biol. 3 (2022), 79–82, 10.46439/cancerbiology.3.44.
Cui, H., Schlesinger, J., Schoenhals, S., Tönjes, M., Dunkel, I., Meierhofer, D., Cano, E., Schulz, K., Berger, M.F., Haack, T., Abdelilah-Seyfried, S., Bulyk, M.L., Sauer, S., Sperling, S.R., Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA. Nucleic Acids Res. 44 (2015), 2538–2553, 10.1093/nar/gkv1244.
Guanglei, W., Bingbing, W., Peixin, Y., Epigenetics in congenital heart disease. J. Am. Heart Assoc., 11, 2022, 10.1161/JAHA.121.025163.
Theodorou, M., Speletas, M., Mamara, A., Papachristopoulou, G., Lazou, V., Scorilas, A., Katsantoni, E., Identification of a STAT5 target gene, Dpf3, provides novel insights in chronic lymphocytic leukemia. PLoS One, 8, 2013, 10.1371/journal.pone.0076155.
Lin, W. Hao, Dai, W. Gang, Xu, X. Dong, Yu, Q. Hua, Zhang, B., Li, J., Li, H. Ping, Downregulation of DPF3 promotes the proliferation and motility of breast cancer cells through activating JAK2/STAT3 signaling. Biochem. Biophys. Res. Commun. 514 (2019), 639–644, 10.1016/j.bbrc.2019.04.170.
Hiramatsu, H., Kobayashi, K., Kobayashi, K., Haraguchi, T., Ino, Y., Todo, T., Iba, H., The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells. Sci. Rep., 7, 2017, 10.1038/s41598-017-00982-3.
Banaganapalli, B., Mallah, B., Alghamdi, K.S., Albaqami, W.F., Alshaer, D.S., Alrayes, N., Elango, R., Shaik, N.A., Integrative weighted molecular network construction from transcriptomics and genome wide association data to identify shared genetic biomarkers for COPD and lung cancer. PLoS One, 17, 2022, 10.1371/journal.pone.0274629.
Craddock, J., Jiang, J., Patrick, S.M., Mutambirwa, S.B.A., Stricker, P.D., Bornman, M.S.R., Jaratlerdsiri, W., Hayes, V.M., Alterations in the epigenetic machinery associated with prostate cancer health disparities. Cancers (Basel), 15, 2023, 10.3390/cancers15133462.
Protze, J., Naas, S., Krüger, R., Stöhr, C., Kraus, A., Grampp, S., Wiesener, M., Schiffer, M., Hartmann, A., Wullich, B., Schödel, J., The renal cancer risk allele at 14q24.2 activates a novel hypoxia-inducible transcription factor-binding enhancer of DPF3 expression. J. Biol. Chem., 298, 2022, 10.1016/j.jbc.2022.101699.
Cui, H., Yi, H., Bao, H., Tan, Y., Tian, C., Shi, X., Gan, D., Zhang, B., Liang, W., Chen, R., Zhu, Q., Fang, L., Gao, X., Huang, H., Tian, R., Sperling, S.R., Hu, Y., Chen, W., The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-β signaling. Nat. Commun., 13, 2022, 10.1038/s41467-022-32472-0.
Satoh, J.I., Molecular network analysis of human microRNA targetome: from cancers to Alzheimers disease. BioData Min., 5, 2012, 10.1186/1756-0381-5-17.
Rudnitskaya, E.A., Burnyasheva, A.O., Kozlova, T.A., Peunov, D.A., Kolosova, N.G., Stefanova, N.A., Changes in glial support of the hippocampus during the development of an Alzheimer's disease-like pathology and their correction by mitochondria-targeted antioxidant SkQ1. Int. J. Mol. Sci., 23, 2022, 10.3390/ijms23031134.
M. Huang, L. Xu, J. Liu, P. Huang, Y. Tan, S. Chen, Cell–cell communication alterations via intercellular signaling pathways in substantia nigra of Parkinson's disease, Front. Aging Neurosci. 14 (2022). doi: https://doi.org/10.3389/fnagi.2022.828457.
Rauch, R., Hofbeck, M., Zweier, C., Koch, A., Zink, S., Trautmann, U., Hoyer, J., Kaulitz, R., Singer, H., Rauch, A., Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J. Med. Genet. 47 (2010), 321–331, 10.1136/jmg.2009.070391.
