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ARTICLE INFO ABSTRACT

Keywords: Stockbridge dampers are traditionally employed in overhead transmission lines, but their appli-
Stockbridge cation has recently expanded to suspension bridge hangers. In this context, their increased size,
Bouc-Wen

asymmetric configuration, vertical installation, and absence of dedicated design standards present
new challenges in understanding their dynamic behaviour. Proper characterisation is essential to
correctly dimension the device and determine its optimal placement on the structure. This study
addresses these challenges by presenting a four-degree-of-freedom nonlinear model of an asym-
metric Stockbridge damper using the Bouc-Wen hysteretic formulation to capture the messenger
cables’ amplitude-dependent stiffness and energy dissipation. The model is calibrated and vali-
dated against experimental tests conducted on dampers equal to the ones installed on the hangers
of the Hélogaland long-span suspension bridge. Unlike impedance-based black-box models, the
proposed framework provides a physically consistent representation that can be directly embed-
ded into system-level simulations of hanger-damper dynamics. The present framework can accu-
rately reconstruct both the overall transmitted force and the internal dynamics, in close agreement
with the measured responses across varying amplitudes and frequencies. In comparison to exist-
ing formulations developed for overhead line dampers, it requires no additional parameters but
more effectively captures the amplitude-dependent variation of the damper’s dynamic behaviour,
providing improved accuracy in representing its nonlinear characteristics.
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1. Introduction

Stockbridge dampers are commonly employed to reduce vortex-induced vibrations in overhead electrical transmission lines and
other cable-like structures subjected to wind forces. In recent years, their use has expanded to hangers of suspension bridges-an
application that presents new challenges due to the larger size of the dampers, the asymmetry of the attached masses, their installation
in a vertical configuration, and the absence of dedicated design standards or installation guidelines. Recent contributions have reported
cases of premature device failure before the expected design life on the Canakkale Bridge in Turkey [1] and on the Halogaland bridge
in Norway [2]. The cause of failure is often linked to a fatigue fracture in the messenger cable close to the clamp or one of the masses.
The fact that dampers are failing in these applications while being tested and designed according to standards intended for a different
context [3,4], highlights the need for further research and advancements in this field.
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Fig. 1. a) Two Stockbridge dampers installed on a hanger of the Halogaland bridge in Narvik, Norway. b) Test sample of a Stockbridge damper.

First introduced by Stockbridge in 1925 [5], this type of device has undergone numerous improvements and developments over the
years. The asymmetric version treated in this paper originates from the work of Claren and Diana in 1969 [6]. A typical Stockbridge
damper comprises a short steel strand, a clamp that fixes the mid-point of the strand to the structure needing additional damping, and
two masses fixed to each end of the strand, see Fig. 1b. This strand cable is commonly referred to as "messenger cable" or "messenger
strand" because Stockbridge’s original prototype employed the type of cable used, at that time, for overhead telephone lines [7,8]. The
damper acts as a supplementary dynamic system that aids in dissipating energy. When the damper is excited by the clamp motion,
the messenger cable functions as a flexible cantilever beam with lumped masses at its ends represented by a mass m and a rotational
inertia J. If the system behaves linearly, each of the masses exhibits two vibration modes in the plane. However, unlike a linear
cantilever, the actual behaviour of the messenger cable is nonlinear and quasi-linear "modes" or modality of vibration that depend on
amplitude are observed [9]. Indeed, unlike traditional tuned mass dampers, which exhibit linear damping characteristics, Stockbridge
dampers demonstrate nonlinear and hysteretic behaviour due to the complex mechanical behaviour of the messenger cable. During
the rotational and translational movement of the masses, the messenger cable bends, and the relative movement between its individual
wires occurs. The extent of this inter-wire slip increases with the vibration amplitude, dissipating energy through friction, inherently
leading to a nonlinear dynamic response. As a result, both the damping efficiency and dynamic stiffness of the damper depend on
the amplitude of the vibration that is transmitted to the damper through the clamp motion. The amplitude-dependent behaviour
of Stockbridge dampers has long been recognised in the literature on overhead transmission lines. Classical studies describe the
messenger cable as a nonlinear, hysteretic bending element whose effective stiffness decreases with increasing curvature or clamp
motion amplitude [4,7,10,11]. This softening results from inter-strand slip within the spiral-strand messenger cable and leads to a
reduction in the apparent bending stiffness at larger vibration amplitudes. In these works, the variation of effective stiffness is often
inferred indirectly from measured shear forces and bending moments at the clamp, revealing a transition from a high-stiffness regime
at small amplitudes to a markedly lower stiffness when macro-slip develops. Although these studies primarily focus on dampers
mounted on overhead conductors, they highlight that bending stiffness nonlinearity is an intrinsic feature of Stockbridge dampers
and the primary cause of their amplitude-dependent dynamic response.

The nonlinear nature of Stockbridge dampers is a key factor in their ability to mitigate wind-induced vibrations in cables effectively.
This nonlinearity helps overcome detuning issues that commonly affect conventional linear tuned mass dampers, which can arise from
variations in the damper’s mechanical properties or shifts in operational conditions over time [12]. In addition, this nonlinearity
lets the device dissipate energy over a broad band of frequencies rather than at a single tuned frequency. This is an indispensable
advantage given the many closely spaced vibration modes found in cable structures. Despite the significant impact of the messenger
cable’s hysteretic bending behaviour on the overall performance of Stockbridge dampers, limited research has been dedicated to
characterising this phenomenon. Earlier works by Pivovarov and Vinogradov [13] modelled the messenger cable as a single-degree-
of-freedom system, employing the phenomenological hysteresis model introduced by Bouc [14] and later expanded by Wen [15],
in the following referenced as the Bouc-Wen model. The Bouc-Wen model offers a framework based on differential equations for
simulating nonlinear constitutive behaviour. It uses a history variable to account for hysteresis and asymmetrical responses, making
it a flexible tool in structural dynamics. While this approach could replicate a range of hysteresis patterns, its primary limitation was
the ability to capture only a single degree of freedom due to the simplifications of the model.

Efforts have been made to develop a physics-based analytical model of the spiral strand [16]. However, the challenge of achieving
a sufficiently accurate description of the radial contact between each strand of the messenger cable has made the model difficult
to tune and implement in practice. More recent approaches leverage Euler-Bernoulli beam theory to provide another represen-
tation of the system’s modal properties. Sauter and Hagedorn [17] modelled the messenger cable as a nonlinear beam with its
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moment-curvature relationship described by the Masing hysteresis model. The model parameters were identified through static test-
ing, and its numerical predictions were validated against experimental results obtained from a shaker table test of a Stockbridge
damper prototype, demonstrating promising agreement. Building on the extensive experimental work of Sauter [18], Foti et al. [19]
incorporated the Bouc-Wen model to describe the nonlinear static bending behaviour of the section of the messenger cable.

Further advancements have been made using finite element modelling. Langlois and Legeron [20], as well as Barbieri et al. [9,
21,22], implemented nonlinear beam element models incorporating phenomenological hysteretic behaviour, with model parameters
derived from static and dynamic experimental tests. More recently, Luo [23] developed a full-scale nonlinear finite element model
using 3D solid elements. This approach allows for a detailed representation of local contact conditions between the wires of the
messenger cable and between the clamp and cable, revealing the significant influence of these localised interactions on the damper’s
overall dynamic response. However, while these full-scale 3D finite element models offer high accuracy, they are computationally
demanding and require careful calibration, especially given the presence of numerous nonlinear contact interfaces.

