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 a b s t r a c t

Stockbridge dampers are traditionally employed in overhead transmission lines, but their appli-
cation has recently expanded to suspension bridge hangers. In this context, their increased size, 
asymmetric configuration, vertical installation, and absence of dedicated design standards present 
new challenges in understanding their dynamic behaviour. Proper characterisation is essential to 
correctly dimension the device and determine its optimal placement on the structure. This study 
addresses these challenges by presenting a four-degree-of-freedom nonlinear model of an asym-
metric Stockbridge damper using the Bouc-Wen hysteretic formulation to capture the messenger 
cables’ amplitude-dependent stiffness and energy dissipation. The model is calibrated and vali-
dated against experimental tests conducted on dampers equal to the ones installed on the hangers 
of the Hålogaland long-span suspension bridge. Unlike impedance-based black-box models, the 
proposed framework provides a physically consistent representation that can be directly embed-
ded into system-level simulations of hanger-damper dynamics. The present framework can accu-
rately reconstruct both the overall transmitted force and the internal dynamics, in close agreement 
with the measured responses across varying amplitudes and frequencies. In comparison to exist-
ing formulations developed for overhead line dampers, it requires no additional parameters but 
more effectively captures the amplitude-dependent variation of the damper’s dynamic behaviour, 
providing improved accuracy in representing its nonlinear characteristics.

1.  Introduction

Stockbridge dampers are commonly employed to reduce vortex-induced vibrations in overhead electrical transmission lines and 
other cable-like structures subjected to wind forces. In recent years, their use has expanded to hangers of suspension bridges-an 
application that presents new challenges due to the larger size of the dampers, the asymmetry of the attached masses, their installation 
in a vertical configuration, and the absence of dedicated design standards or installation guidelines. Recent contributions have reported 
cases of premature device failure before the expected design life on the Çanakkale Bridge in Turkey [1] and on the Hålogaland bridge 
in Norway [2]. The cause of failure is often linked to a fatigue fracture in the messenger cable close to the clamp or one of the masses. 
The fact that dampers are failing in these applications while being tested and designed according to standards intended for a different 
context [3,4], highlights the need for further research and advancements in this field.
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Fig. 1. a) Two Stockbridge dampers installed on a hanger of the Hålogaland bridge in Narvik, Norway. b) Test sample of a Stockbridge damper.

First introduced by Stockbridge in 1925 [5], this type of device has undergone numerous improvements and developments over the 
years. The asymmetric version treated in this paper originates from the work of Claren and Diana in 1969 [6]. A typical Stockbridge 
damper comprises a short steel strand, a clamp that fixes the mid-point of the strand to the structure needing additional damping, and 
two masses fixed to each end of the strand, see Fig. 1b. This strand cable is commonly referred to as "messenger cable" or "messenger 
strand" because Stockbridge’s original prototype employed the type of cable used, at that time, for overhead telephone lines [7,8]. The 
damper acts as a supplementary dynamic system that aids in dissipating energy. When the damper is excited by the clamp motion, 
the messenger cable functions as a flexible cantilever beam with lumped masses at its ends represented by a mass 𝑚 and a rotational 
inertia 𝐽 . If the system behaves linearly, each of the masses exhibits two vibration modes in the plane. However, unlike a linear 
cantilever, the actual behaviour of the messenger cable is nonlinear and quasi-linear "modes" or modality of vibration that depend on 
amplitude are observed [9]. Indeed, unlike traditional tuned mass dampers, which exhibit linear damping characteristics, Stockbridge 
dampers demonstrate nonlinear and hysteretic behaviour due to the complex mechanical behaviour of the messenger cable. During 
the rotational and translational movement of the masses, the messenger cable bends, and the relative movement between its individual 
wires occurs. The extent of this inter-wire slip increases with the vibration amplitude, dissipating energy through friction, inherently 
leading to a nonlinear dynamic response. As a result, both the damping efficiency and dynamic stiffness of the damper depend on 
the amplitude of the vibration that is transmitted to the damper through the clamp motion. The amplitude-dependent behaviour 
of Stockbridge dampers has long been recognised in the literature on overhead transmission lines. Classical studies describe the 
messenger cable as a nonlinear, hysteretic bending element whose effective stiffness decreases with increasing curvature or clamp 
motion amplitude [4,7,10,11]. This softening results from inter-strand slip within the spiral-strand messenger cable and leads to a 
reduction in the apparent bending stiffness at larger vibration amplitudes. In these works, the variation of effective stiffness is often 
inferred indirectly from measured shear forces and bending moments at the clamp, revealing a transition from a high-stiffness regime 
at small amplitudes to a markedly lower stiffness when macro-slip develops. Although these studies primarily focus on dampers 
mounted on overhead conductors, they highlight that bending stiffness nonlinearity is an intrinsic feature of Stockbridge dampers 
and the primary cause of their amplitude-dependent dynamic response.

The nonlinear nature of Stockbridge dampers is a key factor in their ability to mitigate wind-induced vibrations in cables effectively. 
This nonlinearity helps overcome detuning issues that commonly affect conventional linear tuned mass dampers, which can arise from 
variations in the damper’s mechanical properties or shifts in operational conditions over time [12]. In addition, this nonlinearity 
lets the device dissipate energy over a broad band of frequencies rather than at a single tuned frequency. This is an indispensable 
advantage given the many closely spaced vibration modes found in cable structures. Despite the significant impact of the messenger 
cable’s hysteretic bending behaviour on the overall performance of Stockbridge dampers, limited research has been dedicated to 
characterising this phenomenon. Earlier works by Pivovarov and Vinogradov [13] modelled the messenger cable as a single-degree-
of-freedom system, employing the phenomenological hysteresis model introduced by Bouc [14] and later expanded by Wen [15], 
in the following referenced as the Bouc-Wen model. The Bouc-Wen model offers a framework based on differential equations for 
simulating nonlinear constitutive behaviour. It uses a history variable to account for hysteresis and asymmetrical responses, making 
it a flexible tool in structural dynamics. While this approach could replicate a range of hysteresis patterns, its primary limitation was 
the ability to capture only a single degree of freedom due to the simplifications of the model.

Efforts have been made to develop a physics-based analytical model of the spiral strand [16]. However, the challenge of achieving 
a sufficiently accurate description of the radial contact between each strand of the messenger cable has made the model difficult 
to tune and implement in practice. More recent approaches leverage Euler-Bernoulli beam theory to provide another represen-
tation of the system’s modal properties. Sauter and Hagedorn [17] modelled the messenger cable as a nonlinear beam with its

Journal of Sound and Vibration 626 (2026) 119617 

2 



G. Bacci et al.

moment-curvature relationship described by the Masing hysteresis model. The model parameters were identified through static test-
ing, and its numerical predictions were validated against experimental results obtained from a shaker table test of a Stockbridge 
damper prototype, demonstrating promising agreement. Building on the extensive experimental work of Sauter [18], Foti et al. [19] 
incorporated the Bouc-Wen model to describe the nonlinear static bending behaviour of the section of the messenger cable.

Further advancements have been made using finite element modelling. Langlois and Legeron [20], as well as Barbieri et al. [9,
21,22], implemented nonlinear beam element models incorporating phenomenological hysteretic behaviour, with model parameters 
derived from static and dynamic experimental tests. More recently, Luo [23] developed a full-scale nonlinear finite element model 
using 3D solid elements. This approach allows for a detailed representation of local contact conditions between the wires of the 
messenger cable and between the clamp and cable, revealing the significant influence of these localised interactions on the damper’s 
overall dynamic response. However, while these full-scale 3D finite element models offer high accuracy, they are computationally 
demanding and require careful calibration, especially given the presence of numerous nonlinear contact interfaces.

In more recent studies, Foti et al. [24] revisited Pivovarov’s work using a Bouc-Wen model with a minimal parameter set. Bogani 
et al. [25] further refined this approach to extend the single-degree-of-freedom formulation to account for the rotational motion of the 
inertial masses. To date, most research on modelling Stockbridge dampers has focused on their application in mitigating wind-induced 
vibrations in overhead transmission lines. However, in recent years, their use has been expanded to other structural applications, 
such as mitigating vortex-induced vibrations in suspension bridge hangers [26] and cable-stayed bridge cables [27,28]. Compared 
to applications in overhead transmission lines, these dampers are often larger, asymmetric, and designed to operate over a broader 
frequency range. Additionally, they are frequently installed in a vertical orientation. However, the codes currently used to characterise 
and test these devices for bridge applications are still those originally developed for overhead power lines [3,4], which may not fully 
account for the unique demands of bridge structures. Moreover, previous studies on the optimal tuning of Stockbridge dampers have 
shown that their dynamic efficiency strongly depends on the boundary conditions and installation configuration of the cable-damper 
system, with the optimum impedance varying between suspension and dead-end spans [29].

Notably, most of the models mentioned above have been developed for symmetric dampers for high-voltage transmission lines 
applications and validated through experiments considering horizontally mounted dampers. As a result, these models are often for-
mulated for only half of the damper to exploit symmetry and, at best, experimentally identify the double-peak frequency response 
relating the damper’s input motion and the output force exerted on the structure [17,19,23]. In these studies, the analysed motion 
is typically assumed to be planar, as the most significant cable vibrations requiring damping are caused by vortex-induced vibration, 
which occurs predominantly in a plane perpendicular to the wind direction. In practice, these models usually capture only the first, or 
at most the second, peak of this transfer function, corresponding respectively to the lateral translation and, in some cases, rotation of 
the mass in the modelled half-damper. Because the damper is symmetric, it is assumed that its dynamic behaviour is also symmetric, 
and the force generated by one mass is doubled to estimate the total damping force.

