Binding free energies; HIV PR inhibitors; HIV subtype B/C-SA PR; Inhibitor—enzyme interactions; Our Own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM); HIV Protease Inhibitors; HIV Protease; Catalytic Domain/drug effects; Entropy; HIV Infections/drug therapy; HIV Protease/metabolism; HIV Protease Inhibitors/pharmacology; HIV-1/drug effects; HIV-1/metabolism; Humans; Hydrogen Bonding/drug effects; Quantum Theory; Thermodynamics; United States; United States Food and Drug Administration; Binding free energy; Computational model; Enzyme interaction; Explicit water molecules; Food and drugs administrations; Structural insights; Sub-Sahara Africa; Catalytic Domain; HIV Infections; HIV-1; Hydrogen Bonding; Spectroscopy; Physical and Theoretical Chemistry; Computer Graphics and Computer-Aided Design; Materials Chemistry
Abstract :
[en] Human immune virus subtype C is the most widely spread HIV subtype in Sub-Sahara Africa and South Africa. A profound structural insight on finding potential lead compounds is therefore necessary for drug discovery. The focus of this study is to rationalize the nine Food and Drugs Administration (FDA) HIV antiviral drugs complexed to subtype B and C-SA PR using ONIOM approach. To achieve this, an integrated two-layered ONIOM model was used to optimize the geometrics of the FDA approved HIV-1 PR inhibitors for subtype B. In our hybrid ONIOM model, the HIV-1 PR inhibitors as well as the ASP 25/25' catalytic active residues were treated at high level quantum mechanics (QM) theory using B3LYP/6-31G(d), and the remaining HIV PR residues were considered using the AMBER force field. The experimental binding energies of the PR inhibitors were compared to the ONIOM calculated results. The theoretical binding free energies (?Gbind) for subtype B follow a similar trend to the experimental results, with one exemption. The computational model was less suitable for C-SA PR. Analysis of the results provided valuable information about the shortcomings of this approach. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide much improved binding energies for complex enzyme drug interactions.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Sanusi, Z K; Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
Govender, T; Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
Maguire, G E M; Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa, School of Chemistry and Physics, University of KwaZulu-Natal, 4001 Durban, South Africa
Maseko, Sibusiso Bonginkhost ; Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
Lin, J; School of Life Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
Kruger, H G; Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa. Electronic address: kruger@ukzn.ac.za
Honarparvar, B; Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa. Electronic address: Honarparvar@ukzn.ac.za
Language :
English
Title :
Investigation of the binding free energies of FDA approved drugs against subtype B and C-SA HIV PR: ONIOM approach.
We thank the College of Health Sciences (CHS), Aspen Pharma-care, MRC and the NRF for financial support. We are also gratefulto the CHPC (www.chpc.ac.za) and UKZN HPC cluster as our com-putational resources.
Shehu-Xhilaga, M., Oelrichs, R., Basic HIV Virology, HIV Management in Australasia. 2009, 9–18.
Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J.-C., Montagnier, L., T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312 (1983), 767–768.
Gallo, R.C., Sarin, P.S., Gelmann, E., Robert-Guroff, M., Richardson, E., Kalyanaraman, V., Mann, D., Sidhu, G.D., Stahl, R.E., Zolla-Pazner, S., Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220 (1983), 865–867.
HIV/AIDS, J.U.N.P.o., and HIV/AIDS, J.U.N.P.o. (2016) Global AIDS update 2016, Geneva, Switzerland.
Ahmed, S.M., Kruger, H.G., Govender, T., Maguire, G.E., Sayed, Y., Ibrahim, M.A., Naicker, P., Soliman, M.E., Comparison of the molecular dynamics and calculated binding free energies for nine FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV PR. Chem. Biol. Drug Des. 81 (2013), 208–218.
Robbins, A.H., Coman, R.M., Bracho-Sanchez, E., Fernandez, M.A., Gilliland, C.T., Li, M., Agbandje-McKenna, M., Wlodawer, A., Dunn, B.M., McKenna, R., Structure of the unbound form of HIV-1 subtype A protease: comparison with unbound forms of proteases from other HIV subtypes. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66 (2010), 233–242.
