A. Larsen, Vibration excitation and damping of suspension bridge hanger cables, in: V. Gattulli, M. Lepidi, L. Martinelli (Eds.), Dynamics and Aerodynamics of Cables. ISDAC 2023. Lecture Notes in Civil Engineering, Springer, Cham, 2024, pp. 217–227. 10.1007/978-3-031-47152-0_19
G. Bacci, Ø. Petersen, V. Denoël, O. Øiseth, Advanced statistical analysis of vortex-induced vibrations in suspension bridge hangers with and without Stockbridge dampers, J. Wind Eng. Ind. Aerodyn. 255 (October) (2024) 105931. 10.1016/j.jweia.2024.105931
N. E. Komite, EN IEC 61897:2020 - Overhead Lines Requirements and Tests for Aeolian Vibration Dampers, Technical Report, NEK, 2020.
I. S. Committee, IEEE Guide for Laboratory Measurement of the Power Dissipation Characteristics of Aeolian Vibration Dampers for Single Conductors, Technical Report, IEEE, 1993.
G. H. Stockbridge, Overcoming vibration in transmission cables, Electr. World 86.26 (1925) 1304–1306.
R. Claren, G. Diana, Mathematical analysis of transmission line vibration data, IEEE Trans. Power Appar. Syst. 88 (12) (1969). 10.1016/0378-7796(78)90013-5
J. Chan, D. Havard, C. Rawlins, G. Diana, L. Cloutier, J. Lilien, C. Hardy, J. Wang, A. Goel, EPRI transmission line reference book: wind-induced conductor motion, Electric Power Research Institute (EPRI), 2009, 4–130.
H. Wagner, V. Ramamurti, R. V. R. Sastry, K. Hartmann, Dynamics of Stockbridge dampers, J. Sound Vib. 30 (2) (1973) 207–220. 10.1016/S0022-460X(73)80114-2
N. Barbieri, R. Barbieri, Dynamic analysis of Stockbridge damper, Adv. Acoust. Vib. 2012 (2012). 10.1155/2012/659398
G. Diana, A. Cigada, M. Belloli, M. Vanali, Stockbridge-type damper effectiveness evaluation: part I - Comparison between tests on span and on the shaker, IEEE Trans. Power Delivery 18 (4) (2003a) 1462–1469. 10.1109/TPWRD.2003.817797
G. Diana, A. Manenti, C. Pirotta, A. Zuin, Stockbridge-type damper effectiveness evaluation: part II - The influence of the impedance matrix terms on the energy dissipated, IEEE Trans. Power Delivery 18 (4) (2003b) 1470–1477. 10.1109/TPWRD.2003.817798
N. Carpineto, W. Lacarbonara, F. Vestroni, Hysteretic tuned mass dampers for structural vibration mitigation, J. Sound Vib. 333 (5) (2014) 1302–1318. 10.1016/j.jsv.2013.10.010
I. Pivovarov, O. G. Vinogradov, One application of Bouc’s model for non-linear hysteresis, J. Sound Vib. 118 (2) (1987) 209–216. 10.1016/0022-460X(87)90521-9
R. Bouc, Modele mathematique d’hysteresis, Acustica 21 (1971) 16–25.
Y.-K. Wen, Method for random vibration of hysteretic systems, J. Eng. Mech. Div. 102.2 (1976) 249–263.
F. Foti, L. Martinelli, An analytical approach to model the hysteretic bending behavior of spiral strands, Appl. Math. Model. 40 (2016) 6451–6467. 10.1016/j.apm.2016.01.063
D. Sauter, P. Hagedorn, On the hysteresis of wire cables in Stockbridge dampers, Int. J. Non Linear Mech. 37 (8) (2002) 1453–1459. 10.1016/S0020-7462(02)00028-8
D. Sauter, Modeling the dynamic characteristics of slack wire cables in Stockbridge dampers, Ph.D. thesis, Technischen Universität Darmstadt, 2003.
