[en] Enhancing lipid accumulation in microalgae is critical for commercial viability but often compromises growth. We previously generated through UV mutagenesis and iterative selection a Chlamydomonas reinhardtii mutant (H5) that retains parental growth while producing 3.2-fold more lipids (Sharma et al., 2015; Abdrabu et al., n.d.). Here, we present multi-omic analyses elucidating the molecular basis of this phenotype. Whole-genome sequencing revealed over 3000 mutations including a frameshift in the regulatory domain of 6-phosphofructokinase (PFK1). Six independent CLiP mutants in affected genes also showed elevated lipids, including a PFK1 mutant, validating functional relevance. Transcriptomics revealed upregulation of glycolytic genes and nutrient acquisition pathways under nutrient-replete conditions. Metabolomics identified an 8.31-fold malonate increase (p = 8.5 × 10−4), linking glycolysis to lipid synthesis. Lipidomics showed increased TAG diversity and lack of betaine lipids. Epigenomics revealed genome-wide hypermethylation, potentially stabilizing the phenotype. Together, these data suggest PFK1 deregulation drives metabolic reprogramming enabling lipid accumulation without growth penalty, demonstrating how evolutionary selection generates sophisticated metabolic solutions for engineering industrial microalgal strains.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Nelson, David R.; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Chaiboonchoe, Amphun; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates ; Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology (SiCORE-PM&SP), Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
Fu, Weiqi; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates ; State Key Laboratory of Ocean Sensing & Ocean College, Zhejiang University, Zhoushan, China
Khraiwesh, Basel; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates ; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Dohai, Bushra; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates ; Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
Jaiswal, Ashish; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Al-Khairy, Dina; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Mystikou, Alexandra; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates ; Omics Centre of Excellence, Abu Dhabi, United Arab Emirates
Al Nahyan, Latifa; Al Yasmina Academy, Abu Dhabi, United Arab Emirates
Amnah Salem Jumah Mohamed Alzahmi ; Université de Liège - ULiège > TERRA Research Centre ; NYU Abu Dhabi - New York University Abu Dhabi > Division of Science
Nayfeh, Layanne; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Daakour, Sarah ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Biologie cellulaire et moléculaire ; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
O'Connor, Matthew J.; Core Technology Platform (CTP) Operations, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Sultana, Mehar; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates ; Core Technology Platform (CTP) Operations, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Hazzouri, Khaled M.; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates ; Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), UAE University, Abu Dhabi, United Arab Emirates
Twizere, Jean-Claude ; Université de Liège - ULiège > GIGA > GIGA Molecular & Computational Biology - Viral Interactomes Network ; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Salehi-Ashtiani, Kourosh; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Sharma, S.K., Nelson, D.R., Abdrabu, R., Khraiwesh, B., Jijakli, K., Arnoux, M., O'Connor, M.J., Bahmani, T., Cai, H., Khapli, S., An integrative raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. Biotechnol. Biofuels, 8(1), 2015, 164.
Abdrabu, R., Sharma, S.K., Khraiwesh, B., Jijakli, K., Nelson, D.R., Alzahmi, A., Koussa, J., Sultana, M., Khapli, S., Jagannathan, R., et al. Single-cell characterization of microalgal lipid contents with confocal raman microscopy. Tseng, F.-G., Santra, T.S., (eds.) Essentials of Single-cell Analysis: Concepts, Applications and Future Prospects, 2016, Springer Berlin Heidelberg, Berlin, Heidelberg, 363–382.
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., Commercial applications of microalgae. J. Biosci. Bioeng. 101:2 (2006), 87–96.
Saini, R.K., Ravishankar, G.A., Keum, Y.S., Microalgae and thraustochytrids are sustainable sources of vegan epa and dha with commercial feasibility. Indian J. Microbiol. 63:1 (2023), 155–158.