In more recent studies, Foti et al. [24] revisited Pivovarov’s work using a Bouc-Wen model with a minimal parameter set. Bogani
et al. [25] further refined this approach to extend the single-degree-of-freedom formulation to account for the rotational motion of the
inertial masses. To date, most research on modelling Stockbridge dampers has focused on their application in mitigating wind-induced
vibrations in overhead transmission lines. However, in recent years, their use has been expanded to other structural applications,
such as mitigating vortex-induced vibrations in suspension bridge hangers [26] and cable-stayed bridge cables [27,28]. Compared
to applications in overhead transmission lines, these dampers are often larger, asymmetric, and designed to operate over a broader
frequency range. Additionally, they are frequently installed in a vertical orientation. However, the codes currently used to characterise
and test these devices for bridge applications are still those originally developed for overhead power lines [3,4], which may not fully
account for the unique demands of bridge structures. Moreover, previous studies on the optimal tuning of Stockbridge dampers have
shown that their dynamic efficiency strongly depends on the boundary conditions and installation configuration of the cable-damper
system, with the optimum impedance varying between suspension and dead-end spans [29].

Notably, most of the models mentioned above have been developed for symmetric dampers for high-voltage transmission lines
applications and validated through experiments considering horizontally mounted dampers. As a result, these models are often for-
mulated for only half of the damper to exploit symmetry and, at best, experimentally identify the double-peak frequency response
relating the damper’s input motion and the output force exerted on the structure [17,19,23]. In these studies, the analysed motion
is typically assumed to be planar, as the most significant cable vibrations requiring damping are caused by vortex-induced vibration,
which occurs predominantly in a plane perpendicular to the wind direction. In practice, these models usually capture only the first, or
at most the second, peak of this transfer function, corresponding respectively to the lateral translation and, in some cases, rotation of
the mass in the modelled half-damper. Because the damper is symmetric, it is assumed that its dynamic behaviour is also symmetric,
and the force generated by one mass is doubled to estimate the total damping force.

In the present study, we build upon the work of Bogani [25,30], who employed a two-degree-of-freedom reduced hysteresis model
to describe the dynamics of a symmetric Stockbridge damper used in overhead line applications. The hysteretic restoring force of
the messenger cable was represented using a Bouc-Wen model with a minimal parameter formulation. While Bogani validated his
model using literature data for horizontally tested power line dampers, here we develop a dedicated laboratory setup that allows
for shaker excitation of a vertically mounted asymmetric Stockbridge damper, replicating the orientation and boundary conditions
of field installations on a vertical hanger. Specifically, we extend Bogani’s approach by developing a four-degree-of-freedom model,
adapted for an asymmetric Stockbridge damper designed to mitigate wind-induced vibrations in suspension bridge hangers. Beyond
the increased number of degrees of freedom, the proposed model is based on a collection of independent 1-DOF Bouc-Wen models
representing some generalised coordinates. Unlike other available models in the literature, these coordinates are obtained by linear
transformation of the physical coordinates (tip displacement and rotation) of the Stockbridge masses. This modelling option allows
working with a simple model, with possible physical interpretation of the model parameters, and offers the possibility of identifying
the parameters associated with each resonance independently, which significantly simplifies the calibration process. The model
parameters are identified experimentally using this vertical setup, and the model performance is assessed with both monoharmonic
and multiharmonic forcing time histories.

The model is finally reduced to a two-degree-of-freedom version and compared against the models available in literature by Bogani
[25] and Sauter [18], for overhead power line dampers.

2. Analytical model of the Stockbridge damper
2.1. Equations of motion

In the present work, we consider an asymmetric Stockbridge damper, where the asymmetry arises from differences in the lengths
of the messenger cables and in the masses of the attached weights. Fig. 1b shows a picture of the device, and the geometric parameters
are given in Table 1.

The damper is installed vertically on the hangers of the bridge, with the larger mass on the bottom, and the clamp connected
to the hanger by a bracket (Fig. 1a). The damper and the hanger form a combined dynamic system, where the hanger’s movement
drives the motion of the damper’s masses, leading to energy dissipation. The interaction between the hanger and the damper occurs
through the transmission of a force F,(f) and a moment M, (¢) through the clamp. Assuming that the clamp and the masses are rigid,
the damper can be modelled as three bodies connected by a set of nonlinear spring-dampers [19]. In the present work, only the
horizontal degree of freedom of the clamp, denoted as y,.(7), is considered. This assumption is justified by the fact that the dampers
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Table 1

Geometric parameters of the tested Stockbridge dampers.
Parameter Symbol  Value
Top mass m; 4.6 [kgl
Bottom mass m, 7.7 [kgl
Mass of the clamp m, 0.931 [kg]
Rotational inertia of top mass (about centroid) J 0.02145 [kg-m?]
Rotational inertia of bottom mass (about centroid) J, 0.05234 [kg-m?]
Distance from tip of messenger cable to centroid (top mass) eG.1 0.034 [m]
Distance from tip of messenger cable to centroid (bottom mass) eG 0.040 [m]
Length of top messenger cable L, 0.240 [m]
Length of bottom messenger cable L, 0.274 [m]
Diameter of messenger cable Deaple 0.017 [m]
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Fig. 2. a) Scheme of a Stockbridge damper with four degrees of freedom. b) Reaction forces of the messenger cable and the degrees of freedom of
the top mass at their interface connection.

are deliberately installed away from the nodal points of the hanger modes corresponding to the frequencies where the damper is most
effective in dissipating energy. In these regions, the rotational component at the clamp is negligible, and the horizontal translation
of the clamp is expected to govern the excitation of the damper. We will focus on the modelling of the transmitted force F,, which
represents the main contribution to energy dissipation when the damper is positioned away from a node. Finally, the formulation is
restricted to two dimensions, as vortex-induced vibrations in hangers occur predominantly in a vertical plane perpendicular to the
wind direction.

A schematic representation of the damper and its associated degrees of freedom is provided in Fig. 2a. The in-plane dynamics of
each mass can be completely described by specifying the horizontal translation x;(¢) and rotation 6;(r) of its centroid. In the following
sections, any variable that may refer to either mass of the damper is distinguished by the subscript i, with i = 1 denoting the upper
(smaller) mass and i = 2 denoting the lower (larger) mass. The mass of the messenger cable is neglected in the model, as it is small
compared to the two masses. Since energy dissipation occurs through friction within the messenger cables-and this friction depends
on the cables’ deformation-it is convenient to introduce the relative displacement between the centroid of the masses and the clamp,
denoted by d;(r) in the equations. The horizontal displacement of the centroid i can then be written as

XGi =Ye +dg; ey

The equations of motion of each of the two masses can be obtained via Hamilton’s variational principle applied to nonholonomic,
discrete dynamic systems [31]. The total variation of the action integral over two generic time instants ¢, and ¢, must be zero, as
shown in Eq. (2), where 6T, is the variation of kinetic energy of the i inertial mass and 6W; is the work done by the restoring force
of the messenger cable on the i mass.

31
/ (6T; + 6W)dt =0 (2)
15)

The kinetic energy of each of the masses can be expressed as in Eq. (3), accounting for both translational inertia, with the mass m;,
and rotational inertia, with the mass moment of inertia with respect to the centroid J;. However, because the energy dissipation
depends on the deformation of the messenger cable, it is helpful to express the equations in terms of the relative displacement of the
centroid with respect to the clamp (dg;(¢)) and the rotation of the mass (6;(r)). Therefore, with the use of Eq. (1), the kinetic energy
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N

(a) (b)

Fig. 3. Schematic of the first (a) and second (b) deformation shapes at resonance of one messenger cable.

can be expressed as

| ) 1, 5 1 . w2, 1o
Em[xGl. + EJ,HI. = Em,-(yc + de) + EJ‘-HI. (3)
The restoring forces acting on the inertial masses are the shear force F; and the moment M; acting at the cable tip, as shown in
Fig. 2b. The corresponding virtual work contribution for the i’* mass is expressed as

W, = —F,5dg; — M;36, + neq; F,50; )

T, =

which is used within the variational framework to derive the equations of motion. Here 5, = (—1)"*! accounts for the relative orienta-
tion of each mass, ensuring a correct sign for the moment arm of the horizontal force F;, while e; is the distance from the centroid of
mass i to the tip of the corresponding messenger cable. By enforcing the condition expressed in Eq. (2), that the total action integral is
zero over any time interval, the fundamental lemma of the calculus of variations can be applied, leading to the set of Euler-Lagrange
equations:

o,
i(—.’>+F,.=o (52)
i\ ad,
d (oT;
L= M, =0 5b
dt(ae,>+ ! (5b)

Taking the derivative of the kinetic energy in Eq. (3) and substituting in Eq. (5), the following system of equations is obtained:
mdg; + F; = —m; §, (6a)
Ji0; + M; — njeg; F; =0 (6b)

These equations represent the dynamics of the i’ mass as the equilibrium between the inertial forces and the nonlinear reaction
forces of the i’ messenger cable.