Genoni, A., Morra, G., Merz, K.M. Jr., Colombo, G., Computational study of the resistance shown by the subtype B/HIV-1 protease to currently known inhibitors. Biochemistry 49 (2010), 4283–4295.
Mosebi, S., Morris, L., Dirr, H.W., Sayed, Y., Active-site mutations in the South African human immunodeficiency virus type 1 subtype C protease have a significant impact on clinical inhibitor binding: kinetic and thermodynamic study. J. Virol. 82 (2008), 11476–11479.
Ahmed, S.M., Maguire, G.E., Kruger, H.G., Govender, T., The impact of active site mutations of South African HIV PR on drug resistance: insight from molecular dynamics simulations, binding free energy and per-residue footprints. Chem. Biol. Drug Des. 83 (2014), 472–481.
Lockhat, H.A., Silva, J.R., Alves, C.N., Govender, T., Lameira, J., Maguire, G.E., Sayed, Y., Kruger, H.G., Binding free energy calculations of nine FDA-approved protease inhibitors against HIV-1 subtype C I36T↑ T containing 100 amino acids per monomer. Chem. Biol. Drug Des. 87 (2015), 487–498.
Braz, A.S., Tufanetto, P., Perahia, D., Scott, L.P., Relation between flexibility and positively selected HIV-1 protease mutants against inhibitors. Proteins: Struct. Funct. Bioinform. 80 (2012), 2680–2691.
Bonini, C., Chiummiento, L., De Bonis, M., Di Blasio, N., Funicello, M., Lupattelli, P., Pandolfo, R., Tramutola, F., Berti, F., Synthesis of new thienyl ring containing HIV-1 protease inhibitors: promising preliminary pharmacological evaluation against recombinant HIV-1 proteases. J. Med. Chem. 53 (2010), 1451–1457.
Vangelista, L., Secchi, M., Lusso, P., Rational design of novel HIV-1 entry inhibitors by RANTES engineering. Vaccine 26 (2008), 3008–3015.
Kurth, R., Bannert, N., Retroviruses: Molecular Biology, Genomics and Pathogenesis. 2010, Horizon Scientific Press.
Brik, A., Wong, C.-H., HIV-1 protease: mechanism and drug discovery. Org. Biomol. Chem. 1 (2003), 5–14.
Wlodawer, A., Rational approach to AIDS drug design through structural biology. Annu. Rev. Med. 53 (2002), 595–614.
Naicker, P., Achilonu, I., Fanucchi, S., Fernandes, M., Ibrahim, M.A., Dirr, H.W., Soliman, M.E., Sayed, Y., Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance. J. Biomol. Struct. Dyn. 31 (2013), 1370–1380.
Makatini, M.M., Petzold, K., Alves, C.N., Arvidsson, P.I., Honarparvar, B., Govender, P., Govender, T., Kruger, H.G., Sayed, Y., Lameira, Jerônimo, Synthesis, 2D-NMR and molecular modelling studies of pentacycloundecane lactam-peptides and peptoids as potential HIV-1 wild type C-SA protease inhibitors. J. Enzyme Inhib. Med. Chem. 28 (2013), 78–88.
Karpoormath, R., Sayed, Y., Govender, P., Govender, T., Kruger, H.G., Soliman, M.E., Maguire, G.E., Pentacycloundecane derived hydroxy acid peptides: a new class of irreversible non-scissile ether bridged type isoster as potential HIV-1 wild type C-SA protease inhibitors. Bioorg. Chem. 40 (2012), 19–29.
Velazquez-Campoy, A., Vega, S., Freire, E., Amplification of the effects of drug resistance mutations by background polymorphisms in HIV-1 protease from African subtypes. Biochemistry 41 (2002), 8613–8619.
Maseko, S.B., Padayachee, E., Govender, T., Sayed, Y., Kruger, G., Maguire, G.E., Lin, J., I36T↑ T mutation in South African subtype C (C-SA) HIV -1 protease significantly alters protease-drug interactions. Biol Chem, 2017, 10.1515/hsz-2017-0107.
Honarparvar, B., Govender, T., Maguire, G.E., Soliman, M.E., Kruger, H.G., Integrated approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity. Chem. Rev. 114 (2013), 493–537.