Ma, P., Li, X., Wu, B., Liu, Z., Li, Z., Sun, X., Zhou, L., Du, M., Evaluating growth and nitrogen and phosphorus removal of four microalgae in different nutrient concentrations. Biology (Basel), 14(9), 2025.
Arenas Colarte, C., Balic, I., Diaz, O., Moreno, A.A., Amenabar, M.J., Bruna Larenas, T., Caro Fuentes, N., High-value bioactive molecules extracted from microalgae. Microorganisms, 13(9), 2025.
Popp, J., Lakner, Z., Harangi-Rákos, M., Fári, M., The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 32 (2014), 559–578.
Brennan, G., Collins, S., Growth responses of a green alga to multiple environmental drivers. Nat Clim Change, 5(9), 2015, 892+.
Carlson, K.M., Heilmayr, R., Gibbs, H.K., Noojipady, P., Burns, D.N., Morton, D.C., Walker, N.F., Paoli, G.D., Kremen, C., Effect of oil palm sustainability certification on deforestation and fire in indonesia. Proc. Natl. Acad. Sci. U. S. A. 115:1 (2018), 121–126.
Gaveau, D.L.A., Locatelli, B., Salim, M.A., Husnayaen, Manurung, T., Descals, A., Angelsen, A., Meijaard, E., Sheil, D., Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices. PLoS One, 17(3), 2022, e0266178.
Nelson, D.R., Khraiwesh, B., Fu, W., Alseekh, S., Jaiswal, A., Chaiboonchoe, A., Hazzouri, K.M., O'Connor, M.J., Butterfoss, G.L., Drou, N., et al. The genome and phenome of the green alga Chloroidium sp. Utex 3007 reveal adaptive traits for desert acclimatization. Elife, 6, 2017.
Ordway, E.M., Naylor, R.L., Nkongho, R.N., Lambin, E.F., Oil palm expansion and deforestation in southwest cameroon associated with proliferation of informal mills. Nat. Commun., 10(1), 2019, 114.
Wijffels, R.H., Kruse, O., Hellingwerf, K.J., Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24:3 (2013), 405–413.
Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylidès, C., Li-Beisson, Y., Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol., 11(1), 2011, 7.
Kallau, M., Yang, H., Quantification of the total lipids in three aquaculture microalgae using bodipy™ 505/515 stain and flow cytometry. J. World Aquacult. Soc., 56(3), 2025.
Xu, D., Gao, Z., Li, F., Fan, X., Zhang, X., Ye, N., Mou, S., Liang, C., Li, D., Detection and quantitation of lipid in the microalga tetraselmis subcordiformis (wille) butcher with bodipy 505/515 staining. Bioresour. Technol. 127 (2013), 386–390.
Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, T., Bernard, O., Cadoret, J.-P., Bougaran, G., Bodipy 505/515 as a sensitive probe for quantification of neutral lipids in microalgae. Algal Res. 10 (2015), 80–87.
Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O., Cadoret, J.P., Bougaran, G., The use of fluorescent nile red and bodipy for lipid measurement in microalgae. Biotechnol. Biofuels, 8, 2015, 42.
Brennan, L., Blanco Fernández, A., Mostaert, A.S., Owende, P., Enhancement of bodipy505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. J. Microbiol. Methods 90:2 (2012), 137–143.
Gorman, D.S., Levine, R.P., Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. U. S. A. 54:6 (1965), 1665–1669.
Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10(3), 2009, R25.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., The sequence alignment/map format and samtools. Bioinformatics 25:16 (2009), 2078–2079.
Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., Ruden, D.M., A program for annotating and predicting the effects of single nucleotide polymorphisms, snpeff: Snps in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:2 (2012), 80–92.
Langmead, B., Salzberg, S.L., Fast gapped-read alignment with bowtie 2. Nat. Methods 9:4 (2012), 357–359.
Robert, C., Watson, M., Errors in rna-seq quantification affect genes of relevance to human disease. Genome Biol., 16(1), 2015, 177.