In the following Section 2.2, the nonlinear behaviour of the Stockbridge damper is modelled using the well-known Bouc-Wen
formulation [14]. The original model was developed for a single internal degree of freedom and has since been extended to multiple
degrees of freedom. However, such extensions often face difficulties, particularly in representing coupling effects through additional
nonlinear terms. In the present work, we deliberately avoid these complications by not adopting a full four-dimensional Bouc-Wen
model. While such an approach would be more general, it would also be unnecessarily complex for the purposes of the current study.
Indeed, a Stockbridge damper is designed to provide efficiency over a broad frequency range, with distinct resonances, with very
little possible interaction. These resonances correspond to states in which the damper masses vibrate with large amplitudes, involving
various combinations of tip displacements and rotations. A scheme of the first two resonance deformation shapes for one of the masses
of the damper is shown in Fig. 3. Drawing inspiration from modal analysis, the proposed model employs four uncoupled Bouc-Wen
systems defined in generalised coordinates u,; [m] and u,; [m]. These generalised coordinates are related to the physical quantities
dg; and 6; through a simple linear transformation, again inspired by the use of modal coordinates in structural dynamics. Through the
following derivations, it is shown that this model is simple and versatile enough to capture the essential features of an asymmetric
Stockbridge damper’s dynamics. The relation between the generalized coordinates u; ; and u,; and the physical quantities d; and 6,
is defined as

dg;\ _ |1 ail (Ui _ Ui
( 0; ) B [bi 1](“2) - ¢i< LoX] > @

where ¢, is the transformation matrix, and it is expressed as a function of two parameters ¢; [m] and b; [rad/m], which are related
to the ratio of displacement and rotation of the masses of the damper in the resonance states. In this way, Eq. (6) can be rewritten in
terms of the new generalised coordinates «;; [m] and u,; [m] as

m; dyy\ _ F,i —my,
A" feli)--(5) - () ®
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here Fy;(uy i, ;) [N] and F, ;(uy;, i, ;) [N] denote the nonlinear restoring forces expressed in the transformed coordinates acting on
mass i. A suitable expression for these forces will be the subject of Section 2.2. Assuming a model for the nonlinear forces is established
and the input clamp motion is known, the system is numerically integrated, and the time history of the generalised variables u, ; and
uy; is obtained. The time history of the state variables d; and 6, is then reconstructed by Eq. (7).

Once the dynamics of each of the masses is calculated, the force acting at the clamp F, is determined via an equilibrium (see
Fig. 2b). The total force exchanged by the damper to the hanger cable is the sum of the inertial force of the clamp and the contributions
coming from the internal reaction forces of the two messenger cables:

Fc=mcyc_(Fl+F2) (9)

The time history of the internal reaction forces F; and M, is reconstructed from the nonlinear generalised reaction forces as

1, ~
F\_(.r|1 0 Fy;
() = (e, 1) (22) ao

which can also be rewritten into Eq. (11), to highlight the effect of the scaling parameters a; and b, in weighting the contribution of
each of the two nonlinear generalised reaction forces for each internal reaction force F;.
1 =~ b;

F = 1 Fi-
—a;b; 1 —a;b;

By, (11)

2.2. The Bouc-Wen hysteresis model

In this section, an expression for the nonlinear generalised reaction forces F; and F,; of each messenger cable is derived. A
possible solution to express the nonlinear hysteretic behaviour of the messenger cables is to use the hysteretic Bouc-Wen model.
Different formulations of the original Bouc-Wen model are present in the literature [32-34]. The one used in this work originates
from the work by Ikhouane and coworkers [35,36] and it is defined by the following system of equations:

Fy = kM, 4 (e — gmin ez, (12a)
. 1. ) _ )
2y = — [y = oligi|lz;;1" 2 + (0 = Dyl 2;31"] (12b)

Ji

In Eq. (12a), the generic restoring force F; is expressed as a function of the generalised coordinate u;; and the hysteretic variable z;,
where i € {1,2} is the mass index and j € {1,2} is the generalised coordinate index. The dynamics of the dimensionless hysteretic
variable z i 18 ruled by the first-order nonlinear differential equation in Eq. (12b). The parameters of the model k;‘}m and k}‘}ax represent
the initial and post-yielding generalised stiffness of the system. The parameter c;; represents the generalised coordinate displacement
at which the system starts yielding. The unit of measurement of k}‘;‘i“, k;‘;a" will be in [N/m] and ¢,; in [m]. As shown in the scheme in
Jjis

Fig. 4a, when the amplitude of the displacement Au,, = max, ‘u ; ,.| is smaller than c;, the system behaves linearly with stiffness k;.‘}ax and

little energy is dissipated. Conversely, when the displacement amplitude Ay, exceeds c;;,
as low as the lower stiffness kr.‘[?i“. However, the variation in the effective stiffness k,;, = Fyax/tmax i gradual rather than abrupt,
as illustrated in Fig. 4b, which also shows how increasing the parameter c;; shifts the amplitude at which this transition begins. The
degree of nonlinearity of the system is governed by the difference between k;‘i‘m and k}“}a": the larger this difference, the stronger the
hysteretic effects and the greater the variation in the system’s dynamic behaviour with changes in input amplitude. Fig. 4c presents
an example of a hysteresis loop in the force-displacement plane obtained with this model. An increase in k;’i‘ax makes the loop wider,

the system can reach states with a stiffness

whereas an increase in k‘.‘i‘i" makes the loop narrower and more vertical. The parameters ¢ and n are non-dimensional parameters
controlling the shape of the transition between the two linear parts of the hysteresis cycle. For the application to one and two degrees
of freedom models of Stockbridge dampers, it has already been shown that the number of parameters to train can be successfully
reduced by setting ¢ = 1 and n = 1 [24]. This leads to the simpler formulation of the differential equation for the hysteretic variable:

Zy = &W(“/‘[,Z/i)”ﬁ 13)
i
where w(it;;,z;;) = 1 —sgn(i;;)z;;. To define a Bouc-Wen framework, three parameters, for each (j,i) combination, will have to be
set: k", k™% and c;;. Therefore, with two degrees of freedom for each mass (j € {1,2}) and an asymmetric Stockbridge damper
(i € {1,2}), a total of 12 parameters need to be determined.

It should be noted that the numerical values of the identified model parameters also depend on elements a; and b; of the transfor-
mation matrix ¢. Different choices of the factors a; and b; will therefore lead to different parameter values. They are therefore also
adjusted from the experimental data.

To numerically integrate the equations of motion, the system is recast in state-space form and augmented with the hysteretic
internal variables defined by the Bouc-Wen model of the generalised reaction forces. For the i"" mass, the transformed state vector is
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Fig. 4. a) Typical loading force-displacement diagram of a stranded cable. b) Variation of effective stiffness k,;; = Fy.x/Umax With an increase in
displacement amplitude (reference: k;‘l?i“ =500 N/m, k;‘,m = 1400 N/m and ¢ i = 0.02 m). ¢) Effect of the main parameters of the Bouc-Wen model on
the shape of the hysteresis loop.

defined as w; = (uy;, uy;, iy ;. iy, 214, Z5,)T, SO that the equation of motion in generalised coordinates (Eq. (8)) becomes

iy ;
I, 3 ity
—Fyi(uy i, 21) —m;§,
]¢’ i1 = =Ry, 29,) — i,
I, iW(uuv Zy i

1 . .
a‘l/(uzn Zo)ily

14

where i € {1,2} refers to the index of the top and bottom masses of the damper, respectively and I, is a 2x2 identity matrix.
Given an imposed clamp motion y.(¢) and considering all parameters with predefined values, this first-order system is then nu-
merically integrated in time-e.g. with the two-stage, one-step SOLVEIVP solver in the SciPy Python package-to obtain the time history
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Fig. 5. Portion of (a) output time history and (c) input time history of the analytical model presented in Section 2. On the right of each of the
signals, (b) and (d) respectively, is represented their power spectral density.

of the generalised state variables. These can then be transformed back to the physical state variables dg;; and 6; as shown in Eq. (7).
Once the motion of each mass has been determined, the external force at the clamp can be calculated using Eq. (9).