Ohtaka, H., Velázquez-Campoy, A., Xie, D., Freire, E., Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease. Protein Sci. 11 (2002), 1908–1916.
King, N.M., Prabu-Jeyabalan, M., Nalivaika, E.A., Wigerinck, P., de Béthune, M.-P., Schiffer, C.A., Structural and thermodynamic basis for the binding of TMC114, a next-generation human immunodeficiency virus type 1 protease inhibitor. J. Virol. 78 (2004), 12012–12021.
Muzammil, S., Armstrong, A., Kang, L., Jakalian, A., Bonneau, P., Schmelmer, V., Amzel, L., Freire, E., Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations. J. Virol. 81 (2007), 5144–5154.
Batista, P.R., Wilter, A., Durham, E.H., Pascutti, P.G., Molecular dynamics simulations applied to the study of subtypes of HIV-1 protease common to Brazil, Africa, and Asia. Cell Biochem. Biophys. 44 (2006), 395–404.
Frisch, A., Foresman, J., Exploring Chemistry with Electronic Structure Methods. 1996, Gaussian Inc., Pittsburgh, PA, 302.
Morokuma, K., New challenges in quantum chemistry: quests for accurate calculations for large molecular systems. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 360 (2002), 1149–1164.
Dapprich, S., Komáromi, I., Byun, K.S., Morokuma, K., Frisch, M.J., A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. THEOCHEM 461 (1999), 1–21.
Vreven, T., Morokuma, K., On the application of the IMOMO (integrated molecular orbital+ molecular orbital) method. J. Comput. Chem. 21 (2000), 1419–1432.
Zheng, F., Zhan, C.-G., Rational design of an enzyme mutant for anti-cocaine therapeutics. J. Comput. Aided Mol. Des. 22 (2008), 661–671.
Ruangpornvisuti, V., Recognition of carboxylate and dicarboxylates by azophenol-thiourea derivatives: a theoretical host-guest investigation. J. Mol. Struct. THEOCHEM 686 (2004), 47–55.
Samanta, P.N., Das, K.K., Prediction of binding modes and affinities of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide inhibitors to the carbonic anhydrase receptor by docking and ONIOM calculations. J. Mol. Graph. Modell. 63 (2016), 38–48.
Promsri, S., Chuichay, P., Sanghiran, V., Parasuk, V., Hannongbua, S., Molecular and electronic properties of HIV-1 protease inhibitor C 60 derivatives as studied by the ONIOM method. J. Mol. Struct. THEOCHEM 715 (2005), 47–53.
Fong, P., McNamara, J.P., Hillier, I.H., Bryce, R.A., Assessment of QM/MM scoring functions for molecular docking to HIV-1 protease. J. Chem. Inf. Model. 49 (2009), 913–924.
Saen-oon, S., Aruksakunwong, O., Wittayanarakul, K., Sompornpisut, P., Hannongbua, S., Insight into analysis of interactions of saquinavir with HIV-1 protease in comparison between the wild-type and G48V and G48V/L90M mutants based on QM and QM/MM calculations. J. Mol. Graph. Modell. 26 (2007), 720–727.
Wittayanarakul, K., Aruksakunwong, O., Saen-oon, S., Chantratita, W., Parasuk, V., Sompornpisut, P., Hannongbua, S., Insights into saquinavir resistance in the G48V HIV-1 protease: quantum calculations and molecular dynamic simulations. Biophys. J. 88 (2005), 867–879.
Shi, S., Hu, G., Chen, J., Zhang, S., Zhang, Q., Molecular dynamics simulations on the role of protonation states in HIV-1 protease-indinavir complex. Acta Chim. Sin. 67 (2009), 2791–2797.
Tong, Y., Mei, Y., Zhang, J.Z., Duan, L.L., Zhang, Q.-G., Quantum calculation of protein solvation and protein-ligand binding free energy for hiv-1 protease/water complex. J. Theor. Comput. Chem. 8 (2009), 1265–1279.
Makatini, M.M., Design, Synthesis and Screening of Novel PCU-Peptide/Peptoid Derived HIV Protease Inhibitors. 2011, University of KwaZulu-Natal, Westville.
Smith, R., Brereton, I.M., Chai, R.Y., Kent, S.B., Ionization states of the catalytic residues in HIV-1 protease. Nat. Struct. Mol. Biol. 3 (1996), 946–950.