In the present study, we build upon the work of Bogani [25,30], who employed a two-degree-of-freedom reduced hysteresis model 
to describe the dynamics of a symmetric Stockbridge damper used in overhead line applications. The hysteretic restoring force of 
the messenger cable was represented using a Bouc-Wen model with a minimal parameter formulation. While Bogani validated his 
model using literature data for horizontally tested power line dampers, here we develop a dedicated laboratory setup that allows 
for shaker excitation of a vertically mounted asymmetric Stockbridge damper, replicating the orientation and boundary conditions 
of field installations on a vertical hanger. Specifically, we extend Bogani’s approach by developing a four-degree-of-freedom model, 
adapted for an asymmetric Stockbridge damper designed to mitigate wind-induced vibrations in suspension bridge hangers. Beyond 
the increased number of degrees of freedom, the proposed model is based on a collection of independent 1-DOF Bouc-Wen models 
representing some generalised coordinates. Unlike other available models in the literature, these coordinates are obtained by linear 
transformation of the physical coordinates (tip displacement and rotation) of the Stockbridge masses. This modelling option allows 
working with a simple model, with possible physical interpretation of the model parameters, and offers the possibility of identifying 
the parameters associated with each resonance independently, which significantly simplifies the calibration process. The model 
parameters are identified experimentally using this vertical setup, and the model performance is assessed with both monoharmonic 
and multiharmonic forcing time histories.

The model is finally reduced to a two-degree-of-freedom version and compared against the models available in literature by Bogani 
[25] and Sauter [18], for overhead power line dampers.

2.  Analytical model of the Stockbridge damper

2.1.  Equations of motion

In the present work, we consider an asymmetric Stockbridge damper, where the asymmetry arises from differences in the lengths 
of the messenger cables and in the masses of the attached weights. Fig. 1b shows a picture of the device, and the geometric parameters 
are given in Table 1.

The damper is installed vertically on the hangers of the bridge, with the larger mass on the bottom, and the clamp connected 
to the hanger by a bracket (Fig. 1a). The damper and the hanger form a combined dynamic system, where the hanger’s movement 
drives the motion of the damper’s masses, leading to energy dissipation. The interaction between the hanger and the damper occurs 
through the transmission of a force 𝐹𝑐 (𝑡) and a moment 𝑀𝑐 (𝑡) through the clamp. Assuming that the clamp and the masses are rigid, 
the damper can be modelled as three bodies connected by a set of nonlinear spring-dampers [19]. In the present work, only the 
horizontal degree of freedom of the clamp, denoted as 𝑦𝑐 (𝑡), is considered. This assumption is justified by the fact that the dampers 
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Table 1 
Geometric parameters of the tested Stockbridge dampers.
 Parameter  Symbol  Value
 Top mass 𝑚1  4.6 [kg]
 Bottom mass 𝑚2  7.7 [kg]
 Mass of the clamp 𝑚𝑐  0.931 [kg]
 Rotational inertia of top mass (about centroid) 𝐽1  0.02145 [kg⋅m2]
 Rotational inertia of bottom mass (about centroid) 𝐽2  0.05234 [kg⋅m2]
 Distance from tip of messenger cable to centroid (top mass) 𝑒𝐺,1  0.034 [m]
 Distance from tip of messenger cable to centroid (bottom mass) 𝑒𝐺,2  0.040 [m]
 Length of top messenger cable 𝐿1  0.240 [m]
 Length of bottom messenger cable 𝐿2  0.274 [m]
 Diameter of messenger cable 𝐷cable  0.017 [m]

Fig. 2. a) Scheme of a Stockbridge damper with four degrees of freedom. b) Reaction forces of the messenger cable and the degrees of freedom of 
the top mass at their interface connection.

are deliberately installed away from the nodal points of the hanger modes corresponding to the frequencies where the damper is most 
effective in dissipating energy. In these regions, the rotational component at the clamp is negligible, and the horizontal translation 
of the clamp is expected to govern the excitation of the damper. We will focus on the modelling of the transmitted force 𝐹𝑐 , which 
represents the main contribution to energy dissipation when the damper is positioned away from a node. Finally, the formulation is 
restricted to two dimensions, as vortex-induced vibrations in hangers occur predominantly in a vertical plane perpendicular to the 
wind direction.

A schematic representation of the damper and its associated degrees of freedom is provided in Fig. 2a. The in-plane dynamics of 
each mass can be completely described by specifying the horizontal translation 𝑥𝐺𝑖(𝑡) and rotation 𝜃𝑖(𝑡) of its centroid. In the following 
sections, any variable that may refer to either mass of the damper is distinguished by the subscript 𝑖, with 𝑖 = 1 denoting the upper 
(smaller) mass and 𝑖 = 2 denoting the lower (larger) mass. The mass of the messenger cable is neglected in the model, as it is small 
compared to the two masses. Since energy dissipation occurs through friction within the messenger cables-and this friction depends 
on the cables’ deformation-it is convenient to introduce the relative displacement between the centroid of the masses and the clamp, 
denoted by 𝑑𝐺𝑖(𝑡) in the equations. The horizontal displacement of the centroid 𝑖 can then be written as

𝑥𝐺𝑖 = 𝑦𝑐 + 𝑑𝐺𝑖 (1)

The equations of motion of each of the two masses can be obtained via Hamilton’s variational principle applied to nonholonomic, 
discrete dynamic systems [31]. The total variation of the action integral over two generic time instants 𝑡1 and 𝑡2 must be zero, as 
shown in Eq. (2), where 𝛿𝑇𝑖 is the variation of kinetic energy of the 𝑖𝑡ℎ inertial mass and 𝛿𝑊𝑖 is the work done by the restoring force 
of the messenger cable on the 𝑖𝑡ℎ mass.

∫

𝑡1

𝑡2
(𝛿𝑇𝑖 + 𝛿𝑊𝑖)𝑑𝑡 = 0 (2)

The kinetic energy of each of the masses can be expressed as in Eq. (3), accounting for both translational inertia, with the mass 𝑚𝑖, 
and rotational inertia, with the mass moment of inertia with respect to the centroid 𝐽𝑖. However, because the energy dissipation 
depends on the deformation of the messenger cable, it is helpful to express the equations in terms of the relative displacement of the 
centroid with respect to the clamp (𝑑𝐺𝑖(𝑡)) and the rotation of the mass (𝜃𝑖(𝑡)). Therefore, with the use of Eq. (1), the kinetic energy 

Journal of Sound and Vibration 626 (2026) 119617 

4 



G. Bacci et al.

Fig. 3. Schematic of the first (a) and second (b) deformation shapes at resonance of one messenger cable.

can be expressed as
𝑇𝑖 =

1
2
𝑚𝑖𝑥̇

2
𝐺𝑖 +

1
2
𝐽𝑖𝜃̇

2
𝑖 = 1

2
𝑚𝑖(𝑦̇𝑐 + 𝑑̇𝐺𝑖)2 +

1
2
𝐽𝑖𝜃̇

2
𝑖 (3)

The restoring forces acting on the inertial masses are the shear force 𝐹𝑖 and the moment 𝑀𝑖 acting at the cable tip, as shown in 
Fig. 2b. The corresponding virtual work contribution for the 𝑖𝑡ℎ mass is expressed as

𝛿𝑊𝑖 = −𝐹𝑖𝛿𝑑𝐺𝑖 −𝑀𝑖𝛿𝜃𝑖 + 𝜂𝑖𝑒𝐺𝑖𝐹𝑖𝛿𝜃𝑖 (4)

which is used within the variational framework to derive the equations of motion. Here 𝜂𝑖 = (−1)𝑖+1 accounts for the relative orienta-
tion of each mass, ensuring a correct sign for the moment arm of the horizontal force 𝐹𝑖, while 𝑒𝐺𝑖 is the distance from the centroid of 
mass 𝑖 to the tip of the corresponding messenger cable. By enforcing the condition expressed in Eq. (2), that the total action integral is 
zero over any time interval, the fundamental lemma of the calculus of variations can be applied, leading to the set of Euler-Lagrange 
equations: 

𝑑
𝑑𝑡

(

𝜕𝑇𝑖
𝜕𝑑̇𝑖

)

+ 𝐹𝑖 = 0 (5a)

𝑑
𝑑𝑡

(

𝜕𝑇𝑖
𝜕𝜃̇𝑖

)

+𝑀𝑖 = 0 (5b)

Taking the derivative of the kinetic energy in Eq. (3) and substituting in Eq. (5), the following system of equations is obtained: 
𝑚𝑖𝑑𝐺𝑖 + 𝐹𝑖 = −𝑚𝑖𝑦̈𝑐 (6a)

𝐽𝑖𝜃̈𝑖 +𝑀𝑖 − 𝜂𝑖𝑒𝐺𝑖𝐹𝑖 = 0 (6b)

These equations represent the dynamics of the 𝑖𝑡ℎ mass as the equilibrium between the inertial forces and the nonlinear reaction 
forces of the 𝑖𝑡ℎ messenger cable.