Palanikumar, L., Karpauskaite, L., Al-Sayegh, M., Chehade, I., Alam, M., Hassan, S., Maity, D., Ali, L., Kalmouni, M., Hunashal, Y., Ahmed, J., Houhou, T., Karapetyan, S., Falls, Z., Samudrala, R., Pasricha, R., Esposito, G., Afzal, A.J., Hamilton, A.D., Kumar, S., Magzoub, M., Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nat. Commun., 12, 2021, 10.1038/s41467-021-23985-1.
Li, J., Guo, M., Chen, L., Chen, Z., Fu, Y., Chen, Y., p53 amyloid aggregation in cancer: function, mechanism, and therapy. Exp. Hematol. Oncol., 11, 2022, 10.1186/s40164-022-00317-7.
Kuipers, B.J.H., Gruppen, H., Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. J. Agric. Food Chem. 55 (2007), 5445–5451, 10.1021/jf070337l.
Micsonai, A., Moussong, É., Wien, F., Boros, E., Vadászi, H., Murvai, N., Lee, Y., Molnár, T., Réfrégiers, M., Goto, Y., Tantos, Á., Kardos, J., BeStSel: webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res. 50 (2022), 90–98, 10.1093/nar/gkac345.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., Hassabis, D., Highly accurate protein structure prediction with AlphaFold. Nature 596 (2021), 583–589, 10.1038/s41586-021-03819-2.
Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., Steinegger, M., ColabFold: making protein folding accessible to all. Nat. Methods 19 (2022), 679–682, 10.1038/s41592-022-01488-1.
Zhang, W., Xu, C., Bian, C., Tempel, W., Crombet, L., MacKenzie, F., Min, J., Liu, Z., Qi, C., Crystal structure of the Cys2His2-type zinc finger domain of human DPF2. Biochem. Biophys. Res. Commun. 413 (2011), 58–61, 10.1016/j.bbrc.2011.08.043.
Yuan, S., Chan, H.C.S., Hu, Z., Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci., 7, 2017, 10.1002/wcms.1298.
Søndergaard, C.R., Olsson, M.H.M., Rostkowski, M., Jensen, J.H., Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7 (2011), 2284–2295, 10.1021/ct200133y.
Olsson, M.H.M., Søndergaard, C.R., Rostkowski, M., Jensen, J.H., PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7 (2011), 525–537, 10.1021/ct100578z.
Martínez-Rosell, G., Giorgino, T., De Fabritiis, G., PlayMolecule ProteinPrepare: a web application for protein preparation for molecular dynamics simulations. J. Chem. Inf. Model. 57 (2017), 1511–1516, 10.1021/acs.jcim.7b00190.
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C., GROMACS: fast, flexible, and free. J. Comput. Chem. 26 (2005), 1701–1718, 10.1002/jcc.20291.
Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindah, E., Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2 (2015), 19–25, 10.1016/j.softx.2015.06.001.
Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., Simmerling, C., ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11 (2015), 3696–3713, 10.1021/acs.jctc.5b00255.
Mu, J., Liu, H., Zhang, J., Luo, R., Chen, H.F., Recent force field strategies for intrinsically disordered proteins. J. Chem. Inf. Model. 61 (2021), 1037–1047, 10.1021/acs.jcim.0c01175.
Piana, S., Donchev, A.G., Robustelli, P., Shaw, D.E., Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B 119 (2015), 5113–5123, 10.1021/jp508971m.
Henriques, J., Skepö, M., Molecular dynamics simulations of intrinsically disordered proteins: on the accuracy of the TIP4P-D water model and the representativeness of protein disorder models. J. Chem. Theory Comput. 12 (2016), 3407–3415, 10.1021/acs.jctc.6b00429.
Koder Hamid, M., Månsson, L.K., Meklesh, V., Persson, P., Skepö, M., Molecular dynamics simulations of the adsorption of an intrinsically disordered protein: force field and water model evaluation in comparison with experiments. Front. Mol. Biosci., 9, 2022, 10.3389/fmolb.2022.958175.
Hopkins, C.W., Le Grand, S., Walker, R.C., Roitberg, A.E., Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 11 (2015), 1864–1874, 10.1021/ct5010406.
Jung, J., Kasahara, K., Kobayashi, C., Oshima, H., Mori, T., Sugita, Y., Optimized hydrogen mass repartitioning scheme combined with accurate temperature/pressure evaluations for thermodynamic and kinetic properties of biological systems. J. Chem. Theory Comput. 17 (2021), 5312–5321, 10.1021/acs.jctc.1c00185.
Shirts, M.R., Klein, C., Swails, J.M., Yin, J., Gilson, M.K., Mobley, D.L., Case, D.A., Zhong, E.D., Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset. J. Comput. Aided Mol. Des. 31 (2017), 147–161, 10.1007/s10822-016-9977-1.