2.3. Numerical example

To better illustrate the behaviour of the model and the influence of its parameters, a simple numerical example is presented.
The analysis is structured in three steps. First, the system is subjected to a monoharmonic input signal with fixed amplitude, and the
characteristics of the resulting output are analysed in both time and frequency domains. Second, to investigate the model’s frequency-
dependent behaviour, a sine sweep input with constant amplitude is applied, allowing the response of the system to be observed over
a broad frequency range. Finally, the amplitude dependence of the system is explored by feeding sine sweep signals with varying
amplitudes into the model. The corresponding variations in the frequency response function are evaluated to highlight the nonlinear
nature of the damper and the sensitivity of its dynamic properties to the input amplitude.

The geometry and mass of the damper, as well as the model parameters, used in this example are those measured and identified
in the experimental campaign exposed in Section 3 and reported in Tables 1 and 4. A sinusoidal input clamp motion with a frequency
of 4Hz, amplitude A, = max, |y, (t)‘ =0.03m/s, and duration of 30s is applied to the model. The numerical simulation produces the
clamp force F.(r) as output. To eliminate the initial transients, the time interval 0-2s is disregarded, and the interval 2-3s for the
input and output time histories is considered. These signals, along with their power spectral densities, are shown in Fig. 5. As shown
in the figure, despite the input being a purely monoharmonic sinusoid, the output displays richer frequency content, indicating the
model’s capability to capture nonlinear dynamic behaviour.

While this example illustrates the model response under a single-frequency excitation, in practice, cable structures exhibit multiple
closely spaced vibration modes. Therefore, an effective damper must dissipate energy over a broad frequency range rather than at a
single frequency. To characterise the damper’s behaviour across this spectrum, it is common in the literature to evaluate its mechanical
impedance at the clamp as a function of frequency. To use this function is also the codified way to calculate the power dissipated by
this device and therefore measure its efficiency in damping wind-induced vibration [4,10,11]. In a linear configuration, this consists
of a scalar input/output function that relates clamp velocity to clamp force. It represents the ground reaction force associated with a
specific kinematic input. Assuming a harmonic input motion at the clamp y, () = V,e/“' and truncating the Fourier series of the output
force at steady state F, = F,je/“ at the first harmonic, keeping in mind that the system is nonlinear but often behaves semi-linearly
for a given vibration amplitude, the impedance function is defined as

Fy(jo)
V(o)

Z(jo) = (15)
To visualise this function, a sine sweep signal can be fed to the system as input clamp velocity y. (7). For example, Fig. 6 shows this
kind of input with an amplitude of 0.05m/s and in the range 0.1 — 50 Hz. The resulting impedance function calculated with Eq. (15)
is shown in Fig. 7. Since, as explained above, the energy dissipation in the messenger cables depends on their deformation, the
dynamic response of a Stockbridge damper changes with input amplitude. Therefore, a way to characterise the dynamic behaviour
of a Stockbridge damper is to feed input velocity sine sweeps with constant amplitude to visualise the nonlinear behaviour of the
device. Fig. 8 shows the impedance function computed numerically for six different values of the clamp input velocity amplitude

8
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Fig. 6. Time history of a sine sweep velocity input in the range 0.1 — 50 Hz.

1500 - — Ay = =0.05m/s
1250 4
1000 -

750 A

|Z(f)] [Ns/m]

500 A
250 A

0.75

0.50 -

0.25

0.00

—0.25 1

LZ(f) [mrad]

—0.50 A

-0.75 T T T T T T
0

f [Hz]

Fig. 7. Absolute value and phase of the numerical impedance function Z_ (/) in function of frequency resulting from a sine sweep clamp velocity
input with amplitude A; = 0.05m/s. Numerical values of damper properties are given in Tables 1 and 4.

Ay . As can be seen, the proposed model captures this feature, and the modulus of the numerically computed impedance varies as a
function of the imposed clamp velocity amplitude.

Fig. 8a shows that the peaks associated with each resonance frequency shift from right to left (i.e., from higher to lower frequencies)
as the amplitude of the input motion increases. However, this frequency shift is bounded for each resonance mode between an upper
and a lower limiting frequency. Beyond these limits, further increases or decreases in the input amplitude no longer result in lateral
movement of the resonance peak, but only in an increase in the peak magnitude. A graphical representation of this behaviour for the
generalised coordinate u, is provided in Fig. 9. In this figure, the two asymptotic boundary limits are approximated by black dashed
lines. The resonance peaks associated with the generalised coordinate u,, obtained for different input amplitude levels, are highlighted
and connected with a red dashed line. The legend provides the amplitude of the generalised coordinate u,; for each simulation. This
visualisation illustrates how the resonance frequency and maximum amplitude of vibration of the system progressively shift, following
a curved path, as the amplitude of the motion increases.

As previously mentioned, the ruling parameters of the model are kj.‘l?i“, k;.‘l?a", and c;; for i € {1,2} and j € {1,2}. The stiffness
parameters k;?l.ﬂ“ and k;.‘l.‘a" determine the location of the two vertical bounds between which the peak of the impedance function
shifts, depending on the input amplitude. The frequency of these boundaries can be approximated by

1 kji
L= = (16)
Lii 27\ Ay

where 4;; is one of the diagonal values of the generalised mass matrix of mass i:

i 0 .
A= ['g' J] b, Ay Ay = diag(Ay) a7
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Fig. 8. Absolute value of the numeric impedance function Z, (/) in function of frequency for an asymmetric Stockbridge damper numerically
calculated with the proposed model for six different clamp velocity amplitudes. The black dashed lines indicate the trend of the peaks across the
different amplitudes.

Despite some similarity, these limit frequencies are not true natural frequencies as would be defined for a linear system, but define
approximate values of the lower or upper bound (respectively using k;’[‘i“ or k;.‘,.lax in Eq. (16)) of the frequency range inside which
the system exhibits the largest dynamic magnification. The parameter c;;, instead, represents the yielding generalised displacement
and controls the amplitude range over which the impedance peak transitions between the two bounds. A visual representation of this
concept is reported in Fig. 9. Details on how to fine-tune the model parameters from experimental data are given in Section 3.3.

3. Stockbridge damper experimental testing and model parameter tuning
3.1. Experimental setup description

To fit the parameters of the model described in Section 2, a damper from the Hélogaland Bridge was tested in the laboratory of
the Structural Engineering Department at NTNU. The damper was excited using a modal vibration shaker (APS 420 ELECTRO-SEIS®,
reaction mass 3.8 kg, maximum force 900 N in the range 3 — 20 Hz). A picture (Fig. 10a) and a simplified schematic (Fig. 10b) of the
experimental setup are shown in Section 3.1. The shaker rod was connected to a glider equipped with recirculating ball bearings. A
C-shaped aluminium bracket incorporating two load cells was mounted on the glider. The damper was attached vertically to the load
cells, with the larger mass oriented downward. The shaker was operated in acceleration control mode. As a result, the damper was
excited through a prescribed horizontal clamp acceleration, j.(¢), such that the amplitude of the clamp velocity y (r) would be kept
constant. The horizontal clamp force, F,(r), was measured as the sum of the signals from the two load cells.