Honarparvar, B., Pawar, S.A., Alves, C.N., Lameira, J., Maguire, G.E., Silva, J.R.A., Govender, T., Kruger, H.G., Pentacycloundecane lactam vs lactone norstatine type protease HIV inhibitors: binding energy calculations and DFT study. J. Biomed. Sci. 22 (2015), 1–15.
Remko, M., Walsh, O.A., Richards, W.G., Theoretical study of molecular structure, tautomerism, and geometrical isomerism of moxonidine: two-layered ONIOM calculations. J. Phys. Chem. A 105 (2001), 6926–6931.
Li, W., Qin, S., Su, Z., Hu, C., Feng, X., Theoretical study on the mechanism and stereochemistry of salicylaldehyde-Al (III)-catalyzed hydrophosphonylation of benzaldehyde. Comp. Theor. Chem. 989 (2012), 44–50.
Kuiper, B.D., Keusch, B.J., Dewdney, T.G., Chordia, P., Ross, K., Brunzelle, J.S., Kovari, I.A., MacArthur, R., Salimnia, H., Kovari, L.C., The L33F darunavir resistance mutation acts as a molecular anchor reducing the flexibility of the HIV-1 protease 30 s and 80 s loops. Biochem. Biophys. Rep. 2 (2015), 160–165.
Liu, Z., Yedidi, R.S., Wang, Y., Dewdney, T.G., Reiter, S.J., Brunzelle, J.S., Kovari, I.A., Kovari, L.C., Crystallographic study of multi-drug resistant HIV-1 protease lopinavir complex: mechanism of drug recognition and resistance. Biochem. Biophys. Res. Commun. 437 (2013), 199–204.
Liu, Z., Yedidi, R.S., Wang, Y., Dewdney, T.G., Reiter, S.J., Brunzelle, J.S., Kovari, I.A., Kovari, L.C., Insights into the mechanism of drug resistance: X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex. Biochem. Biophys. Res. Commun. 431 (2013), 232–238.
Kuhnert, M., Steuber, H., Diederich, W.E., Structural basis for HTLV-1 protease inhibition by the HIV-1 protease inhibitor indinavir. J. Med. Chem. 57 (2014), 6266–6272.
Tie, Y., Wang, Y.F., Boross, P.I., Chiu, T.Y., Ghosh, A.K., Tozser, J., Louis, J.M., Harrison, R.W., Weber, I.T., Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors. Protein Sci. 21 (2012), 339–350.
Kožíšek, M., Bray, J., Řezáčová, P., Šašková, K., Brynda, J., Pokorná, J., Mammano, F., Rulíšek, L., Konvalinka, J., Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. J. Mol. Biol. 374 (2007), 1005–1016.
Yedidi, R.S., Garimella, H., Aoki, M., Aoki-Ogata, H., Desai, D.V., Chang, S.B., Davis, D.A., Fyvie, W.S., Kaufman, J.D., Smith, D.W., A conserved hydrogen-bonding network of P2 bis-tetrahydrofuran-containing HIV-1 protease inhibitors (PIs) with a protease active-site amino acid backbone aids in their activity against PI-resistant HIV. Antimicrob. Agents Chemother. 58 (2014), 3679–3688.
King, N.M., Prabu-Jeyabalan, M., Bandaranayake, R.M., Nalam, M.N., Nalivaika, E.A., Özen, A.e.l., Haliloǧlu, T.r., Yılmaz, N.e.K., Schiffer, C.A., Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease. ACS Chem. Biol. 7 (2012), 1536–1546.
Laskowski, R.A., Swindells, M.B., LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51 (2011), 2778–2786.
Studio, D., 4.0 Tutorials, Receptor-Ligand Interaction. 2013, Accelrys Inc., San Diego, CA, USA.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25 (2004), 1605–1612.
Li, H., Robertson, A.D., Jensen, J.H., Very fast empirical prediction and rationalization of protein pKa values. Proteins: Struct. Funct. Bioinform. 61 (2005), 704–721.
http://nbcr-222.ucsd.edu/pdb2pqr_2.0.0/.
DeLano, W.L., The PyMOL Molecular Graphics System. 2002.