Wang, Z.T., Ullrich, N., Joo, S., Waffenschmidt, S., Goodenough, U., Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 8:12 (2009), 1856–1868.
Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., Pachter, L., Differential analysis of gene regulation at transcript resolution with rna-seq. Nat. Biotechnol. 31:1 (2013), 46–53.
Maere, S., Heymans, K., Kuiper, M., Bingo: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:16 (2005), 3448–3449.
Benjamini, Y.H., Yosef: controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser 1 (1995), 289–300.
Chaiboonchoe, A., Dohai, B.S., Cai, H., Nelson, D.R., Jijakli, K., Salehi-Ashtiani, K., Microalgal metabolic network model refinement through high-throughput functional metabolic profiling. Front. Bioeng. Biotechnol., 2, 2014, 68.
Lopez, D., Casero, D., Cokus, S.J., Merchant, S.S., Pellegrini, M., Algal functional annotation tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data. BMC Bioinformatics, 12(1), 2011, 282.
Castro-Perez, J.M., Kamphorst, J., DeGroot, J., Lafeber, F., Goshawk, J., Yu, K., Shockcor, J.P., Vreeken, R.J., Hankemeier, T., Comprehensive lc− mse lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. J. Proteome Res. 9:5 (2010), 2377–2389.
Gowda, H., Ivanisevic, J., Johnson, C.H., Kurczy, M.E., Benton, H.P., Rinehart, D., Nguyen, T., Ray, J., Kuehl, J., Arevalo, B., et al. Interactive xcms online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal. Chem. 86:14 (2014), 6931–6939.
Tautenhahn, R., Patti, G.J., Rinehart, D., Siuzdak, G., Xcms online: a web-based platform to process untargeted metabolomic data. Anal. Chem. 84:11 (2012), 5035–5039.
Mahieu, N.G., Genenbacher, J.L., Patti, G.J., A roadmap for the xcms family of software solutions in metabolomics. Curr. Opin. Chem. Biol. 30 (2016), 87–93.
Huan, T., Forsberg, E.M., Rinehart, D., Johnson, C.H., Ivanisevic, J., Benton, H.P., Fang, M., Aisporna, A., Hilmers, B., Poole, F.L., et al. Systems biology guided by xcms online metabolomics. Nat. Methods 14:5 (2017), 461–462.
Wishart, D.S., Tzur, D., Knox, C., Eisner, R., Guo, A.C., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Hmdb: the human metabolome database. Nucleic Acids Res. 35:Suppl. 1 (2007), D521–D526.
Tokutsu, R., Fujimura-Kamada, K., Yamasaki, T., Okajima, K., Minagawa, J., Uv-a/b radiation rapidly activates photoprotective mechanisms in Chlamydomonas reinhardtii. Plant Physiol. 185:4 (2021), 1894–1902.
Kulp, S.Q., Griggs, H.G., Photoreactivation of lethal damage and damage leading to chromatid deletions induced in g1 phase hamster x Xenopus hybrid cells by uv. Photochem. Photobiol. 50:2 (1989), 185–191.
Levy, D.D., Magee, A.D., Seidman, M.M., Single nucleotide positions have proximal and distal influence on uv mutation hotspots and coldspots. J. Mol. Biol. 258:2 (1996), 251–260.
Laughery, M.F., Brown, A.J., Bohm, K.A., Sivapragasam, S., Morris, H.S., Tchmola, M., Washington, A.D., Mitchell, D., Mather, S., Malc, E.P., et al. Atypical uv photoproducts induce non-canonical mutation classes associated with driver mutations in melanoma. Cell Rep., 33(7), 2020, 108401.
Fontana, G.A., Gahlon, H.L., Detection of uv-induced deletions in mitochondrial DNA. Methods Mol. Biol. 2615 (2023), 281–292.
Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Maréchal-Drouard, L., et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:5848 (2007), 245–250.