To measure the dynamic response of the damper, seven 1-D accelerometers were installed as shown in Fig. 11. Three accelerometers
were mounted on each of the two masses. The first accelerometer was positioned at the tip of the messenger cable. Due to spatial
constraints and surface roughness, it was not feasible to mount the accelerometer directly on the messenger cable. Therefore, it was
instead installed on the outer surface of the masses, with a horizontal offset along the z-axis from the cable tip (accelerometers A0l
and A03 in Fig. 11b). Since the mass is rigid, the motion of the centre of mass (d;(r)) can be derived by transforming measurements
in other locations. Therefore, the actual acceleration d;(t) was derived with the following equaiton:

dg; = iy — %ai +1e6,0; 18)
where ii; is the x axis acceleration from the sensor A01, if i = 1, or A03, if i = 2, and & is the angular acceleration around the y axis
of mass i. To be able to capture the rotation of each mass around the z-axis, a second accelerometer was placed as far as possible
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Fig. 10. a) Picture of the experimental setup for the asymmetric Stockbridge damper from the Hélogaland bridge. b) Simplified scheme of the
experimental setup.

from the centroid in the x-y plane (accelerometers A02 and A04 in Fig. 11b). To capture the rotation around the y axis, a third
accelerometer was placed symmetrically to the first one with respect to the x-y plane (accelerometers A06 and A07 in Fig. 11b). An
additional accelerometer was mounted on the clamp (accelerometer A0S in Fig. 11b), which directly measures the first derivative of
the input clamp velocity y.(¢). The rotations around the z-axis, 6;, and the y-axis, «;, were computed from the measured accelerations
as

o dipgp — i lingy — il
91 — AOZL A01 . @ = AOlL A06 (19a)
1y 1z
o dipgg — i iings — il
92 — AO3 A04 . @y = A03 A07 (19b)
L2y L2z

The distances between the accelerometers are reported in Table 2.
3.2. Analysis of experimental data

Before analysing the results of the sine sweep tests, it is useful to illustrate the two fundamental deformation shapes exhibited
by each half of the damper. Fig. 12 shows a portion of the recorded signal from the two accelerometers A0l and A02 (see Fig. 11b)
positioned, respectively, above and below the centre of mass. Fig. 12a shows, at approximately 5Hz, the mass vibrating in its first
mode, dominated by lateral translation. In this case, the two accelerometers move in phase, with A0l showing a slightly larger
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(a) (b)

Fig. 11. a) Picture of the instrumented damper. b) Scheme of the instrumented damper with lateral (left) and frontal (right) views. In red are
marked the locations of the accelerometers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Distances between accelerometers used to compute rotational
accelerations, as illustrated in Fig. 11.

Parameter Value [m]
Ly, 0.104
L, 0.106
Ly, 0.127
L, 0.118

amplitude because it is located further from the clamp. In Fig. 12b is shown the mass vibrating in the second mode, at around 21 Hz,
which is primarily rotational. The corresponding time histories reveal the two accelerometers oscillating in opposite phase: since A01
and A02 are positioned symmetrically with respect to the centroid, their readings reflect the rotational motion. Moreover, because the
centroid is closer to A01, the outer accelerometer A02 registers the larger response amplitude. These observations confirm, from an
experimental perspective, that the messenger cable behaves as expected, exhibiting two dominant deformation patterns resembling
those of a cantilever beam with an end mass.

The damper has been excited with logarithmic sine sweeps with target clamp velocity amplitude A, that is constant for each test.
Different amplitudes have been tested to highlight the nonlinear behaviour of the device. Standards in the field of overhead power
lines [3,4] suggest a constant velocity amplitude of 0.1 m/s to characterise this kind of device. However, there is no such standard for
bridge hanger applications. Therefore, the range of clamp velocity amplitudes for the present work was selected based on the velocity
amplitudes observed in the field [2]. A more detailed discussion of the selected test amplitudes and additional results at Ay'c =0.1m/s
is provided in A.

Figs. 13 and 14 show, as an example, the measured time histories of the clamp velocity and clamp force, respectively, for two of
the tested clamp velocity amplitudes. It is interesting to notice that a change of only 0.01 m/s in the input amplitude in Fig. 13, causes
noticeable shifts in both the height and frequency of the resonance peaks in the force signal in Fig. 14. This confirms the nonlinear
behaviour of the device under investigation. From the time history of the clamp force F,(r), shown in Fig. 14, it is evident that, for
both tested amplitudes, the frequency sweep excites the four resonances of the damper. Each resonance is reflected as a distinct peak
in the measured force response, corresponding to the dynamic amplification associated with the device’s resonances.

Due to limitations in the shaker’s capability to exactly reproduce the prescribed motion, the clamp velocity amplitude exhibited
slight variations. It was not strictly constant nor harmonic throughout the excitation, particularly near resonance frequencies, due
to the large inertial forces. These fluctuations are evident in the clamp velocity traces shown in Fig. 13. Another limitation in the
excitation system can be observed in Fig. 15. As shown in Fig. 15a, at low frequencies the shaker struggles to generate a perfectly
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Fig. 12. Time histories of the integrated measurements from sensors A0l and A02 at (a) 5.2Hz and (b) 21 Hz. The excitation is a sine sweep with
amplitude 4, =0.03 m/s”. On the right, the corresponding deformation shapes are shown schematically, exagerating the amplitude of displacements.
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sinusoidal motion, producing a more pointed, non-sinusoidal periodic waveform instead. The presence of this distortion is further
confirmed by the spectrogram in Fig. 13, where the input signal exhibits a multiharmonic content: additional weaker frequency
components appear as distinct bands at integer multiples of the instantaneous sweep frequency. However, as the frequency increases,
the excitation gradually recovers a clean sinusoidal shape, as illustrated in Fig. 15b, since the integer multiples of the target frequency
become more widely spaced and their relative influence on the waveform diminishes.

Using these time histories and Eq. (15), the impedance of the damper was computed in the frequency domain for each of the
five tests with different velocity amplitudes, obtaining the curves shown in Fig. 16. This plot demonstrates how the experimental
impedance of the damper changes with the input amplitude. In particular, as the amplitude of the imposed motion increases, the
damper becomes softer on average, and the four resonance peaks of the transfer function shift toward lower frequencies, a feature
that the presented model is precisely able to emulate. By extracting the peak values of the absolute value of the impedance from
Fig. 16a, the trends shown in Fig. 17 were obtained. The coordinates of the peaks generating the trend in Fig. 17 are also reported
in Table 3. These trends reveal that the peaks’ position and amplitude of each vibration mode follow a curved, amplitude-dependent
path. This behaviour differs for each resonance and represents the experimental realisation of the trends illustrated numerically in
Section 2.3. In Fig. 17, it can be seen how the trajectories are bounded by lower and upper frequency limits which correspond to the
pre-yield stiffness k., and the post-yielding stiffness k;, of each of the messenger cables. This concept was already illustrated in the
numerical example of Fig. 9, where the boundaries of the peak trajectories were shown schematically. Identifying these boundaries,
together with estimating the transition amplitude c;; for each degree of freedom, is essential for accurately calibrating the proposed
Bouc-Wen model.

3.3. Tuning of model parameters

The parameters of the numerical model of the asymmetric Stockbridge damper, introduced in Section 2.2, were calibrated using
the experimental data presented in Section 3.2. In particular, the trajectories of the experimental resonance impedance peaks shown
in Fig. 17, and reported in Table 3, served as the primary reference for tuning the model parameters.
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Fig. 13. Experimental sine sweep of the input clamp velocity used to characterise the dynamic response of the Stockbridge damper. Example of
two clamp velocity amplitudes. Time history above and spectrogram of the 0.04 m/s time history below.
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Fig. 14. Experimental output clamp force resulting from the input clamp velocity shown in Fig. 13.