In the following Section 2.2, the nonlinear behaviour of the Stockbridge damper is modelled using the well-known Bouc-Wen 
formulation [14]. The original model was developed for a single internal degree of freedom and has since been extended to multiple 
degrees of freedom. However, such extensions often face difficulties, particularly in representing coupling effects through additional 
nonlinear terms. In the present work, we deliberately avoid these complications by not adopting a full four-dimensional Bouc-Wen 
model. While such an approach would be more general, it would also be unnecessarily complex for the purposes of the current study. 
Indeed, a Stockbridge damper is designed to provide efficiency over a broad frequency range, with distinct resonances, with very 
little possible interaction. These resonances correspond to states in which the damper masses vibrate with large amplitudes, involving 
various combinations of tip displacements and rotations. A scheme of the first two resonance deformation shapes for one of the masses 
of the damper is shown in Fig. 3. Drawing inspiration from modal analysis, the proposed model employs four uncoupled Bouc-Wen 
systems defined in generalised coordinates 𝑢1𝑖 [m] and 𝑢2𝑖 [m]. These generalised coordinates are related to the physical quantities 
𝑑𝐺𝑖 and 𝜃𝑖 through a simple linear transformation, again inspired by the use of modal coordinates in structural dynamics. Through the 
following derivations, it is shown that this model is simple and versatile enough to capture the essential features of an asymmetric 
Stockbridge damper’s dynamics. The relation between the generalized coordinates 𝑢1,𝑖 and 𝑢2,𝑖 and the physical quantities 𝑑𝐺𝑖 and 𝜃𝑖
is defined as

(

𝑑𝐺𝑖
𝜃𝑖

)

=
[

1 𝑎𝑖
𝑏𝑖 1

](

𝑢1,𝑖
𝑢2,𝑖

)

= φ𝑖

(

𝑢1,𝑖
𝑢2,𝑖

)

(7)

where φ𝑖 is the transformation matrix, and it is expressed as a function of two parameters 𝑎𝑖 [m] and 𝑏𝑖 [rad/m], which are related 
to the ratio of displacement and rotation of the masses of the damper in the resonance states. In this way, Eq. (6) can be rewritten in 
terms of the new generalised coordinates 𝑢1,𝑖 [m] and 𝑢2,𝑖 [m] as

φ𝑇
𝑖

[

𝑚𝑖
𝐽𝑖

]

φ𝑖

(

𝑢̈1,𝑖
𝑢̈2,𝑖

)

= −
(

𝐹1,𝑖
𝐹2,𝑖

)

+φ𝑇
𝑖

(

−𝑚𝑦̈𝑐
0

)

(8)
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here 𝐹1,𝑖(𝑢1,𝑖, 𝑢̇1,𝑖) [N] and 𝐹2,𝑖(𝑢2,𝑖, 𝑢̇2,𝑖) [N] denote the nonlinear restoring forces expressed in the transformed coordinates acting on 
mass 𝑖. A suitable expression for these forces will be the subject of Section 2.2. Assuming a model for the nonlinear forces is established 
and the input clamp motion is known, the system is numerically integrated, and the time history of the generalised variables 𝑢1,𝑖 and 
𝑢2,𝑖 is obtained. The time history of the state variables 𝑑𝐺𝑖 and 𝜃𝑖 is then reconstructed by Eq. (7).

Once the dynamics of each of the masses is calculated, the force acting at the clamp 𝐹𝑐 is determined via an equilibrium (see 
Fig. 2b). The total force exchanged by the damper to the hanger cable is the sum of the inertial force of the clamp and the contributions 
coming from the internal reaction forces of the two messenger cables:

𝐹𝑐 = 𝑚𝑐 𝑦̈𝑐 −
(

𝐹1 + 𝐹2
)

(9)

The time history of the internal reaction forces 𝐹𝑖 and 𝑀𝑖 is reconstructed from the nonlinear generalised reaction forces as
(

𝐹𝑖
𝑀𝑖

)

=
(

φ𝑇
𝑖

[

1 0
𝜂𝑒𝐺𝑖 1

])−1(𝐹1,𝑖
𝐹2,𝑖

)

(10)

which can also be rewritten into Eq. (11), to highlight the effect of the scaling parameters 𝑎𝑖 and 𝑏𝑖 in weighting the contribution of 
each of the two nonlinear generalised reaction forces for each internal reaction force 𝐹𝑖.

𝐹𝑖 =
1

1 − 𝑎𝑖𝑏𝑖
𝐹1,𝑖 −

𝑏𝑖
1 − 𝑎𝑖𝑏𝑖

𝐹2,𝑖 (11)

2.2.  The Bouc-Wen hysteresis model

In this section, an expression for the nonlinear generalised reaction forces 𝐹1,𝑖 and 𝐹2,𝑖 of each messenger cable is derived. A 
possible solution to express the nonlinear hysteretic behaviour of the messenger cables is to use the hysteretic Bouc-Wen model. 
Different formulations of the original Bouc-Wen model are present in the literature [32–34]. The one used in this work originates 
from the work by Ikhouane and coworkers [35,36] and it is defined by the following system of equations: 

𝐹𝑗𝑖 = 𝑘min𝑗𝑖 𝑢𝑗𝑖 +
(

𝑘max𝑗𝑖 − 𝑘min𝑗𝑖

)

𝑐𝑗𝑖𝑧𝑗𝑖 (12a)

𝑧̇𝑗𝑖 =
1
𝑐𝑗𝑖

[

𝑢̇𝑗𝑖 − 𝜎|𝑢̇𝑗𝑖||𝑧𝑗𝑖|𝑛−1𝑧𝑗𝑖 + (𝜎 − 1)𝑢̇𝑗𝑖|𝑧𝑗𝑖|𝑛
]

(12b)

In Eq. (12a), the generic restoring force 𝐹𝑗𝑖 is expressed as a function of the generalised coordinate 𝑢𝑗𝑖 and the hysteretic variable 𝑧𝑗𝑖, 
where 𝑖 ∈ {1, 2} is the mass index and 𝑗 ∈ {1, 2} is the generalised coordinate index. The dynamics of the dimensionless hysteretic 
variable 𝑧𝑗𝑖 is ruled by the first-order nonlinear differential equation in Eq. (12b). The parameters of the model 𝑘min𝑗𝑖  and 𝑘max𝑗𝑖  represent 
the initial and post-yielding generalised stiffness of the system. The parameter 𝑐𝑗𝑖 represents the generalised coordinate displacement 
at which the system starts yielding. The unit of measurement of 𝑘min𝑗𝑖 , 𝑘max𝑗𝑖  will be in [N/m] and 𝑐1𝑖 in [m]. As shown in the scheme in 
Fig. 4a, when the amplitude of the displacement 𝐴𝑢𝑗𝑖 = max𝑡

|

|

|

𝑢𝑗𝑖
|

|

|

 is smaller than 𝑐𝑗𝑖, the system behaves linearly with stiffness 𝑘max𝑗𝑖  and 
little energy is dissipated. Conversely, when the displacement amplitude 𝐴𝑢𝑗𝑖  exceeds 𝑐𝑗𝑖, the system can reach states with a stiffness 
as low as the lower stiffness 𝑘min𝑗𝑖 . However, the variation in the effective stiffness 𝑘𝑒𝑓𝑓 = 𝐹max∕𝑢max is gradual rather than abrupt, 
as illustrated in Fig. 4b, which also shows how increasing the parameter 𝑐𝑗𝑖 shifts the amplitude at which this transition begins. The 
degree of nonlinearity of the system is governed by the difference between 𝑘min𝑗𝑖  and 𝑘max𝑗𝑖 : the larger this difference, the stronger the 
hysteretic effects and the greater the variation in the system’s dynamic behaviour with changes in input amplitude. Fig. 4c presents 
an example of a hysteresis loop in the force-displacement plane obtained with this model. An increase in 𝑘max𝑗𝑖  makes the loop wider, 
whereas an increase in 𝑘min𝑗𝑖  makes the loop narrower and more vertical. The parameters 𝜎 and 𝑛 are non-dimensional parameters 
controlling the shape of the transition between the two linear parts of the hysteresis cycle. For the application to one and two degrees 
of freedom models of Stockbridge dampers, it has already been shown that the number of parameters to train can be successfully 
reduced by setting 𝜎 = 1 and 𝑛 = 1 [24]. This leads to the simpler formulation of the differential equation for the hysteretic variable:

𝑧̇𝑗𝑖 =
1
𝑐𝑗𝑖
𝜓(𝑢̇𝑗𝑖, 𝑧𝑗𝑖)𝑢̇𝑗𝑖 (13)

where 𝜓(𝑢̇𝑗𝑖, 𝑧𝑗𝑖) = 1 − sgn(𝑢̇𝑗𝑖)𝑧𝑗𝑖. To define a Bouc-Wen framework, three parameters, for each (𝑗, 𝑖) combination, will have to be 
set: 𝑘min𝑗𝑖 , 𝑘max𝑗𝑖  and 𝑐𝑗𝑖. Therefore, with two degrees of freedom for each mass (𝑗 ∈ {1, 2}) and an asymmetric Stockbridge damper 
(𝑖 ∈ {1, 2}), a total of 12 parameters need to be determined.

It should be noted that the numerical values of the identified model parameters also depend on elements 𝑎𝑖 and 𝑏𝑖 of the transfor-
mation matrix φ. Different choices of the factors 𝑎𝑖 and 𝑏𝑖 will therefore lead to different parameter values. They are therefore also 
adjusted from the experimental data.