Taylor, J.-S., Deamination of c-containing cyclobutane pyrimidine dimers and its role in c to t and cc to tt signature mutations caused by uv light. Improta, R., Douki, T., (eds.) DNA Photodamage: From Light Absorption to Cellular Responses and Skin Cancer, 2021, The Royal Society of Chemistry, 0.
Petersen, J.L., Ronan, P.J., Critical role of 7,8-didemethyl-8-hydroxy-5-deazariboflavin for photoreactivation in Chlamydomonas reinhardtii. J. Biol. Chem. 285:42 (2010), 32467–32475.
Cox, J.L., Small, G.D., Isolation of a photoreactivation-deficient mutant of Chlamydomonas. Mutat. Res. 146:3 (1985), 249–255.
Jinkerson, R.E., Jonikas, M.C., Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J. 82:3 (2015), 393–412.
Li, X., Jonikas, M.C., High-throughput genetics strategies for identifying new components of lipid metabolism in the green alga Chlamydomonas reinhardtii. Subcell. Biochem. 86 (2016), 223–247.
Li, X., Zhang, R., Patena, W., Gang, S.S., Blum, S.R., Ivanova, N., Yue, R., Robertson, J.M., Lefebvre, P.A., Fitz-Gibbon, S.T., et al. An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28:2 (2016), 367–387.
Fauser, F., Vilarrasa-Blasi, J., Onishi, M., Ramundo, S., Patena, W., Millican, M., Osaki, J., Philp, C., Nemeth, M., Salome, P.A., et al. Systematic characterization of gene function in the photosynthetic alga Chlamydomonas reinhardtii. Nat. Genet. 54:5 (2022), 705–714.
Gargouri, M., Park, J.J., Holguin, F.O., Kim, M.J., Wang, H.X., Deshpande, R.R., Shachar-Hill, Y., Hicks, L.M., Gang, D.R., Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. J. Exp. Bot. 66:15 (2015), 4551–4566.
Kono, A., Spalding, M.H., Lci1, a Chlamydomonas reinhardtii plasma membrane protein, functions in active co(2) uptake under low co(2). Plant J. 102:6 (2020), 1127–1141.
Fukuzawa, H., Fujiwara, S., Tachiki, A., Miyachi, S., Nucleotide sequences of two genes cah1 and cah2 which encode carbonic anhydrase polypeptides in Chlamydomonas reinhardtii. Nucleic Acids Res. 18:21 (1990), 6441–6442.
Rai, A.K., Chen, T., Moroney, J.V., Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low co2 levels in Chlamydomonas. Plant Physiol. 187:3 (2021), 1387–1398.
Jin, J., Tian, F., Yang, D.-C., Meng, Y.-Q., Kong, L., Luo, J., Gao, G., Planttfdb 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45:D1 (2017), D1040–D1045.
Ibáñez-Salazar, A., Rosales-Mendoza, S., Rocha-Uribe, A., Ramírez-Alonso, J.I., Lara-Hernández, I., Hernández-Torres, A., Paz-Maldonado, L.M.T., Silva-Ramírez, A.S., Bañuelos-Hernández, B., Martínez-Salgado, J.L., Over-expression of dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J. Biotechnol. 184 (2014), 27–38.
Ngan, C.Y., Wong, C.-H., Choi, C., Yoshinaga, Y., Louie, K., Jia, J., Chen, C., Bowen, B., Cheng, H., Leonelli, L., Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nat. Plants, 1, 2015, 15107.
Kang, N.K., Jeon, S., Kwon, S., Koh, H.G., Shin, S.-E., Lee, B., Choi, G.-G., Yang, J.-W., Jeong, B.-r., Chang, Y.K., Effects of overexpression of a bhlh transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol. Biofuels, 8(1), 2015, 200.