Table 3

Variation of the position in [Hz] of the peaks of the absolute value of the experimental impedance function (|Zexp( HD
with the amplitude of the clamp velocity 4y (,, for the tested asymmetric Stockbridge damper. These values are plotted in

Fig. 17.
A; 0 [m/s] 0.01 0.02 0.03 0.04 0.05
1st mode ([Hz], [Ns/m])

Translation bottom mass (d;;,) (5.13, 839.87) (4.10, 680.12) (3.74, 593.98) (3.52, 734.21) (3.44, 1158.52)
2nd mode ([Hz], [Ns/m])
Translation top mass (d; ;) (8.20, 856.22) (6.23, 641.10) (5.35, 642.52) (4.98, 896.28) (4.76, 1410.15)
3rd mode ([Hz], [Ns/m])
Rotation bottom mass (6,) (16.04, 951.93) (13.18, 798.74) (11.43, 772.21) (10.69, 819.06) (10.18, 1046.51)
4th mode ([Hz], [Ns/m])

Rotation top mass (6,) (26.22, 1307.59) (22.41, 959.31) (20.00, 845.98) (18.97, 822.00) (17.87, 1006.81)
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Fig. 15. a) Zoom on the first part of the sweep input-output time history, corresponding to low frequencies (below 5Hz). b) Zoom on the second
part of the sweep input-output time history, corresponding to high frequencies (15 — 20 Hz).
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Fig. 16. Modulus and phase of the experimental impedance function Z,(f) for five different amplitudes of the input clamp velocity. The red
dashed lines indicate the trend of the peaks across the different amplitudes. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Firstly, the scaling parameters q; and b; were identified for each mass as the ratio between the amplitude of the centre of mass
displacement A, and rotation A,, at the resonance peaks given a clamp velocity amplitude. This was used as an initial guess, then the
values of the parameters were adjusted to improve the fitting with the experimental impedance peaks; the final values are reported in
Table 4. Thanks to the generalised coordinates transformation described in Section 2.1, each of the four peak trends could be analysed
separately. This allowed each of the four Bouc-Wen models, corresponding to the four uncoupled degrees of freedom of the damper
model, to be tuned independently. Consequently, only three parameters needed to be identified at a time, which made the training
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Fig. 17. Trajectories of the experimental resonance peaks in the (frequency, impedance) space, for several clamp velocity amplitudes A; =
[0.01,0.02,0.03,0.05] m/s for each degree of freedom.
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Fig. 18. Trajectories of the four peaks of the modulus of the impedance function of the Stockbridge damper. The dashed line represents the
experimental data, while the continuous line represents the tuned numerical Bouc-Wen model.

possible by simple hand adjustment. The initial estimates for the stiffness parameters k}“?i“, k;‘,?ax were obtained by inverting Eq. (16).
A practical approach for selecting an initial estimate for c;; involves analysing the impedance function at varying input amplitudes.
As previously discussed, each resonance peak follows a curved trajectory as the input amplitude increases. To estimate c;;, one should
observe the amplitude of the generalised coordinate (j,i) at an input level where the corresponding impedance peak has begun to
deviate from its upper frequency bound and lies in the lower portion of this path. At that point, the observed amplitude of the
generalised coordinate A, = provides a suitable order of magnitude for the corresponding c;; value. Refer to Fig. 9 for a visualisation
of this concept. It should be emphasised that these procedures, and in particular the approach used for c;;, only provide first-guess
values of the parameters, which then serve as starting points for the iterative tuning process.

Once an initial guess for the parameters was obtained, the peak trends of the numerical impedance function Z,,(f) (solid lines
in Figs. 18 and 19) were iteratively adjusted using a trial-and-error approach to match the experimental trends (dashed lines in the
same figures). In practice, this was carried out by numerically simulating the system response to the five sine sweep inputs, each
corresponding to one of the amplitudes used in the experimental tests. For each case, the impedance function was computed from the
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Fig. 19. Comparison between the peaks of the damper’s impedance function measured experimentally (dashed) and computed numerically (solid
line). a) Comparison of the peaks’ height for the four degrees of freedom for different input amplitudes. b) Comparison of the peaks’ frequency for
the four degrees of freedom for different input amplitudes.

i T
1500 —_— Ay ==001m/s
1 N . —— Aj==002m/s
s’
E 1000 - ! |' ~ N — Aj ==003m/s
Z — Ay, ==004m/s
B e Ay = =005m/s
N 500 A
o T T T T T T 1
(@)
075
050 -
g 025 1 r\ . —
i = g™
= =3 — //'
S 000 A f r \ = N
< NS ~ O
N _ i v o A
N -02s /
-0.50 A
-075 : . T . . .
(b 0 5 10 15 20 25 30
f[Hzl

Fig. 20. Modulus and phase of the numerical impedance function Z,,,,(f) for five different amplitudes of the input clamp velocity and parameter
values shown in Table 4. The red dashed lines indicate the trend of the peaks across the different amplitudes. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

simulated response using Eq. (15), and the resonance peak positions were extracted. These trajectories in the numerical simulations
were then compared with the experimental ones-both globally, on the amplitude-frequency plane as shown in Fig. 18, and separately
for amplitude and frequency values at each input level, as shown in Fig. 19a and b. Based on these comparisons, the parameters were
iteratively adjusted to improve the fit, and the process was repeated until satisfactory agreement was achieved.

The final parameter set, calibrated on experimental data, is summarised in Table 4. The corresponding numerical impedance
functions computed at the last iteration are shown in Fig. 20, which serves as the numerical counterpart of the experimental results
presented in Fig. 16.

3.4. Evaluation of the model performance - Multiharmonic excitation

To validate the trained model, a time history recorded in the field was used as excitation to the shaker. The recording came from
the permanent monitoring system on the Halogaland Bridge in Norway. For a detailed description of the monitoring system, refer

17



G. Bacci et al. Journal of Sound and Vibration 626 (2026) 119617

Table 4

Model parameters for the four degrees of freedom Bouc-Wen model tuned on experimental data
of an asymmetric Stockbridge damper nominally identical to the ones installed on the Hélogaland
suspension bridge [2].

Top mass translation Top mass rotation Bottom mass translation Bottom mass rotation

i=1 i=1 i=2 i=2
j=1 j=2 j=1 j=2
femin 4,600 230 4,800 140
Kimax 14,500 500 12,700 480
¢ 0.00036 0.0025 0.00055 0.0021
n 1 1 1 1
c 1 1 1 1
q 0.01 - -0.001
b, - -7

Fig. 21. Three Stockbridge dampers on a hanger of the Halogaland bridge in Narvik, Norway. On the right-most damper, three accelerometers have
been mounted. They are marked with red circles in the figure. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

to [2,37]. As part of the monitoring project, one of the dampers installed on the hangers was instrumented with three mono-axial
accelerometers as shown in Fig. 21.

One time history from the accelerometer on the clamp was selected to validate the model. This specific time series was selected
since it has its main frequency content in the 0 — 30 Hz range. The time history recorded in the field, to be played on the APS 420
shaker, was first upsampled from 128 Hz to 2000 Hz, then low-pass filtered at 45Hz and finally tapered at the start and at the end
with an exponential window. The processed time series was integrated in time to obtain the velocity signal, which was used as input
to the numerical model. The final input signal is shown in Fig. 22. In addition to the full time history (a), the figure also shows
a zoomed portion (b), where it is clear that the velocity is not a narrowband process. The signal’s power spectral density is also
shown in Fig. 22c. The acceleration signal was applied as input to the damper in the laboratory setup presented in Section 3.1, where
the output force and internal dynamic response were recorded. The velocity signal was fed into the numerical model to validate its
performance against the experimental results.

The comparison between experimental and numerical results is shown in Fig. 23, which displays both time-domain and frequency-
domain representations. The input signal contains energy in the 0-5Hz and 10-20 Hz bands, activating simultaneously all four reso-
nance modes of the damper. This contrasts with the training phase, where each mode was identified independently using monohar-
monic sine sweeps, highlighting the model’s ability to generalise its behaviour under multiharmonic excitation. The model performs
well in predicting the lateral degrees of freedom (d;,d,) and the output force F, in the entire frequency range. The rotational
motions (6,,6,) are also accurately reconstructed across the excited frequency content. Prediction accuracy diminishes above 30 Hz
due to limited input energy in that range.
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Fig. 22. Time and frequency representation of the processed field-recorded input that was reproduced with the shaker.