To numerically integrate the equations of motion, the system is recast in state-space form and augmented with the hysteretic 
internal variables defined by the Bouc-Wen model of the generalised reaction forces. For the 𝑖𝑡ℎ mass, the transformed state vector is 
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Fig. 4. a) Typical loading force-displacement diagram of a stranded cable. b) Variation of effective stiffness 𝑘𝑒𝑓𝑓 = 𝐹max∕𝑢max with an increase in 
displacement amplitude (reference: 𝑘min𝑗𝑖 = 500 N/m, 𝑘max𝑗𝑖 = 1400 N/m and 𝑐𝑗𝑖 = 0.02 m). c) Effect of the main parameters of the Bouc-Wen model on 
the shape of the hysteresis loop.

defined as 𝐮𝑖 = (𝑢1,𝑖, 𝑢2,𝑖, 𝑢̇1,𝑖, 𝑢̇2,𝑖, 𝑧1,𝑖, 𝑧2,𝑖)T, so that the equation of motion in generalised coordinates (Eq. (8)) becomes

⎡

⎢

⎢

⎢

⎢

⎣

𝐼2

φ𝑇
𝑖

[

𝑚𝑖
𝐽𝑖

]

φ𝑖

𝐼2

⎤

⎥

⎥

⎥

⎥

⎦

𝐮̇𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑢̇1,𝑖
𝑢̇2,𝑖

−𝐹1,𝑖(𝑢1,𝑖, 𝑧1,𝑖) − 𝑚𝑖𝑦̈𝑐
−𝐹2,𝑖(𝑢2,𝑖, 𝑧2,𝑖) − 𝑎𝑖𝑚𝑖𝑦̈𝑐

1
𝑐𝑖𝑑
𝜓(𝑢̇1𝑖, 𝑧1𝑖)𝑢̇1,𝑖

1
𝑐𝑖𝜃
𝜓(𝑢̇2𝑖, 𝑧2𝑖)𝑢̇2,𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(14)

where 𝑖 ∈ {1, 2} refers to the index of the top and bottom masses of the damper, respectively and 𝐼2 is a 2x2 identity matrix.
Given an imposed clamp motion 𝑦𝑐 (𝑡) and considering all parameters with predefined values, this first-order system is then nu-

merically integrated in time-e.g. with the two-stage, one-step solveivp solver in the SciPy Python package-to obtain the time history 
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Fig. 5. Portion of (a) output time history and (c) input time history of the analytical model presented in Section 2. On the right of each of the 
signals, (b) and (d) respectively, is represented their power spectral density.

of the generalised state variables. These can then be transformed back to the physical state variables 𝑑𝐺𝑖 and 𝜃𝑖 as shown in Eq. (7). 
Once the motion of each mass has been determined, the external force at the clamp can be calculated using Eq. (9).

2.3.  Numerical example

To better illustrate the behaviour of the model and the influence of its parameters, a simple numerical example is presented. 
The analysis is structured in three steps. First, the system is subjected to a monoharmonic input signal with fixed amplitude, and the 
characteristics of the resulting output are analysed in both time and frequency domains. Second, to investigate the model’s frequency-
dependent behaviour, a sine sweep input with constant amplitude is applied, allowing the response of the system to be observed over 
a broad frequency range. Finally, the amplitude dependence of the system is explored by feeding sine sweep signals with varying 
amplitudes into the model. The corresponding variations in the frequency response function are evaluated to highlight the nonlinear 
nature of the damper and the sensitivity of its dynamic properties to the input amplitude.

The geometry and mass of the damper, as well as the model parameters, used in this example are those measured and identified 
in the experimental campaign exposed in Section 3 and reported in Tables 1 and 4. A sinusoidal input clamp motion with a frequency 
of 4Hz, amplitude 𝐴𝑦̇𝑐 = max𝑡

|

|

|

𝑦̇𝑐 (𝑡)
|

|

|

= 0.03m∕s, and duration of 30 s is applied to the model. The numerical simulation produces the 
clamp force 𝐹𝑐 (𝑡) as output. To eliminate the initial transients, the time interval 0-2 s is disregarded, and the interval 2-3 s for the 
input and output time histories is considered. These signals, along with their power spectral densities, are shown in Fig. 5. As shown 
in the figure, despite the input being a purely monoharmonic sinusoid, the output displays richer frequency content, indicating the 
model’s capability to capture nonlinear dynamic behaviour.

While this example illustrates the model response under a single-frequency excitation, in practice, cable structures exhibit multiple 
closely spaced vibration modes. Therefore, an effective damper must dissipate energy over a broad frequency range rather than at a 
single frequency. To characterise the damper’s behaviour across this spectrum, it is common in the literature to evaluate its mechanical 
impedance at the clamp as a function of frequency. To use this function is also the codified way to calculate the power dissipated by 
this device and therefore measure its efficiency in damping wind-induced vibration [4,10,11]. In a linear configuration, this consists 
of a scalar input/output function that relates clamp velocity to clamp force. It represents the ground reaction force associated with a 
specific kinematic input. Assuming a harmonic input motion at the clamp 𝑦̇𝑐 (𝑡) = 𝑉𝑐𝑒𝑗𝜔𝑡 and truncating the Fourier series of the output 
force at steady state 𝐹𝑐 = 𝐹𝑐0𝑒𝑗𝜔𝑡 at the first harmonic, keeping in mind that the system is nonlinear but often behaves semi-linearly 
for a given vibration amplitude, the impedance function is defined as

𝑍(𝑗𝜔) =
𝐹𝑐0(𝑗𝜔)
𝑉𝑐 (𝑗𝜔)

(15)

To visualise this function, a sine sweep signal can be fed to the system as input clamp velocity 𝑦̇𝑐 (𝑡). For example, Fig. 6 shows this 
kind of input with an amplitude of 0.05m∕s and in the range 0.1 − 50Hz. The resulting impedance function calculated with Eq. (15) 
is shown in Fig. 7. Since, as explained above, the energy dissipation in the messenger cables depends on their deformation, the 
dynamic response of a Stockbridge damper changes with input amplitude. Therefore, a way to characterise the dynamic behaviour 
of a Stockbridge damper is to feed input velocity sine sweeps with constant amplitude to visualise the nonlinear behaviour of the 
device. Fig. 8 shows the impedance function computed numerically for six different values of the clamp input velocity amplitude 
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Fig. 6. Time history of a sine sweep velocity input in the range 0.1 − 50Hz.

Fig. 7. Absolute value and phase of the numerical impedance function 𝑍num(𝑓 ) in function of frequency resulting from a sine sweep clamp velocity 
input with amplitude 𝐴𝑦𝑐 = 0.05m∕s. Numerical values of damper properties are given in Tables 1 and 4.

𝐴 ̇𝑦𝑐 . As can be seen, the proposed model captures this feature, and the modulus of the numerically computed impedance varies as a 
function of the imposed clamp velocity amplitude.

Fig. 8a shows that the peaks associated with each resonance frequency shift from right to left (i.e., from higher to lower frequencies) 
as the amplitude of the input motion increases. However, this frequency shift is bounded for each resonance mode between an upper 
and a lower limiting frequency. Beyond these limits, further increases or decreases in the input amplitude no longer result in lateral 
movement of the resonance peak, but only in an increase in the peak magnitude. A graphical representation of this behaviour for the 
generalised coordinate 𝑢11 is provided in Fig. 9. In this figure, the two asymptotic boundary limits are approximated by black dashed 
lines. The resonance peaks associated with the generalised coordinate 𝑢11, obtained for different input amplitude levels, are highlighted 
and connected with a red dashed line. The legend provides the amplitude of the generalised coordinate 𝑢11 for each simulation. This 
visualisation illustrates how the resonance frequency and maximum amplitude of vibration of the system progressively shift, following 
a curved path, as the amplitude of the motion increases.

As previously mentioned, the ruling parameters of the model are 𝑘min𝑗𝑖 , 𝑘max𝑗𝑖 , and 𝑐𝑗𝑖 for 𝑖 ∈ {1, 2} and 𝑗 ∈ {1, 2}. The stiffness 
parameters 𝑘min𝑗𝑖  and 𝑘max𝑗𝑖  determine the location of the two vertical bounds between which the peak of the impedance function 
shifts, depending on the input amplitude. The frequency of these boundaries can be approximated by

𝑓𝑗𝑖 =
1
2𝜋

√

𝑘𝑗𝑖
𝜆𝑗𝑖

(16)

where 𝜆𝑗𝑖 is one of the diagonal values of the generalised mass matrix of mass 𝑖:

Λ𝑖 = φ𝑇
𝑖

[

𝑚𝑖 0
0 𝐽𝑖

]

φ, 𝜆1𝑖, 𝜆2𝑖 = diag(Λ𝑖) (17)
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Fig. 8. Absolute value of the numeric impedance function 𝑍num(𝑓 ) in function of frequency for an asymmetric Stockbridge damper numerically 
calculated with the proposed model for six different clamp velocity amplitudes. The black dashed lines indicate the trend of the peaks across the 
different amplitudes.