Kwon, S., Kang, N.K., Koh, H.G., Shin, S.E., Lee, B., Br Jeong, Chang, Y.K., Enhancement of biomass and lipid productivity by overexpression of a bzip transcription factor in Nannochloropsis salina. Biotechnol. Bioeng. 115:2 (2017), 331–340.
Hann, C.L., Rudin, C.M., Fast, hungry and unstable: finding the achilles’ heel of small-cell lung cancer. Trends Mol. Med. 13:4 (2007), 150–157.
Jiang, J., Srivastava, S., Zhang, J., Starve cancer cells of glutamine: break the spell or make a hungry monster?. Cancers (Basel), 11(6), 2019.
Sharma, A.K., Konig, R., Metabolic network modeling approaches for investigating the “hungry cancer”. Semin. Cancer Biol. 23:4 (2013), 227–234.
Canavate, J.P., Armada, I., Rios, J.L., Hachero-Cruzado, I., Exploring occurrence and molecular diversity of betaine lipids across taxonomy of marine microalgae. Phytochemistry 124 (2016), 68–78.
Popko, J., Herrfurth, C., Feussner, K., Ischebeck, T., Iven, T., Haslam, R., Hamilton, M., Sayanova, O., Napier, J., Khozin-Goldberg, I., et al. Metabolome analysis reveals betaine lipids as major source for triglyceride formation, and the accumulation of sedoheptulose during nitrogen-starvation of Phaeodactylum tricornutum. PloS One, 11(10), 2016, e0164673.
Hoffmann, D.Y., Shachar-Hill, Y., Do betaine lipids replace phosphatidylcholine as fatty acid editing hubs in microalgae?. Front. Plant Sci., 14, 2023, 1077347.
Sikorskaya, T.V., Coral lipidome: molecular species of phospholipids, glycolipids, betaine lipids, and sphingophosphonolipids. Mar. Drugs, 21(6), 2023.
Chi, H., Wang, X., Shao, Y., Qin, Y., Deng, Z., Wang, L., Chen, S., Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol 4:1 (2019), 25–33.
Olson, A.C., Carter, C.J., The involvement of hybrid cluster protein 4, hcp4, in anaerobic metabolism in Chlamydomonas reinhardtii. PloS One, 11(3), 2016, e0149816.
Subramanian, V., Wecker, M.S.A., Gerritsen, A., Boehm, M., Xiong, W., Wachter, B., Dubini, A., Gonzalez-Ballester, D., Antonio, R.V., Ghirardi, M.L., Ferredoxin5 deletion affects metabolism of algae during the different phases of sulfur deprivation. Plant Physiol. 181:2 (2019), 426–441.
Zalutskaya, Z., Minaeva, E., Filina, V., Ostroukhova, M., Ermilova, E., Regulation of sulfur deprivation-induced expression of the ferredoxin-encoding fdx5 gene Chlamydomonas reinhardtii in aerobic conditions. Plant Physiol. Biochem. 123 (2018), 18–23.
Catalanotti, C., Dubini, A., Subramanian, V., Yang, W., Magneschi, L., Mus, F., Seibert, M., Posewitz, M.C., Grossman, A.R., Altered fermentative metabolism in Chlamydomonas reinhardtii mutants lacking pyruvate formate lyase and both pyruvate formate lyase and alcohol dehydrogenase. Plant Cell 24:2 (2012), 692–707.
Sawyer, A., Bai, Y., Lu, Y., Hemschemeier, A., Happe, T., Compartmentalisation of [fefe]-hydrogenase maturation in Chlamydomonas reinhardtii. Plant J. 90:6 (2017), 1134–1143.
de Montaigu, A., Sanz-Luque, E., Galván, A., Fernández, E., A soluble guanylate cyclase mediates negative signaling by ammonium on expression of nitrate reductase in Chlamydomonas. Plant Cell 22:5 (2010), 1532–1548.
Moseley, J., Quinn, J., Eriksson, M., Merchant, S., The crd1 gene encodes a putative di-iron enzyme required for photosystem i accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J. 19:10 (2000), 2139–2151.