Müller, K., Brown, L.D., Location of saddle points and minimum energy paths by a constrained simplex optimization procedure. Theor. Chim. Acta 53 (1979), 75–93, 10.1007/BF00547608.
Parrinello, M., Rahman, A., Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52 (1981), 7182–7190, 10.1063/1.328693.
Bussi, G., Donadio, D., Parrinello, M., Canonical sampling through velocity rescaling. J. Chem. Phys., 126, 2007, 10.1063/1.2408420.
Petersen, H.G., Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys. 103 (1995), 3668–3679, 10.1063/1.470043.
Van Gunsteren, W.F., Berendsen, H.J.C., A leap-frog algorithm for stochastic dynamics. Mol. Simul. 1 (1988), 173–185, 10.1080/08927028808080941.
Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINCS: a Linear Constraint Solver for molecular simulations. J. Comput. Chem. 18 (1997), 1463–1472, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.
Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics. J. Mol. Graph. 14 (1996), 33–38 https://www.tapbiosystems.com/tap/products/index.htm.
Holehouse, A.S., Das, R.K., Ahad, J.N., Richardson, M.O.G., Pappu, R.V., CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112 (2017), 16–21, 10.1016/j.bpj.2016.11.3200.
Manning, M.C., Illangasekare, M., Woody, R.W., Circular dichroism studies of distorted α-helices, twisted β-sheets, and β-turns. Biophys. Chem. 31 (1988), 77–86, 10.1016/0301-4622(88)80011-5.
Miles, A.J., Wallace, B.A., Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem. Soc. Rev. 35 (2006), 39–51, 10.1039/b316168b.
Brahms, S., Brahms, J., Spacht, G., Brackt, A., Identification of β,β-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism. Proc. Natl. Acad. Sci. 74 (1977), 3208–3212 https://www.pnas.org.
Migliore, M., Bonvicini, A., Tognetti, V., Guilhaudis, L., Baaden, M., Oulyadi, H., Joubert, L., Ségalas-Milazzo, I., Characterization of β-turns by electronic circular dichroism spectroscopy: a coupled molecular dynamics and time-dependent density functional theory computational study. Phys. Chem. Chem. Phys. 22 (2020), 1611–1623, 10.1039/c9cp05776e.
Makowska, J., Rodziewicz-Motowidło, S., Bagińska, K., Vila, J.A., Liwo, A., Chmurzyński, L., Scheraga, H.A., Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins. Proc. Natl. Acad. Sci. USA 103 (2006), 1744–1749, 10.1073/pnas.0510549103.
Wu, Y., Xiang, H., Chen, S., Zhao, Y., Cai, Q., Lin, W., Wu, Y., Wang, Y., Characterization of the aggregation behavior of sea bass (Lateolabrax japonicus) myofibrillar proteins mediated by different ionic strengths: protein structures, gel properties, and emulsion stabilities. LWT, 189, 2023, 10.1016/j.lwt.2023.115483.
Cowgill, R.W., Fluorescence and protein structure. XV. Tryptophan fluorescence in a helical muscle protein. Biochim. Biophys. Acta Protein Struct. 168 (1968), 431–438, 10.1016/0005-2795(68)90176-1.
Chen, J., Callis, P.R., King, J., Mechanism of the very efficient quenching of tryptophan fluorescence in human γD- and γS-crystallins: the γ-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage. Biochemistry 48 (2009), 3708–3716, 10.1021/bi802177g.
Noronha, M., Lima, J.C., Lamosa, P., Santos, H., Maycock, C., Ventura, R., Maçanita, A.L., Intramolecular fluorescence quenching of tyrosine by the peptide α-carbonyl group revisited. J. Phys. Chem. A 108 (2004), 2155–2166, 10.1021/jp037125l.
Mignon, J., Leyder, T., Mottet, D., Uversky, V.N., Michaux, C., In-depth investigation of the effect of pH on the autofluorescence properties of DPF3b and DPF3a amyloid fibrils. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 313, 2024, 10.1016/j.saa.2024.124156.
White, A., Effect of pH on fluorescence of tyrosine, tryptophan and related compounds. Biochem. J. 71 (1959), 217–220, 10.1042/bj0710217.
Cowgill, R.W., Fluorescence and protein structure. XIV. Tyrosine fluorescence in helical muscle proteins. Biochim. Biophys. Acta Protein Struct. 168 (1968), 417–430, 10.1016/0005-2795(68)90175-x.