Despite some similarity, these limit frequencies are not true natural frequencies as would be defined for a linear system, but define 
approximate values of the lower or upper bound (respectively using 𝑘min𝑗𝑖  or 𝑘max𝑗𝑖  in Eq. (16)) of the frequency range inside which 
the system exhibits the largest dynamic magnification. The parameter 𝑐𝑗𝑖, instead, represents the yielding generalised displacement 
and controls the amplitude range over which the impedance peak transitions between the two bounds. A visual representation of this 
concept is reported in Fig. 9. Details on how to fine-tune the model parameters from experimental data are given in Section 3.3.

3.  Stockbridge damper experimental testing and model parameter tuning

3.1.  Experimental setup description

To fit the parameters of the model described in Section 2, a damper from the Hålogaland Bridge was tested in the laboratory of 
the Structural Engineering Department at NTNU. The damper was excited using a modal vibration shaker (APS 420 ELECTRO-SEIS®, 
reaction mass 3.8 kg, maximum force 900 N in the range 3 − 20 Hz). A picture (Fig. 10a) and a simplified schematic (Fig. 10b) of the 
experimental setup are shown in Section 3.1. The shaker rod was connected to a glider equipped with recirculating ball bearings. A 
C-shaped aluminium bracket incorporating two load cells was mounted on the glider. The damper was attached vertically to the load 
cells, with the larger mass oriented downward. The shaker was operated in acceleration control mode. As a result, the damper was 
excited through a prescribed horizontal clamp acceleration, 𝑦̈𝑐 (𝑡), such that the amplitude of the clamp velocity 𝑦̇𝑐 (𝑡) would be kept 
constant. The horizontal clamp force, 𝐹𝑐 (𝑡), was measured as the sum of the signals from the two load cells.

To measure the dynamic response of the damper, seven 1-D accelerometers were installed as shown in Fig. 11. Three accelerometers 
were mounted on each of the two masses. The first accelerometer was positioned at the tip of the messenger cable. Due to spatial 
constraints and surface roughness, it was not feasible to mount the accelerometer directly on the messenger cable. Therefore, it was 
instead installed on the outer surface of the masses, with a horizontal offset along the 𝑧-axis from the cable tip (accelerometers 𝐴01
and 𝐴03 in Fig. 11b). Since the mass is rigid, the motion of the centre of mass (𝑑𝐺𝑖(𝑡)) can be derived by transforming measurements 
in other locations. Therefore, the actual acceleration 𝑑𝐺𝑖(𝑡) was derived with the following equaiton:

𝑑𝐺𝑖 = 𝑢̈𝑥𝑖 −
𝐿𝑖𝑧
2
𝛼̈𝑖 + 𝜂𝑖𝑒𝐺𝑖𝜃̈𝑖 (18)

where 𝑢̈𝑥𝑖 is the 𝑥 axis acceleration from the sensor 𝐴01, if 𝑖 = 1, or 𝐴03, if 𝑖 = 2, and 𝛼̈𝑖 is the angular acceleration around the 𝑦 axis 
of mass 𝑖. To be able to capture the rotation of each mass around the 𝑧-axis, a second accelerometer was placed as far as possible 
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Fig. 9. Illustration of the transition of resonance frequency with amplitude of input and existence of upper and lower bounds corresponding to the 
frequencies obtained with stiffnesses 𝑘min and 𝑘max. The legend provides the amplitude of the generalised coordinate 𝑢11 for each simulation. The 
red arrow indicates which amplitude of the generalised displacement 𝑢11 to use to have an estimate of the parameter 𝑐11. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. a) Picture of the experimental setup for the asymmetric Stockbridge damper from the Hålogaland bridge. b) Simplified scheme of the 
experimental setup.

from the centroid in the 𝑥-𝑦 plane (accelerometers 𝐴02 and 𝐴04 in Fig. 11b). To capture the rotation around the 𝑦 axis, a third 
accelerometer was placed symmetrically to the first one with respect to the 𝑥-𝑦 plane (accelerometers 𝐴06 and 𝐴07 in Fig. 11b). An 
additional accelerometer was mounted on the clamp (accelerometer 𝐴05 in Fig. 11b), which directly measures the first derivative of 
the input clamp velocity 𝑦̇𝑐 (𝑡). The rotations around the 𝑧-axis, 𝜃𝑖, and the 𝑦-axis, 𝛼𝑖, were computed from the measured accelerations 
as 

𝜃̈1 =
𝑢̈A02 − 𝑢̈A01

𝐿1𝑦
, 𝛼̈1 =

𝑢̈A01 − 𝑢̈A06
𝐿1𝑧

(19a)

𝜃̈2 =
𝑢̈A03 − 𝑢̈A04

𝐿2𝑦
, 𝛼̈2 =

𝑢̈A03 − 𝑢̈A07
𝐿2𝑧

(19b)

The distances between the accelerometers are reported in Table 2.

3.2.  Analysis of experimental data

Before analysing the results of the sine sweep tests, it is useful to illustrate the two fundamental deformation shapes exhibited 
by each half of the damper. Fig. 12 shows a portion of the recorded signal from the two accelerometers 𝐴01 and 𝐴02 (see Fig. 11b) 
positioned, respectively, above and below the centre of mass. Fig. 12a shows, at approximately 5Hz, the mass vibrating in its first 
mode, dominated by lateral translation. In this case, the two accelerometers move in phase, with 𝐴01 showing a slightly larger 
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Fig. 11. a) Picture of the instrumented damper. b) Scheme of the instrumented damper with lateral (left) and frontal (right) views. In red are 
marked the locations of the accelerometers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Table 2 
Distances between accelerometers used to compute rotational 
accelerations, as illustrated in Fig. 11.

 Parameter  Value [m]
𝐿1𝑦  0.104
𝐿1𝑧  0.106
𝐿2𝑦  0.127
𝐿2𝑧  0.118

amplitude because it is located further from the clamp. In Fig. 12b is shown the mass vibrating in the second mode, at around 21Hz, 
which is primarily rotational. The corresponding time histories reveal the two accelerometers oscillating in opposite phase: since 𝐴01
and 𝐴02 are positioned symmetrically with respect to the centroid, their readings reflect the rotational motion. Moreover, because the 
centroid is closer to 𝐴01, the outer accelerometer 𝐴02 registers the larger response amplitude. These observations confirm, from an 
experimental perspective, that the messenger cable behaves as expected, exhibiting two dominant deformation patterns resembling 
those of a cantilever beam with an end mass.

The damper has been excited with logarithmic sine sweeps with target clamp velocity amplitude 𝐴𝑦̇𝑐  that is constant for each test. 
Different amplitudes have been tested to highlight the nonlinear behaviour of the device. Standards in the field of overhead power 
lines [3,4] suggest a constant velocity amplitude of 0.1m/s to characterise this kind of device. However, there is no such standard for 
bridge hanger applications. Therefore, the range of clamp velocity amplitudes for the present work was selected based on the velocity 
amplitudes observed in the field [2]. A more detailed discussion of the selected test amplitudes and additional results at 𝐴𝑦̇𝑐 = 0.1m/s
is provided in A.

Figs. 13 and 14 show, as an example, the measured time histories of the clamp velocity and clamp force, respectively, for two of 
the tested clamp velocity amplitudes. It is interesting to notice that a change of only 0.01m/s in the input amplitude in Fig. 13, causes 
noticeable shifts in both the height and frequency of the resonance peaks in the force signal in Fig. 14. This confirms the nonlinear 
behaviour of the device under investigation. From the time history of the clamp force 𝐹𝑐 (𝑡), shown in Fig. 14, it is evident that, for 
both tested amplitudes, the frequency sweep excites the four resonances of the damper. Each resonance is reflected as a distinct peak 
in the measured force response, corresponding to the dynamic amplification associated with the device’s resonances.

Due to limitations in the shaker’s capability to exactly reproduce the prescribed motion, the clamp velocity amplitude exhibited 
slight variations. It was not strictly constant nor harmonic throughout the excitation, particularly near resonance frequencies, due 
to the large inertial forces. These fluctuations are evident in the clamp velocity traces shown in Fig. 13. Another limitation in the 
excitation system can be observed in Fig. 15. As shown in Fig. 15a, at low frequencies the shaker struggles to generate a perfectly 
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Fig. 12. Time histories of the integrated measurements from sensors 𝐴01 and 𝐴02 at (a) 5.2Hz and (b) 21Hz. The excitation is a sine sweep with 
amplitude 𝐴𝑦̇𝑐 = 0.03m/s2. On the right, the corresponding deformation shapes are shown schematically, exagerating the amplitude of displacements.

sinusoidal motion, producing a more pointed, non-sinusoidal periodic waveform instead. The presence of this distortion is further 
confirmed by the spectrogram in Fig. 13, where the input signal exhibits a multiharmonic content: additional weaker frequency 
components appear as distinct bands at integer multiples of the instantaneous sweep frequency. However, as the frequency increases, 
the excitation gradually recovers a clean sinusoidal shape, as illustrated in Fig. 15b, since the integer multiples of the target frequency 
become more widely spaced and their relative influence on the waveform diminishes.