Hemschemeier, A., Casero, D., Liu, B., Benning, C., Pellegrini, M., Happe, T., Merchant, S.S., Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia. Plant Cell 25:9 (2013), 3186–3211.
Blaby, I.K., Glaesener, A.G., Mettler, T., Fitz-Gibbon, S.T., Gallaher, S.D., Liu, B., Boyle, N.R., Kropat, J., Stitt, M., Johnson, S., et al. Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25:11 (2013), 4305–4323.
Peers, G., Truong, T.B., Ostendorf, E., Busch, A., Elrad, D., Grossman, A.R., Hippler, M., Niyogi, K.K., An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:7272 (2009), 518–521.
Correa-Galvis, V., Redekop, P., Guan, K., Griess, A., Truong, T.B., Wakao, S., Niyogi, K.K., Jahns, P., Photosystem ii subunit psbs is involved in the induction of lhcsr protein-dependent energy dissipation in Chlamydomonas reinhardtii. J. Biol. Chem. 291:33 (2016), 17478–17487.
Minagawa, J., Takahashi, Y., Structure, function and assembly of photosystem ii and its light-harvesting proteins. Photosynth. Res. 82:3 (2004), 241–263.
Elrad, D., Niyogi, K.K., Grossman, A.R., A major light-harvesting polypeptide of photosystem ii functions in thermal dissipation. Plant Cell 14:8 (2002), 1801–1816.
Bonente, G., Ballottari, M., Truong, T.B., Morosinotto, T., Ahn, T.K., Fleming, G.R., Niyogi, K.K., Bassi, R., Analysis of lhcsr3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol., 9(1), 2011, e1000577.
Johnson, X., Alric, J., Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot. Cell 12:6 (2013), 776–793.
Gfeller, R.P., Gibbs, M., Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of fermentative products from starch in dark and light. Plant Physiol. 75:1 (1984), 212–218.
Gfeller, R.P., Gibbs, M., Fermentative metabolism of Chlamydomonas reinhardtii: II. role of plastoquinone. Plant Physiol. 77:2 (1985), 509–511.
Vallon, O., Chlamydomonas immunophilins and parvulins: survey and critical assessment of gene models. Eukaryot. Cell 4:2 (2005), 230–241.
Calatrava, V., Hom, E.F.Y., Guan, Q., Llamas, A., Fernandez, E., Galvan, A., Genetic evidence for algal auxin production in Chlamydomonas and its role in algal-bacterial mutualism. Iscience, 27(1), 2024, 108762.
Moret, S., Conchione, C., Srbinovska, A., Lucci, P., Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods, 8(10), 2019.
Nelson, D.R., Chaiboonchoe, A., Fu, W.Q., Hazzouri, K.M., Huang, Z.Y., Jaiswal, A., Daakour, S., Mystikou, A., Arnoux, M., Sultana, M., et al. Potential for heightened sulfur-metabolic capacity in coastal subtropical microalgae. Iscience, 11, 2019, 450+.
van Zadelhoff, G., van der Stelt, M., Oxygenation of anandamide by lipoxygenases. Endocannabinoid Signaling: Methods and Protocols, 2016, 217–225.
Ito-Nagahata, T., Kurihara, C., Hasebe, M., Ishii, A., Yamashita, K., Iwabuchi, M., Sonoda, M., Fukuhara, K., Sawada, R., Matsuoka, A., Stilbene analogs of resveratrol improve insulin resistance through activation of ampk. Biosci. Biotechnol. Biochem. 77:6 (2013), 1229–1235.
Nielsen, V.G., Baird, M.S., Chen, L., Matalon, S., DETANONOate, a nitric oxide donor, decreases amiloride-sensitive alveolar fluid clearance in rabbits. Am. J. Respir. Crit. Care Med. 161:4 (2000), 1154–1160.