Robbins, R.J., Fleming, G.R., Beddard, G.S., Robinson, G.W., Thistlethwaite, P.J., Woolfe, G.J., Photophysics of aqueous tryptophan: pH and temperature effects. J. Am. Chem. Soc. 102 (1980), 6271–6279, 10.1021/ja00540a016.
Szabo, A.G., Lynn, K.R., Krajcarski, D.T., Rayner, D.M., Tyrosinate fluorescence maxima at 345 nm in proteins lacking tryptophan at pH 7. FEBS Lett. 94 (1978), 249–252, 10.1016/0014-5793(78)80948-X.
Davis, K.B., Zhang, Z., Karpova, E.A., Zhang, J., Application of tyrosine-tryptophan fluorescence resonance energy transfer in monitoring protein size changes. Anal. Biochem. 557 (2018), 142–150, 10.1016/j.ab.2018.07.022.
Das, R.K., Pappu, R.V., Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl. Acad. Sci. USA 110 (2013), 13392–13397, 10.1073/pnas.1304749110.
Bianchi, G., Mangiagalli, M., Barbiroli, A., Longhi, S., Grandori, R., Santambrogio, C., Brocca, S., Distribution of charged residues affects the average size and shape of intrinsically disordered proteins. Biomolecules, 12, 2022, 10.3390/biom12040561.
Wilkinson, M., Xu, Y., Thacker, D., Taylor, A.I.P., Fisher, D.G., Gallardo, R.U., Radford, S.E., Ranson, N.A., Structural evolution of fibril polymorphs during amyloid assembly. Cell 186 (2023), 5798–5811, 10.1016/j.cell.2023.11.025.
Gorantla, N.V., Landge, V.G., Nagaraju, P.G., Priyadarshini Cg, P., Balaraman, E., Chinnathambi, S., Molecular cobalt(II) complexes for tau polymerization in Alzheimer's disease. ACS Omega 4 (2019), 16702–16714, 10.1021/acsomega.9b00692.
Gorantla, N.V., Das, R., Balaraman, E., Chinnathambi, S., Transition metal nickel prevents tau aggregation in Alzheimer's disease. Int. J. Biol. Macromol. 156 (2020), 1359–1365, 10.1016/j.ijbiomac.2019.11.176.
Hobbs, G.A., Gunawardena, H.P., Campbell, S.L., Biophysical and proteomic characterization strategies for cysteine modifications in Ras GTPases. Methods Mol. Biol. 1120 (2014), 75–96, 10.1007/978-1-62703-791-4_6.
Futami, J., Miyamoto, A., Hagimoto, A., Suzuki, S., Futami, M., Tada, H., Evaluation of irreversible protein thermal inactivation caused by breakage of disulphide bonds using methanethiosulphonate. Sci. Rep., 7, 2017, 10.1038/s41598-017-12748-y.
Miseta, A., Csutora, P., Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol. Biol. Evol. 17 (2000), 1232–1239, 10.1093/oxfordjournals.molbev.a026406.
Das, A., Shah, M., Saraogi, I., Molecular aspects of insulin aggregation and various therapeutic interventions. ACS Bio Med. Chem. Au. 2 (2022), 205–221, 10.1021/acsbiomedchemau.1c00054.
Mitra, A., Sarkar, N., The role of intra and inter-molecular disulfide bonds in modulating amyloidogenesis: a review. Arch. Biochem. Biophys., 716, 2022, 10.1016/j.abb.2021.109113.
Gondelaud, F., Leval, J., Arora, L., Walimbe, A., Bignon, C., Ptchelkine, D., Brocca, S., Mukhopadyay, S., Longhi, S., Unraveling the molecular grammar and the structural transitions underlying the fibrillation of a viral fibrillogenic domain. Protein Sci., 34, 2025, 10.1002/pro.70068.
Kohn, J.E., Millett, I.S., Jacob, J., Zagrovic, B., Dillon, T.M., Cingel, N., Dothager, R.S., Seifert, S., Thiyagarajan, P., Sosnick, T.R., Hasan, M.Z., Pande, V.S., Ruczinski, I., Doniach, S., Plaxco, K.W., Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl. Acad. Sci. USA 101 (2004), 12491–12496, 10.1073/pnas.0403643101.
Bianchi, G., Mangiagalli, M., Ami, D., Ahmed, J., Lombardi, S., Longhi, S., Natalello, A., Tompa, P., Brocca, S., Condensation of the N-terminal domain of human topoisomerase 1 is driven by electrostatic interactions and tuned by its charge distribution. Int. J. Biol. Macromol., 254, 2024, 10.1016/j.ijbiomac.2023.127754.