Using these time histories and Eq. (15), the impedance of the damper was computed in the frequency domain for each of the 
five tests with different velocity amplitudes, obtaining the curves shown in Fig. 16. This plot demonstrates how the experimental 
impedance of the damper changes with the input amplitude. In particular, as the amplitude of the imposed motion increases, the 
damper becomes softer on average, and the four resonance peaks of the transfer function shift toward lower frequencies, a feature 
that the presented model is precisely able to emulate. By extracting the peak values of the absolute value of the impedance from 
Fig. 16a, the trends shown in Fig. 17 were obtained. The coordinates of the peaks generating the trend in Fig. 17 are also reported 
in Table 3. These trends reveal that the peaks’ position and amplitude of each vibration mode follow a curved, amplitude-dependent 
path. This behaviour differs for each resonance and represents the experimental realisation of the trends illustrated numerically in 
Section 2.3. In Fig. 17, it can be seen how the trajectories are bounded by lower and upper frequency limits which correspond to the 
pre-yield stiffness 𝑘max and the post-yielding stiffness 𝑘min of each of the messenger cables. This concept was already illustrated in the 
numerical example of Fig. 9, where the boundaries of the peak trajectories were shown schematically. Identifying these boundaries, 
together with estimating the transition amplitude 𝑐𝑗𝑖 for each degree of freedom, is essential for accurately calibrating the proposed 
Bouc-Wen model.

3.3.  Tuning of model parameters

The parameters of the numerical model of the asymmetric Stockbridge damper, introduced in Section 2.2, were calibrated using 
the experimental data presented in Section 3.2. In particular, the trajectories of the experimental resonance impedance peaks shown 
in Fig. 17, and reported in Table 3, served as the primary reference for tuning the model parameters.
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Fig. 13. Experimental sine sweep of the input clamp velocity used to characterise the dynamic response of the Stockbridge damper. Example of 
two clamp velocity amplitudes. Time history above and spectrogram of the 0.04m/s time history below.

Fig. 14. Experimental output clamp force resulting from the input clamp velocity shown in Fig. 13.

Table 3 
Variation of the position in [Hz] of the peaks of the absolute value of the experimental impedance function (|𝑍exp(𝑓 )|) 
with the amplitude of the clamp velocity 𝐴𝑦̇𝑐 (𝑡), for the tested asymmetric Stockbridge damper. These values are plotted in 
Fig. 17.
𝐴𝑦̇𝑐 (𝑡) [m/s]  0.01  0.02  0.03  0.04  0.05
1st mode ([Hz], [Ns/m])

Translation bottom mass (𝑑𝐺,2)  (5.13, 839.87)  (4.10, 680.12)  (3.74, 593.98)  (3.52, 734.21)  (3.44, 1158.52)
2nd mode ([Hz], [Ns/m])
Translation top mass (𝑑𝐺,1)  (8.20, 856.22)  (6.23, 641.10)  (5.35, 642.52)  (4.98, 896.28)  (4.76, 1410.15)
3rd mode ([Hz], [Ns/m])
Rotation bottom mass (𝜃2)  (16.04, 951.93)  (13.18, 798.74)  (11.43, 772.21)  (10.69, 819.06)  (10.18, 1046.51)
4th mode ([Hz], [Ns/m])
Rotation top mass (𝜃1)  (26.22, 1307.59)  (22.41, 959.31)  (20.00, 845.98)  (18.97, 822.00)  (17.87, 1006.81)
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Fig. 15. a) Zoom on the first part of the sweep input-output time history, corresponding to low frequencies (below 5Hz). b) Zoom on the second 
part of the sweep input-output time history, corresponding to high frequencies (15 − 20Hz).

Fig. 16. Modulus and phase of the experimental impedance function 𝑍exp(𝑓 ) for five different amplitudes of the input clamp velocity. The red 
dashed lines indicate the trend of the peaks across the different amplitudes. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

Firstly, the scaling parameters 𝑎𝑖 and 𝑏𝑖 were identified for each mass as the ratio between the amplitude of the centre of mass 
displacement 𝐴𝑑𝐺𝑖  and rotation 𝐴𝜃𝑖  at the resonance peaks given a clamp velocity amplitude. This was used as an initial guess, then the 
values of the parameters were adjusted to improve the fitting with the experimental impedance peaks; the final values are reported in 
Table 4. Thanks to the generalised coordinates transformation described in Section 2.1, each of the four peak trends could be analysed 
separately. This allowed each of the four Bouc-Wen models, corresponding to the four uncoupled degrees of freedom of the damper 
model, to be tuned independently. Consequently, only three parameters needed to be identified at a time, which made the training 
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Fig. 17. Trajectories of the experimental resonance peaks in the (frequency, impedance) space, for several clamp velocity amplitudes 𝐴𝑦̇𝑐 =
[0.01, 0.02, 0.03, 0.05] m/s for each degree of freedom.

Fig. 18. Trajectories of the four peaks of the modulus of the impedance function of the Stockbridge damper. The dashed line represents the 
experimental data, while the continuous line represents the tuned numerical Bouc-Wen model.

possible by simple hand adjustment. The initial estimates for the stiffness parameters 𝑘min𝑗𝑖 , 𝑘max𝑗𝑖  were obtained by inverting Eq. (16). 
A practical approach for selecting an initial estimate for 𝑐𝑗𝑖 involves analysing the impedance function at varying input amplitudes. 
As previously discussed, each resonance peak follows a curved trajectory as the input amplitude increases. To estimate 𝑐𝑗𝑖, one should 
observe the amplitude of the generalised coordinate (𝑗, 𝑖) at an input level where the corresponding impedance peak has begun to 
deviate from its upper frequency bound and lies in the lower portion of this path. At that point, the observed amplitude of the 
generalised coordinate 𝐴𝑢𝑗𝑖  provides a suitable order of magnitude for the corresponding 𝑐𝑗𝑖 value. Refer to Fig. 9 for a visualisation 
of this concept. It should be emphasised that these procedures, and in particular the approach used for 𝑐𝑗𝑖, only provide first-guess 
values of the parameters, which then serve as starting points for the iterative tuning process.

Once an initial guess for the parameters was obtained, the peak trends of the numerical impedance function 𝑍num(𝑓 ) (solid lines 
in Figs. 18 and 19) were iteratively adjusted using a trial-and-error approach to match the experimental trends (dashed lines in the 
same figures). In practice, this was carried out by numerically simulating the system response to the five sine sweep inputs, each 
corresponding to one of the amplitudes used in the experimental tests. For each case, the impedance function was computed from the 
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Fig. 19. Comparison between the peaks of the damper’s impedance function measured experimentally (dashed) and computed numerically (solid 
line). a) Comparison of the peaks’ height for the four degrees of freedom for different input amplitudes. b) Comparison of the peaks’ frequency for 
the four degrees of freedom for different input amplitudes.

Fig. 20. Modulus and phase of the numerical impedance function 𝑍𝑛𝑢𝑚(𝑓 ) for five different amplitudes of the input clamp velocity and parameter 
values shown in Table 4. The red dashed lines indicate the trend of the peaks across the different amplitudes. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

simulated response using Eq. (15), and the resonance peak positions were extracted. These trajectories in the numerical simulations 
were then compared with the experimental ones-both globally, on the amplitude-frequency plane as shown in Fig. 18, and separately 
for amplitude and frequency values at each input level, as shown in Fig. 19a and b. Based on these comparisons, the parameters were 
iteratively adjusted to improve the fit, and the process was repeated until satisfactory agreement was achieved.

The final parameter set, calibrated on experimental data, is summarised in Table 4. The corresponding numerical impedance 
functions computed at the last iteration are shown in Fig. 20, which serves as the numerical counterpart of the experimental results 
presented in Fig. 16.

3.4.  Evaluation of the model performance - Multiharmonic excitation

To validate the trained model, a time history recorded in the field was used as excitation to the shaker. The recording came from 
the permanent monitoring system on the Hålogaland Bridge in Norway. For a detailed description of the monitoring system, refer 
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Table 4 
Model parameters for the four degrees of freedom Bouc-Wen model tuned on experimental data 
of an asymmetric Stockbridge damper nominally identical to the ones installed on the Hålogaland 
suspension bridge [2].

 Top mass translation  Top mass rotation  Bottom mass translation  Bottom mass rotation
𝑖 = 1
𝑗 = 1

𝑖 = 1
𝑗 = 2

𝑖 = 2
𝑗 = 1

𝑖 = 2
𝑗 = 2

𝑘min𝑗𝑖  4,600  230  4,800  140
𝑘max𝑗𝑖  14,500  500  12,700  480
𝑐𝑗𝑖  0.00036  0.0025  0.00055  0.0021
𝑛  1  1  1  1
𝜎  1  1  1  1
𝑎𝑖  0.01  –  –0.001  –
𝑏𝑖  –  –7  7

Fig. 21. Three Stockbridge dampers on a hanger of the Hålogaland bridge in Narvik, Norway. On the right-most damper, three accelerometers have 
been mounted. They are marked with red circles in the figure. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

to [2,37]. As part of the monitoring project, one of the dampers installed on the hangers was instrumented with three mono-axial 
accelerometers as shown in Fig. 21.

One time history from the accelerometer on the clamp was selected to validate the model. This specific time series was selected 
since it has its main frequency content in the 0 − 30Hz range. The time history recorded in the field, to be played on the APS 420 
shaker, was first upsampled from 128Hz to 2000Hz, then low-pass filtered at 45Hz and finally tapered at the start and at the end 
with an exponential window. The processed time series was integrated in time to obtain the velocity signal, which was used as input 
to the numerical model. The final input signal is shown in Fig. 22. In addition to the full time history (a), the figure also shows 
a zoomed portion (b), where it is clear that the velocity is not a narrowband process. The signal’s power spectral density is also 
shown in Fig. 22c. The acceleration signal was applied as input to the damper in the laboratory setup presented in Section 3.1, where 
the output force and internal dynamic response were recorded. The velocity signal was fed into the numerical model to validate its 
performance against the experimental results.