While the full nonlinear simulation provides a detailed prediction of both internal and external responses, it is important to
benchmark it against the traditional approach commonly used in engineering practice. In typical applications, once a Stockbridge
damper is tested, its impedance function is identified experimentally at a fixed velocity amplitude and used as a linear transfer
function. Next, the output response is calculated in a simplified manner. When the damper is subjected to multiharmonic excitation,
given the input velocity spectrum Sy ; (f), the output force spectrum Sy,  (f) is obtained as

ke =2 A)| 8550, (20)

where Z(f; A;) s the experimentally measured impedance at the chosen input velocity amplitude Ay . This simplified, frequency-
domain approach assumes linear superposition and neglects any amplitude-dependent effects or nonlinear internal dynamics. It yields
an estimate of the output force spectrum without carrying out any nonlinear simulation and forms the conventional basis for assessing
damper performance. This approach is limited by the fact that a representative input amplitude A; must be prescribed in advance.
In the literature on Stockbridge dampers for overhead transmission lines, typical values of A; used for impedance identification are
1-2m/s, as codified in standard testing procedures [4]. Given the time series shown in Fig. 22, the input amplitude was assumed here
in the range 0.01-0.05m/s.

Fig. 24 shows a comparison between the full nonlinear simulation and the impedance-based approach for the reconstruction of
the power spectral density of the clamp force F, for the case analysed here. The shaded region reflects the variation in predicted
output spectral density, for this specific case, obtained by evaluating the impedance at fixed amplitudes between 0.01 and 0.05m/s,
highlighting the sensitivity of this method to the chosen amplitude. For example, we can observe variability in the height of the peaks
in the 2 — 5 Hz range. Referring back to Fig. 18, it can be seen that in this region the peak heights are strongly amplitude-dependent:
the response magnification at A; = 0.05m/s is almost twice as large as that at A; = 0.01m/s. At the same time, the corresponding
peak trajectories exhibit a relatively narrow V-shape, indicating limited frequency variation. This combination explains why the
shaded region in Fig. 24 shows high uncertainty in peak height but comparatively little shift in frequency in this region. The opposite
trend is observed in the 25-30 Hz range, where the positions of the peaks in the impedance function vary significantly with 4,
proportionally more than their height, see Fig. 18. As a result, the shaded region in Fig. 24 primarily reflects uncertainty in peak
location rather than in peak magnitude.

To quantitatively compare the two output power spectral densities, the Wasserstein distance is introduced as a performance metric.
The Wasserstein distance, also known as the Earth Mover’s Distance or Kantorovich-Rubinstein metric, quantifies the minimal effort
required to transform one probability distribution into another by optimally transporting probability mass [38,39].

W(P,Q)= inf —yldy(x, 21
(P,0) yer(P’Q)/RXRIx yldy(x, ) 2n

In Eq. (21), I'(P, Q) denotes the set of all joint distributions y(x, y) with marginals P and Q, and |x — y| represents the ground distance
(here, in frequency units). The integral quantifies the total "effort" required to morph P into Q, making this metric particularly suitable
for comparing spectral distributions with similar energy content but non-perfectly aligned peaks. To make this metric meaningful,
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Fig. 23. Output of the presented numerical model given the input shown in Fig. 22. The internal dynamics and output force are shown in both time
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Table 5
Wasserstein distances computed for the power spectral density of the output force
between the experimental data and the two numerical methods, under three different

frequency bands.
Frequency range of evaluation for W-index 2-15Hz  15-25Hz  25-40 Hz
W-Index Exp - Sim (Nonlin Bouc-Wen) 0.276 0.423 1.126
W-Index Exp - Impedance-based with A; =0.0lm/s  2.004 0.699 0.813
W-Index Exp - Impedance-based with A; =0.04m/s  0.909 0.458 0.508

— Exp 10-1
—— Impedance-based 0.04 m/s

— Exp
—— Impedance-based 0.01 m/s

Normalised PSD
Normalised PSD

Normalised PSD

WD = 0.508 WD = 1.126

% l‘l é é 1‘0 1‘2 1‘4 Z‘E 2‘8 3‘0 3‘2 3‘4 3‘6 3‘5 4‘0 Z‘E 2‘5 B‘U 3‘2 3‘4 3‘6 3‘5 4‘0
Frequency [Hz] Frequency [Hz] Frequency [Hz]
Fig. 25. Power spectral densities of the clamp force F, for three selected cases from Table 5, illustrating how differences in the power spectral
density shape across methods are reflected in the corresponding values of the Wasserstein distance index.

the power spectral densities were first band-limited to a chosen frequency band and normalised to unit area, transforming them into
conventional distributions. A lower Wasserstein distance indicates better agreement, with a value of zero corresponding to perfect
spectral overlap.

Table 5 summarises the Wasserstein distances between the experimental output power spectral density and those computed by
the two methods for different frequency bands. Two amplitudes-4, =0.01 and A; = 0.04m/s-were used for the impedance-based
approach. Since the input amplitude of the signal in Fig. 22 is closer to 0.04m/s, thls value yields better agreement, as reflected in the
lower Wasserstein distances in Table 5. Within the 2-25 Hz range (where model parameters were identified), the full nonlinear model
performs best. Beyond this range, however, the impedance-based method-when using an appropriate amplitude-can outperform the
model. Fig. 25 shows three selected cases from Table 5 to give a visual representation of three different values of the Wasserstein
distance index. The first case corresponds to the best agreement in the table and is obtained using the full nonlinear model within the
range 2-15Hz. In the second case, the comparison between the experimental normalised power spectral density and the impedance-
based method at 0.04 m/s shows differences in the relative peak magnitudes, while in the third case-evaluated in the 25-40 Hz band
using the impedance-based method-both the peak intensities and their locations deviate significantly from the experimental reference.
This leads to a Wasserstein distance greater than one.

These results show that the full numerical model outperforms the impedance-based one if the input stays in the range where the
model parameters were identified. Furthermore, the full numerical model is essential when the internal dynamics of the damper are
required or when the input signal is not well characterised. Unlike the impedance-based method, it accommodates arbitrary input
shapes and amplitudes and can be embedded into broader system-level simulations. Therefore, it eliminates the need to select a fixed
input amplitude and offers better generalisation over a range of operating conditions.

What is particularly notable is that the nonlinear model was trained mode-by-mode using monoharmonic excitations, yet it is tested
under multiharmonic field inputs and still succeeds in accurately reconstructing both the internal dynamics and the output force.
The multiharmonic signals used for validation include frequency combinations that were not present during training, highlighting
the generalisation capability and physical consistency of the proposed model. This outcome demonstrates the appropriateness of the
proposed modelling approach and, importantly, shows that the identification process can remain relatively simple-relying only on
monoharmonic inputs for calibration.

Finally, since the experimental impedance function is required to calibrate the nonlinear Bouc-Wen model, practitioners should be
aware that both approaches-impedance-based and simulation-based-are complementary tools, and the choice between them should
depend on the specific application and level of detail required.

4. Comparison with existing analytical models

The proposed multi-modal Bouc-Wen model for asymmetric Stockbridge dampers presented in Section 2.2, can be readily adapted
to the symmetric case, in which the two masses are identical and the two messenger cables have the same length. This is done
by enforcing the parameters for the top mass (i = 1) equal to the ones of the bottom mass (i = 2), with the only exception of the
scaling parameters, which need to be set with opposite sign as a, = —a,; and b, = —b,, because of the different orientation of the two
masses. This symmetry enables direct validation against existing formulations in the literature. We test our model on the experimental
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Fig. 26. Real part of the impedance function for a symmetric Stockbridge damper for two different constant clamp velocities. Comparison between
the prediction of the proposed model and the models proposed by Bogani et al. [25] and Foti et al. [19]. The experimental data are from [18].