Urzica, E.I., Vieler, A., Hong-Hermesdorf, A., Page, M.D., Casero, D., Gallaher, S.D., Kropat, J., Pellegrini, M., Benning, C., Merchant, S.S., Remodeling of membrane lipids in iron-starved Chlamydomonas. J. Biol. Chem. 288:42 (2013), 30246–30258.
Murakami, H., Nobusawa, T., Hori, K., Shimojima, M., Ohta, H., Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant Physiol. 177:1 (2018), 181–193.
Hu, H., Tan, L., Li, X., Li, J., Fan, C., Huang, F., Zhuo, Z., Hou, K., Xu, Y., Wang, Q., et al. Betaine reduces lipid anabolism and promotes lipid transport in mice fed a high-fat diet by influencing intestinal protein expression. Foods, 11(16), 2022.
Mullen, N.J., Singh, P.K., Nucleotide metabolism: a pan-cancer metabolic dependency. Nat. Rev. Cancer 23:5 (2023), 275–294.
Gaynor, P.M., Greenberg, M.L., Regulation of cdp-diacylglycerol synthesis and utilization by inositol and choline in Schizosaccharomyces pombe. J. Bacteriol. 174:17 (1992), 5711–5718.
Fernandez-Gomez, F.J., Galindo, M.F., Gomez-Lazaro, M., Yuste, V.J., Comella, J.X., Aguirre, N., Jordan, J., Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ros-dependent pathway. Br. J. Pharmacol. 144:4 (2005), 528–537.
Reed, M.A.C., Ludwig, C., Bunce, C.M., Khanim, F.L., Gunther, U.L., Malonate as a ros product is associated with pyruvate carboxylase activity in acute myeloid leukaemia cells. Cancer Metab, 4, 2016, 15.
Carballo, J., Carbo, M., Pascual, J., Meijon, M., Alvarez, A., Valledor, L., Epigenetic dynamics in Chlamydomonas: new frontiers in unicellular algal research. Trends Plant Sci, 2025 Advance Online Publication.
Lopez, D., Hamaji, T., Kropat, J., De Hoff, P., Morselli, M., Rubbi, L., Fitz-Gibbon, S., Gallaher, S.D., Merchant, S.S., Umen, J., et al. Dynamic changes in the transcriptome and methylome of Chlamydomonas reinhardtii throughout its life cycle. Plant Physiol. 169:4 (2015), 2730–2743.
Veluchamy, A., Lin, X., Maumus, F., Rivarola, M., Bhavsar, J., Creasy, T., O'Brien, K., Sengamalay, N.A., Tallon, L.J., Smith, A.D., et al. Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nat. Commun., 4, 2013, 2091.
Zemach, A., McDaniel, I.E., Silva, P., Zilberman, D., Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:5980 (2010), 916–919.
Xue, J.H., Chen, G.D., Hao, F., Chen, H., Fang, Z., Chen, F.F., Pang, B., Yang, Q.L., Wei, X., Fan, Q.Q., et al. A vitamin-c-derived DNA modification catalysed by an algal tet homologue. Nature 569:7757 (2019), 581–585.
Jiang, N., Taylor, J.S., In vivo evidence that uv-induced c-->t mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products. Biochemistry 32:2 (1993), 472–481.
von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., Snel, B., String: a database of predicted functional associations between proteins. Nucleic Acids Res. 31:1 (2003), 258–261.
Szklarczyk, D., Nastou, K., Koutrouli, M., Kirsch, R., Mehryary, F., Hachilif, R., Hu, D., Peluso, M.E., Huang, Q., Fang, T., et al. The string database in 2025: protein networks with directionality of regulation. Nucleic Acids Res. 53:D1 (2025), D730–D737.
Olson, J.M., Brewer, C.A., An evaluation of color selections to accommodate map users with color-vision impairments. Ann. Assoc. Am. Geogr. 87:1 (1997), 103–134.