The comparison between experimental and numerical results is shown in Fig. 23, which displays both time-domain and frequency-
domain representations. The input signal contains energy in the 0-5Hz and 10-20Hz bands, activating simultaneously all four reso-
nance modes of the damper. This contrasts with the training phase, where each mode was identified independently using monohar-
monic sine sweeps, highlighting the model’s ability to generalise its behaviour under multiharmonic excitation. The model performs 
well in predicting the lateral degrees of freedom (𝑑𝐺1, 𝑑𝐺2) and the output force 𝐹𝑐 in the entire frequency range. The rotational 
motions (𝜃1, 𝜃2) are also accurately reconstructed across the excited frequency content. Prediction accuracy diminishes above 30Hz
due to limited input energy in that range.
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Fig. 22. Time and frequency representation of the processed field-recorded input that was reproduced with the shaker.

While the full nonlinear simulation provides a detailed prediction of both internal and external responses, it is important to 
benchmark it against the traditional approach commonly used in engineering practice. In typical applications, once a Stockbridge 
damper is tested, its impedance function is identified experimentally at a fixed velocity amplitude and used as a linear transfer 
function. Next, the output response is calculated in a simplified manner. When the damper is subjected to multiharmonic excitation, 
given the input velocity spectrum 𝑆𝑦̇𝑐 𝑦̇𝑐 (𝑓 ), the output force spectrum 𝑆𝐹𝑐𝐹𝑐 (𝑓 ) is obtained as

𝑆𝐹𝑐𝐹𝑐 (𝑓 ) =
|

|

|

𝑍(𝑓 ;𝐴𝑦̇𝑐 )
|

|

|

2
𝑆𝑦̇𝑐 𝑦̇𝑐 (𝑓 ), (20)

where 𝑍(𝑓 ;𝐴𝑦̇𝑐 ) is the experimentally measured impedance at the chosen input velocity amplitude 𝐴𝑦̇𝑐 . This simplified, frequency-
domain approach assumes linear superposition and neglects any amplitude-dependent effects or nonlinear internal dynamics. It yields 
an estimate of the output force spectrum without carrying out any nonlinear simulation and forms the conventional basis for assessing 
damper performance. This approach is limited by the fact that a representative input amplitude 𝐴𝑦̇𝑐  must be prescribed in advance. 
In the literature on Stockbridge dampers for overhead transmission lines, typical values of 𝐴𝑦̇𝑐  used for impedance identification are 
1-2m/s, as codified in standard testing procedures [4]. Given the time series shown in Fig. 22, the input amplitude was assumed here 
in the range 0.01-0.05m/s.

Fig. 24 shows a comparison between the full nonlinear simulation and the impedance-based approach for the reconstruction of 
the power spectral density of the clamp force 𝐹𝑐 for the case analysed here. The shaded region reflects the variation in predicted 
output spectral density, for this specific case, obtained by evaluating the impedance at fixed amplitudes between 0.01 and 0.05m/s, 
highlighting the sensitivity of this method to the chosen amplitude. For example, we can observe variability in the height of the peaks 
in the 2 − 5Hz range. Referring back to Fig. 18, it can be seen that in this region the peak heights are strongly amplitude-dependent: 
the response magnification at 𝐴𝑦̇𝑐 = 0.05m/s is almost twice as large as that at 𝐴𝑦̇𝑐 = 0.01m/s. At the same time, the corresponding 
peak trajectories exhibit a relatively narrow V-shape, indicating limited frequency variation. This combination explains why the 
shaded region in Fig. 24 shows high uncertainty in peak height but comparatively little shift in frequency in this region. The opposite 
trend is observed in the 25-30Hz range, where the positions of the peaks in the impedance function vary significantly with 𝐴𝑦̇𝑐 , 
proportionally more than their height, see Fig. 18. As a result, the shaded region in Fig. 24 primarily reflects uncertainty in peak 
location rather than in peak magnitude.

To quantitatively compare the two output power spectral densities, the Wasserstein distance is introduced as a performance metric. 
The Wasserstein distance, also known as the Earth Mover’s Distance or Kantorovich-Rubinstein metric, quantifies the minimal effort 
required to transform one probability distribution into another by optimally transporting probability mass [38,39].

𝑊 (𝑃 ,𝑄) = inf
𝛾∈Γ(𝑃 ,𝑄)∫ℝ×ℝ

|𝑥 − 𝑦| 𝑑𝛾(𝑥, 𝑦) (21)

In Eq. (21), Γ(𝑃 ,𝑄) denotes the set of all joint distributions 𝛾(𝑥, 𝑦) with marginals 𝑃  and 𝑄, and |𝑥 − 𝑦| represents the ground distance 
(here, in frequency units). The integral quantifies the total "effort" required to morph 𝑃  into 𝑄, making this metric particularly suitable 
for comparing spectral distributions with similar energy content but non-perfectly aligned peaks. To make this metric meaningful, 
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Fig. 23. Output of the presented numerical model given the input shown in Fig. 22. The internal dynamics and output force are shown in both time 
and frequency domains.

Fig. 24. Power spectral density of the clamp force 𝐹𝑐 (top right in Fig. 23) reconstructed with the impedance-based method for a range of input 
amplitudes (light-blue shaded region) and with the full numerical simulation (green continuous line). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)
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Table 5 
Wasserstein distances computed for the power spectral density of the output force 
between the experimental data and the two numerical methods, under three different 
frequency bands.
 Frequency range of evaluation for W-index  2–15 Hz  15–25 Hz  25–40 Hz
 W-Index Exp - Sim (Nonlin Bouc-Wen)  0.276  0.423  1.126
 W-Index Exp - Impedance-based with 𝐴𝑦̇𝑐 = 0.01m/s  2.004  0.699  0.813
 W-Index Exp - Impedance-based with 𝐴𝑦̇𝑐 = 0.04m/s  0.909  0.458  0.508

Fig. 25. Power spectral densities of the clamp force 𝐹𝑐 for three selected cases from Table 5, illustrating how differences in the power spectral 
density shape across methods are reflected in the corresponding values of the Wasserstein distance index.

the power spectral densities were first band-limited to a chosen frequency band and normalised to unit area, transforming them into 
conventional distributions. A lower Wasserstein distance indicates better agreement, with a value of zero corresponding to perfect 
spectral overlap.

Table 5 summarises the Wasserstein distances between the experimental output power spectral density and those computed by 
the two methods for different frequency bands. Two amplitudes-𝐴𝑦̇𝑐 = 0.01 and 𝐴𝑦̇𝑐 = 0.04m/s-were used for the impedance-based 
approach. Since the input amplitude of the signal in Fig. 22 is closer to 0.04m/s, this value yields better agreement, as reflected in the 
lower Wasserstein distances in Table 5. Within the 2-25Hz range (where model parameters were identified), the full nonlinear model 
performs best. Beyond this range, however, the impedance-based method-when using an appropriate amplitude-can outperform the 
model. Fig. 25 shows three selected cases from Table 5 to give a visual representation of three different values of the Wasserstein 
distance index. The first case corresponds to the best agreement in the table and is obtained using the full nonlinear model within the 
range 2-15Hz. In the second case, the comparison between the experimental normalised power spectral density and the impedance-
based method at 0.04m/s shows differences in the relative peak magnitudes, while in the third case-evaluated in the 25-40Hz band 
using the impedance-based method-both the peak intensities and their locations deviate significantly from the experimental reference. 
This leads to a Wasserstein distance greater than one.

These results show that the full numerical model outperforms the impedance-based one if the input stays in the range where the 
model parameters were identified. Furthermore, the full numerical model is essential when the internal dynamics of the damper are 
required or when the input signal is not well characterised. Unlike the impedance-based method, it accommodates arbitrary input 
shapes and amplitudes and can be embedded into broader system-level simulations. Therefore, it eliminates the need to select a fixed 
input amplitude and offers better generalisation over a range of operating conditions.

What is particularly notable is that the nonlinear model was trained mode-by-mode using monoharmonic excitations, yet it is tested 
under multiharmonic field inputs and still succeeds in accurately reconstructing both the internal dynamics and the output force. 
The multiharmonic signals used for validation include frequency combinations that were not present during training, highlighting 
the generalisation capability and physical consistency of the proposed model. This outcome demonstrates the appropriateness of the 
proposed modelling approach and, importantly, shows that the identification process can remain relatively simple-relying only on 
monoharmonic inputs for calibration.

Finally, since the experimental impedance function is required to calibrate the nonlinear Bouc-Wen model, practitioners should be 
aware that both approaches-impedance-based and simulation-based-are complementary tools, and the choice between them should 
depend on the specific application and level of detail required.

4.  Comparison with existing analytical models

The proposed multi-modal Bouc-Wen model for asymmetric Stockbridge dampers presented in Section 2.2, can be readily adapted 
to the symmetric case, in which the two masses are identical and the two messenger cables have the same length. This is done 
by enforcing the parameters for the top mass (𝑖 = 1) equal to the ones of the bottom mass (𝑖 = 2), with the only exception of the 
scaling parameters, which need to be set with opposite sign as 𝑎2 = −𝑎1 and 𝑏2 = −𝑏1, because of the different orientation of the two 
masses. This symmetry enables direct validation against existing formulations in the literature. We test our model on the experimental 
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Fig. 26. Real part of the impedance function for a symmetric Stockbridge damper for two different constant clamp velocities. Comparison between 
the prediction of the proposed model and the models proposed by Bogani et al. [25] and Foti et al. [19]. The experimental data are from [18].