Gohlke, H., Hendlich, M., Klebe, G., Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295 (2000), 337–356.
Kontoyianni, M., McClellan, L.M., Sokol, G.S., Evaluation of docking performance: comparative data on docking algorithms. J. Med. Chem. 47 (2004), 558–565.
Dennington, R., Keith, T., Millam, J., GaussView, Version 5. 2009, Semichem Inc., Shawnee, Mission, KS.
Kohn, W., Becke, A.D., Parr, R.G., Density functional theory of electronic structure. J. Phys. Chem. 100 (1996), 12974–12980.
Neumann, R., Nobes, R.H., Handy, N.C., Exchange functionals and potentials. Mol. Phys. 87 (1996), 1–36.
Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (1993), 5648–5652.
Lee, C., Yang, W., Parr, R.G., Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37 (1988), 785–789.
Hariharan, P.C., Pople, J.A., The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28 (1973), 213–222.
Rassolov, V.A., Pople, J.A., Ratner, M.A., Windus, T.L., 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109 (1998), 1223–1229.
Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J., The Amber biomolecular simulation programs. J. Comput. Chem. 26 (2005), 1668–1688.
Vreven, T., Morokuma, K., Hybrid methods: oniom (QM: MM) and QM/MM. Ann. Rep. Comput. Chem. 2 (2006), 35–51.
Vacca, J., Dorsey, B., Schleif, W., Levin, R., McDaniel, S., Darke, P., Zugay, J., Quintero, J., Blahy, O., Roth, E., L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc. Natl. Acad. Sci. U. S. A. 91 (1994), 4096–4100.
Kaldor, S.W., Kalish, V.J., Davies, J.F., Shetty, B.V., Fritz, J.E., Appelt, K., Burgess, J.A., Campanale, K.M., Chirgadze, N.Y., Clawson, D.K., Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J. Med. Chem. 40 (1997), 3979–3985.
Humbel, S., Sieber, S., Morokuma, K., The IMOMO method: integration of different levels of molecular orbital approximations for geometry optimization of large systems: test for n-butane conformation and SN2 reaction: RCl+ Cl−. J. Chem. Phys. 105 (1996), 1959–1967.
Svensson, M., Humbel, S., Froese, R.D., Matsubara, T., Sieber, S., Morokuma, K., ONIOM: a multilayered integrated MO+ MM method for geometry optimizations and single point energy predictions A test for diels-alder reactions and Pt(P(t-Bu)3)2+ H2 oxidative addition. J. Phys. Chem. 100 (1996), 19357–19363.
Kapp, J., Remko, M., Schleyer, P.v.R., H2XO and (CH3)2XO Compounds (X = C, Si, Ge, Sn, Pb): double bonds vs carbene-like structures can the metal compounds exist at all?. J. Am. Chem. Soc. 118 (1996), 5745–5751.
Johnson, B.G., Gill, P.M., Pople, J.A., The performance of a family of density functional methods. J. Chem. Phys. 98 (1993), 5612–5626.
Chung, L.W., Sameera, W., Ramozzi, R., Page, A.J., Hatanaka, M., Petrova, G.P., Harris, T.V., Li, X., Ke, Z., Liu, F., The ONIOM method and its applications. Chem. Rev. 115 (2015), 5678–5796.
Lundberg, M., Sasakura, Y., Zheng, G., Morokuma, K., Case studies of ONIOM (DFT: DFTB) and ONIOM (DFT: DFTB: MM) for enzymes and enzyme mimics. J. Chem. Theory Comput. 6 (2010), 1413–1427.
Ochterski, J.W., Thermochemistry in Gaussian. 2000, Gaussian Inc., 1–19.
Jenwitheesuk, E., Samudrala, R., Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations. BMC Struct. Biol., 3, 2003, 1.
Perryman, A.L., Lin, J.H., McCammon, J.A., HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Protein Sci. 13 (2004), 1108–1123.
Freedberg, D.I., Ishima, R., Jacob, J., Wang, Y.X., Kustanovich, I., Louis, J.M., Torchia, D.A., Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci. 11 (2002), 221–232.
Ryde, U., A fundamental view of enthalpy-entropy compensation. MedChemComm 5 (2014), 1324–1336.