Table 6
Model parameters for the two degrees of freedom Bouc-Wen model tuned on literature experimental
data from [18] of a symmetric Stockbridge.

Top mass translation Top mass rotation Bottom mass translation Bottom mass rotation

i=1 i=1 i=2 i=2
j=1 j=2 j=1 j=2

kmin 3,700 50 3,700 50

k;‘i‘ax 12,000 165 12,000 165

cji 0.0011 0.0075 0.0011 0.0075

n 1 1 1 1

c 1 1 1 1

a; 0.001 - -0.001 -

b, - -10.5 10.5

Table 7
Geometric parameters of the Stockbridge damper tested by [18].

Parameter Symbol Value
Mass of top mass m 0.856 [kg]
Mass of bottom mass m, 0.856 [kg]
Mass of clamp m, 0.050 [kg]
Rotational inertia of top mass (about centroid) Ji 0.001814 [kg-m?]
Rotational inertia of bottom mass (about centroid) J, 0.001814 [kg-m?]
Distance from tip of messenger cable to centroid (top mass) eG ) 0.0325 [m]
Distance from tip of messenger cable to centroid (bottom mass) €6 0.0325 [m]
Length of messenger cable L 0.1875 [m]

benchmark data set taken from [18], which provides the real part of the impedance function measured at two input amplitudes. The
geometric parameters of the corresponding Stockbridge damper are summarised in Table 7. The parameters of the proposed model
have been tuned for this comparison following the same procedure described in Section 3.3 and are reported in Table 6. The only
difference with respect to the earlier tuning is that, in this case, an initial guess for the (two, rather than four) scaling parameters
a and b was not available. The values of a, and b, reported in Table 4 were arbitrarily adopted as initial estimates, from which the
iterative adjustment was performed. Here, we compare the real part of the impedance function defined in Eq. (15) with two other
recent models presented in the literature by Foti et al. [19] and Bogani et al. [25]. Foti et al.’s model treats each messenger cable as
an Euler-Bernoulli beam, with the sectional moment-curvature relation governed by a Bouc-Wen hysteresis model, whereas Bogani
et al. [25] applies a global Bouc-Wen formulation similar in scope to the present work. However, in Bogani et al.’s approach, the
equations of motion were written with respect to the messenger’s tip displacement and rotation, the two hysteretic variables were
identified as the displacement and rotation, and the inertial coupling between these two degrees of freedom was neglected. In terms
of the present formulation, this corresponds to disregarding the #;e; F; term in Eq. (6b), and forcing a diagonal transformation matrix
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(a; = b; =0). As a result, the two degrees of freedom were completely decoupled in their contribution to the impedance function,
and the model parameters were identified by fitting one resonance peak at a time. In contrast, in the present work, no inertial
contribution is disregarded, and the global Bouc-Wen model is applied in the space of generalised coordinates, allowing the coupled
dynamics of all degrees of freedom to be consistently represented. Sauter and Hagedorn [18] also presented a sectional model using
Masing-type hysteretic elements. However, as subsequent studies (e.g., Foti et al. [19]) have shown improved accuracy relative to
the formulation of Sauter and Hagerdon, their model is not included in the present comparison to maintain clarity in the plots. These
experimental data are the same as those used by both Bogani et al. and Foti et al. to validate their models. As shown in Fig. 26, the
proposed model accurately reproduces the experimental impedance function for a clamp-velocity amplitude of 0.2 m/s, which was
used for the tuning. Both the present model and Bogani et al.’s capture the amplitude-dependent variation of the dynamic response,
a feature not demonstrated in Foti et al.’s original work. It should be noted that the results for Bogani et al.’s and Foti et al.’s models
are taken directly from their respective publications and compared against the same experimental benchmark data, without any
re-identification of parameters. Furthermore, while the proposed formulation can accommodate asymmetric dampers, when reduced
to the symmetric case, it retains the same number of parameters as Bogani et al.’s model: six in total, with three associated with
each degree of freedom of the masses. By contrast, Foti et al.’s model employs five parameters per cross section of the messenger
cable, requiring identification for 11 sections in his study. Despite its generality, the proposed model therefore achieves comparable
parametrisation to Bogani et al.’s while offering improved predictive accuracy, particularly at different clamp-velocity amplitudes
than the ones used for tuning.

5. Conclusions

This study has presented a four-degree-of-freedom nonlinear model of an asymmetric Stockbridge damper designed for suspension
bridge hangers. The model effectively captures the force transmitted by the damper to the hanger, providing a reliable representation
of its external dynamic behaviour. Unlike black-box approaches, the proposed model also reproduces the internal dynamics of the
damper masses with notable accuracy, offering valuable insight into their translational and rotational motion contributions.

In contrast to the state-of-practice, which relies on experimentally identified impedance functions at fixed input amplitudes, the
proposed formulation offers a physically consistent representation that remains valid for arbitrary input histories. This enables the
model to be directly embedded into larger dynamical simulations of hanger-damper systems.

A significant aspect of this work is the model’s calibration using laboratory data collected from a damper unit sourced from the field
installation on the Halogaland Bridge. The tuning process utilised experimental impedance functions under varying input amplitudes
to identify the hysteretic parameters of the Bouc-Wen formulation. This allowed the model to capture the amplitude-dependent
nonlinearity that characterises the damper’s performance.

To validate its robustness and accuracy, the model was tested using both sinusoidal excitations and time histories recorded in
the field. These validation campaigns demonstrated that the model reliably predicts the transmitted force and the internal dynamics
across a broad range of operating conditions and frequency content of the clamp motion.

Furthermore, the model was benchmarked against recent models from the literature developed for overhead power lines applica-
tions. Using the same experimental datasets employed to validate those models, the present formulation showed comparable and, in
some cases, superior performance, especially in reproducing the amplitude-dependent shifts in the impedance function.

Future developments may focus on extending the formulation to predict the transmitted moment at the clamp, automating the
parameter identification process based on families of experimental impedance functions, and evaluating the performance of the model
once embedded in a full hanger-damper system and compared against long-term field measurements.

Overall, this work contributes an experimentally verified, nonlinear dynamic model capable of capturing both external force
transmission and internal damper dynamics. It offers an improved tool for the design and assessment of Stockbridge dampers in
bridge applications, with dimensions and installation conditions that are atypical for power line contexts.
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Appendix A. Additional test results at different amplitudes

Standards for the application of Stockbridge dampers on overhead power lines recommend a clamp-velocity amplitude of A; =
0.1 m/s for forced-vibration shaker tests [3,4]. In contrast, no equivalent standard or recommended testing protocol exists for dampers
intended for bridge hanger applications. The authors therefore selected the range of amplitudes to calibrate the present model from
field observations on hangers equipped with Stockbridge dampers. The field measurements have been carried out on the Hélogaland
bridge and described in [2]. Accordingly, the model parameters were fitted using data in the range A; = 0.01-0.05m/s. Additional
experiments were also performed at A; = 0.1 m/s. Fig. A1 shows the comparison between the experimental and numerical peak values
of the modulus of the impedance function of the Stockbridge damper for different input velocity amplitudes. Relative to Fig. 18, the
first point of each peak trajectory has been included in Fig. Al and corresponds to A; = 0.1m/s. The model continues to perform
well, particularly for the first two resonances, even though this amplitude lies outside the parameter-identification range. Its accuracy
in this case, therefore, represents an extrapolation of the trained model.

] 3
3500 1 —e— model dg,»
T' -—- expds,2
3000 A : —0— model dg,1
: —=- expdg,1
1 —o— model 6
2500 A 1 z
[ ] —--- exp 6,
E —@— model 6;
= 2000 A —== exp 01
=
N 1500 4
1000 A
500 4
0 T T T T T

5 10 15 20 25
Frequency [Hz]

Fig. Al. Trajectories of the four peaks of the modulus of the impedance function of the Stockbridge damper, including A; = 0.1 m/s. The dashed
line represents the experimental data, while the continuous line represents the tuned numerical Bouc-Wen model.
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