Table 6 
Model parameters for the two degrees of freedom Bouc-Wen model tuned on literature experimental 
data from [18] of a symmetric Stockbridge.

 Top mass translation  Top mass rotation  Bottom mass translation  Bottom mass rotation
𝑖 = 1
𝑗 = 1

𝑖 = 1
𝑗 = 2

𝑖 = 2
𝑗 = 1

𝑖 = 2
𝑗 = 2

𝑘min𝑗𝑖  3,700  50  3,700  50
𝑘max𝑗𝑖  12,000  165  12,000  165
𝑐𝑗𝑖  0.0011  0.0075  0.0011  0.0075
 n  1  1  1  1
𝜎  1  1  1  1
𝑎𝑖  0.001  –  –0.001  –
𝑏𝑖  –  –10.5  10.5

Table 7 
Geometric parameters of the Stockbridge damper tested by [18].
 Parameter  Symbol  Value
 Mass of top mass 𝑚1  0.856 [kg]
 Mass of bottom mass 𝑚2  0.856 [kg]
 Mass of clamp 𝑚𝑐  0.050 [kg]
 Rotational inertia of top mass (about centroid) 𝐽1  0.001814 [kg⋅m2]
 Rotational inertia of bottom mass (about centroid) 𝐽2  0.001814 [kg⋅m2]
 Distance from tip of messenger cable to centroid (top mass) 𝑒𝐺,1  0.0325 [m]
 Distance from tip of messenger cable to centroid (bottom mass) 𝑒𝐺,2  0.0325 [m]
 Length of messenger cable 𝐿  0.1875 [m]

benchmark data set taken from [18], which provides the real part of the impedance function measured at two input amplitudes. The 
geometric parameters of the corresponding Stockbridge damper are summarised in Table 7. The parameters of the proposed model 
have been tuned for this comparison following the same procedure described in Section 3.3 and are reported in Table 6. The only 
difference with respect to the earlier tuning is that, in this case, an initial guess for the (two, rather than four) scaling parameters 
𝑎 and 𝑏 was not available. The values of 𝑎2 and 𝑏2 reported in Table 4 were arbitrarily adopted as initial estimates, from which the 
iterative adjustment was performed. Here, we compare the real part of the impedance function defined in Eq. (15) with two other 
recent models presented in the literature by Foti et al. [19] and Bogani et al. [25]. Foti et al.’s model treats each messenger cable as 
an Euler-Bernoulli beam, with the sectional moment-curvature relation governed by a Bouc-Wen hysteresis model, whereas Bogani 
et al. [25] applies a global Bouc-Wen formulation similar in scope to the present work. However, in Bogani et al.’s approach, the 
equations of motion were written with respect to the messenger’s tip displacement and rotation, the two hysteretic variables were 
identified as the displacement and rotation, and the inertial coupling between these two degrees of freedom was neglected. In terms 
of the present formulation, this corresponds to disregarding the 𝜂𝑖𝑒𝐺𝑖𝐹𝑖 term in Eq. (6b), and forcing a diagonal transformation matrix 
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(𝑎𝑖 = 𝑏𝑖 = 0). As a result, the two degrees of freedom were completely decoupled in their contribution to the impedance function, 
and the model parameters were identified by fitting one resonance peak at a time. In contrast, in the present work, no inertial 
contribution is disregarded, and the global Bouc-Wen model is applied in the space of generalised coordinates, allowing the coupled 
dynamics of all degrees of freedom to be consistently represented. Sauter and Hagedorn [18] also presented a sectional model using 
Masing-type hysteretic elements. However, as subsequent studies (e.g., Foti et al. [19]) have shown improved accuracy relative to 
the formulation of Sauter and Hagerdon, their model is not included in the present comparison to maintain clarity in the plots. These 
experimental data are the same as those used by both Bogani et al. and Foti et al. to validate their models. As shown in Fig. 26, the 
proposed model accurately reproduces the experimental impedance function for a clamp-velocity amplitude of 0.2 m/s, which was 
used for the tuning. Both the present model and Bogani et al.’s capture the amplitude-dependent variation of the dynamic response, 
a feature not demonstrated in Foti et al.’s original work. It should be noted that the results for Bogani et al.’s and Foti et al.’s models 
are taken directly from their respective publications and compared against the same experimental benchmark data, without any 
re-identification of parameters. Furthermore, while the proposed formulation can accommodate asymmetric dampers, when reduced 
to the symmetric case, it retains the same number of parameters as Bogani et al.’s model: six in total, with three associated with 
each degree of freedom of the masses. By contrast, Foti et al.’s model employs five parameters per cross section of the messenger 
cable, requiring identification for 11 sections in his study. Despite its generality, the proposed model therefore achieves comparable 
parametrisation to Bogani et al.’s while offering improved predictive accuracy, particularly at different clamp-velocity amplitudes 
than the ones used for tuning.

5.  Conclusions

This study has presented a four-degree-of-freedom nonlinear model of an asymmetric Stockbridge damper designed for suspension 
bridge hangers. The model effectively captures the force transmitted by the damper to the hanger, providing a reliable representation 
of its external dynamic behaviour. Unlike black-box approaches, the proposed model also reproduces the internal dynamics of the 
damper masses with notable accuracy, offering valuable insight into their translational and rotational motion contributions.

In contrast to the state-of-practice, which relies on experimentally identified impedance functions at fixed input amplitudes, the 
proposed formulation offers a physically consistent representation that remains valid for arbitrary input histories. This enables the 
model to be directly embedded into larger dynamical simulations of hanger-damper systems.

A significant aspect of this work is the model’s calibration using laboratory data collected from a damper unit sourced from the field 
installation on the Hålogaland Bridge. The tuning process utilised experimental impedance functions under varying input amplitudes 
to identify the hysteretic parameters of the Bouc-Wen formulation. This allowed the model to capture the amplitude-dependent 
nonlinearity that characterises the damper’s performance.

To validate its robustness and accuracy, the model was tested using both sinusoidal excitations and time histories recorded in 
the field. These validation campaigns demonstrated that the model reliably predicts the transmitted force and the internal dynamics 
across a broad range of operating conditions and frequency content of the clamp motion.

Furthermore, the model was benchmarked against recent models from the literature developed for overhead power lines applica-
tions. Using the same experimental datasets employed to validate those models, the present formulation showed comparable and, in 
some cases, superior performance, especially in reproducing the amplitude-dependent shifts in the impedance function.

Future developments may focus on extending the formulation to predict the transmitted moment at the clamp, automating the 
parameter identification process based on families of experimental impedance functions, and evaluating the performance of the model 
once embedded in a full hanger-damper system and compared against long-term field measurements.

Overall, this work contributes an experimentally verified, nonlinear dynamic model capable of capturing both external force 
transmission and internal damper dynamics. It offers an improved tool for the design and assessment of Stockbridge dampers in 
bridge applications, with dimensions and installation conditions that are atypical for power line contexts.

CRediT authorship contribution statement

G. Bacci: Writing – original draft, Visualization, Validation, Software, Formal analysis, Data curation; Ø.W. Petersen: Writing 
– review & editing, Visualization, Supervision; V. Denoël: Supervision, Methodology, Conceptualization; O. Øiseth: Supervision, 
Project administration, Funding acquisition, Conceptualization.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgement

This research was financially supported by the Norwegian Public Roads Administration. The authors appreciate this support. 

Journal of Sound and Vibration 626 (2026) 119617 

23 



G. Bacci et al.

Appendix A.  Additional test results at different amplitudes

Standards for the application of Stockbridge dampers on overhead power lines recommend a clamp-velocity amplitude of 𝐴𝑦̇𝑐 =
0.1m/s for forced-vibration shaker tests [3,4]. In contrast, no equivalent standard or recommended testing protocol exists for dampers 
intended for bridge hanger applications. The authors therefore selected the range of amplitudes to calibrate the present model from 
field observations on hangers equipped with Stockbridge dampers. The field measurements have been carried out on the Hålogaland 
bridge and described in [2]. Accordingly, the model parameters were fitted using data in the range 𝐴𝑦̇𝑐 = 0.01–0.05m/s. Additional 
experiments were also performed at 𝐴𝑦̇𝑐 = 0.1m/s. Fig. A1 shows the comparison between the experimental and numerical peak values 
of the modulus of the impedance function of the Stockbridge damper for different input velocity amplitudes. Relative to Fig. 18, the 
first point of each peak trajectory has been included in Fig. A1 and corresponds to 𝐴𝑦̇𝑐 = 0.1m/s. The model continues to perform 
well, particularly for the first two resonances, even though this amplitude lies outside the parameter-identification range. Its accuracy 
in this case, therefore, represents an extrapolation of the trained model.

Fig. A1. Trajectories of the four peaks of the modulus of the impedance function of the Stockbridge damper, including 𝐴𝑦̇𝑐 = 0.1 m/s. The dashed 
line represents the experimental data, while the continuous line represents the tuned numerical Bouc-Wen model.
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