F. Foti, L. Martinelli, Hysteretic behaviour of Stockbridge dampers: modelling and parameter identification, Math. Prob. Eng. 2018 (2018). 10.1155/2018/8925121
S. Langlois, F. Legeron, Prediction of Aeolian vibration on transmission-line conductors using a nonlinear time history model - Part I: damper model, IEEE Trans. Power Delivery 29 (3) (2014) 1168–1175. 10.1109/TPWRD.2013.2291361
N. Barbieri, R. Barbieri, R. A. da Silva, M. J. Mannala, B. L. de Sant’Anna Vitor, Nonlinear dynamic analysis of wire-rope isolator and Stockbridge damper, Nonlinear Dyn. 86 (1) (2016) 501–512. 10.1007/s11071-016-2903-1
N. Barbieri, M. E. Marchi, M. J. Mannala, R. Barbieri, B. L. de Sant’Anna Vitor, B. G. de Sant’Anna Vitor, Nonlinear dynamic analysis of a Stockbridge damper, Can. J. Civ. Eng. 46 (9) (2019) 828–835. 10.1139/cjce-2018-0502
X. Luo, L. Wang, Y. Zhang, Nonlinear numerical model with contact for Stockbridge vibration damper and experimental validation, JVC/J. Vib. Contr. 22 (5) (2016) 1217–1227. 10.1177/1077546314535647
F. Foti, V. Denoël, L. Martinelli, F. Perotti, A stochastic and continuous model of Aeolian vibrations of conductors equipped with Stockbridge dampers, Proc. Int. Conf. Struct. Dyn., EURODYN 1 (2020) 2088–2102. 10.47964/1120.9169.20304
F. Bogani, A. Sosio, F. Foti, L. Martinelli, A reduced hysteretic model of Stockbridge dampers, Theor. Appl. Mech. - AIMETA 2022 26 (2023) 417–422. 10.21741/9781644902431-68
F. Di, L. Sun, L. Qin, L. Chen, Y. Zou, L. Jiang, Y. Zhu, Full-scale experimental study on vibration control of bridge suspenders using the Stockbridge damper, J. Bridge Eng. 25 (8) (2020) 1–10. 10.1061/(asce)be.1943-5592.0001591
F. Di, L. Sun, L. Chen, Suppression of vortex-induced high-mode vibrations of a cable-damper system by an additional damper, Eng. Struct. 242 (2021) 112495. 10.1016/j.engstruct.2021.112495
A. Olosz, B. Kövesdi, P. Hegyi, L. Dunai, Improvement of stockbridge damper design for cable-stayed bridges, Appl. Mech. 5 (4) (2024) 818–838. 10.3390/applmech5040046
M. Markiewicz, Optimum dynamic characteristics of Stockbridge dampers for dead-end spans, J. Sound Vib. 188 (2) (1995) 243–256. 10.1006/jsvi.1995.0589
F. Bogani, S. Alex, Modellazione di dissipatori Stockbridge per la mitigazione delle vibrazioni eoliche dei cavi sospesi, Ph.D. thesis, Politecnico di Milano, 2021. https://hdl.handle.net/10589/182363.
A. Bedford, Hamilton’s Principle in Continuum Mechanics, Springer International Publishing, Cham, Cham, 1985. 10.1007/978-3-030-90306-0
A. E. Charalampakis, V. K. Koumousis, Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm, J. Sound Vib. 314 (3–5) (2008) 571–585. 10.1016/j.jsv.2008.01.018
J. Song, A. Der Kiureghian, Generalized Bouc-Wen model for highly asymmetric hysteresis, J. Eng. Mech. 132 (6) (2006) 610–618. 10.1061/(ASCE)0733-9399(2006)132:6(610)
A. E. Charalampakis, Parameters of Bouc–Wen hysteretic model revisited, Proceedings of the 9th HSTAM International Congress on Mechanics, (2010).
F. Ikhouane, J. Rodellar, J. E. Hurtado, Analytical characterization of hysteresis loops described by the Bouc-Wen model, Mechanics of Advanced Materials and Structures 13 (6) (2006) 463–472. 10.1080/15376490600862830
F. Ikhouane, V. Mañosa, J. Rodellar, Dynamic properties of the hysteretic Bouc-Wen model, Syst. Contr. Lett. 56 (3) (2007) 197–205. 10.1016/j.sysconle.2006.09.001
Ø. Petersen, G. T. Frøseth, O. Øiseth, Design and deployment of a monitoring system on a long-span suspension bridge, in: Proceedings of the International Conference on Structural Health Monitoring of Intelligent Infrastructure, 2021-June, 2021, pp. 1813–1817.
S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, G. K. Rohde, Optimal mass transport: signal processing and machine-learning applications, IEEE Signal Process. Mag. 34 (4) (2017) 43–59. 10.1109/MSP.2017.2695801