Genomic and virulence insights of Western European Aeromonas salmonicida subsp. salmonicida and development of Galleria mellonella infection assay. - 2025
Galleria mellonella; European Aeromonas salmonicida; antimicrobial resistance; mobile genetic elements; virulence; Anti-Bacterial Agents; Type III Secretion Systems; Animals; Larva/microbiology; Virulence/genetics; Anti-Bacterial Agents/pharmacology; Genome, Bacterial; Furunculosis/microbiology; Drug Resistance, Multiple, Bacterial/genetics; Plasmids/genetics; Microbial Sensitivity Tests; Genomics; Type III Secretion Systems/genetics; Aeromonas salmonicida/genetics; Aeromonas salmonicida/pathogenicity; Aeromonas salmonicida/drug effects; Moths/microbiology; Gram-Negative Bacterial Infections/microbiology; Gram-Negative Bacterial Infections/veterinary; Aeromonas salmonicida; Antimicrobial resistances; European aeromonas salmonicidum; Genetic elements; Infection models; Mobile genetic element; Salmonids; Drug Resistance, Multiple, Bacterial; Furunculosis; Gram-Negative Bacterial Infections; Larva; Moths; Plasmids; Biotechnology; Applied Microbiology and Biotechnology
Abstract :
[en] [en] AIMS: Aeromonas salmonicida subsp. salmonicida is the etiological agent of furunculosis, a fish disease highly aggressive for salmonids and responsible for significant economic losses in aquaculture worldwide. This study aimed to explore genomic and antimicrobial resistance traits of Western European A. salmonicida subsp. salmonicida strains and to develop an adapted infection model using larvae of the greater wax moth Galleria mellonella to assess the pathogenic potential of this psychrophilic subspecies.
METHODS AND RESULTS: Three A. salmonicida subsp. salmonicida strains, isolated from salmonids displaying clinical signs of furunculosis, were tested against a panel of antibiotics and sequenced to characterize their genome. Virulence was evaluated in G. mellonella larvae using bacterial doses ranging from 101 to 106 CFU/larva. Two isolates exhibited multidrug resistance to antibiotics commonly used against furunculosis. Although closely related to the reference strain A449, genomic analyses revealed multiple plasmids known to encode antibiotic resistance genes. Virulence assays showed that this subspecies was lethal at doses as low as 101 CFU/larva, and that a fully functional Type III secretion system (T3SS) is not essential for the infection of G. mellonella, likely due to the presence of other virulence factors in T3SS-deficient strains.
CONCLUSIONS: These findings enhance the genomic characterization of European A. salmonicida subsp. salmonicida and validate the use of G. mellonella larvae as a relevant alternative infection model for studying this psychrophilic subspecies.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Desmecht, Salomé ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI)
Touzain, Fabrice; Viral Genetics and Biosafety Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Rue des Fusillés, Ploufragan, 22440, France
Olivier, Thibaut ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Antoine, Céline ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Beven, Véronique; Viral Genetics and Biosafety Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Rue des Fusillés, Ploufragan, 22440, France
Meex, Cécile; Department of Clinical Microbiology, University Hospital of Liège, Avenue de l'Hôpital, Liège, 4000, Belgium
Lieffrig, François; Fish Pathology Laboratory, CER groupe, Rue de la Science, Marche-en-Famenne, 6900, Belgium
Charette, Steve J ; Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Avenue de la Médecine, Quebec City, G1V 0A6, Canada
Thiry, Damien ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Bactériologie vétérinaire et maladies bactériennes animales
Language :
English
Title :
Genomic and virulence insights of Western European Aeromonas salmonicida subsp. salmonicida and development of Galleria mellonella infection assay.
This research was funded by the University of Li\u00E8ge, Belgium, \u201CCr\u00E9dits sectoriels de la Recherche en Sciences de la Sant\u00E9\u201D 2022.
Alcock BP, Huynh W, Chalil R et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023;51;690–9. 10.1093/nar/gkac920
Attéré SA, Gagné-Thivierge C, Paquet VE et al. Aeromonas salmonicida isolates from Canada demonstrate wide distribution and clustering among mesophilic strains. Genome. 2023;66;108–15. 10.1139/gen-2022-0086
Attéré SA, Vincent AT, Paccaud M et al. The role for the small cryptic plasmids as moldable vectors for genetic innovation in Aeromonas salmonicida subsp. salmonicida. Front Genet. 2017;8;211. 10.3389/fgene.2017.00211
Austin B, Austin DA. Aeromonadaceae Representative (Aeromonas salmonicida). In: Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. 6th edn. New York, USA:Springer 2016;215–321. 10.1007/978-3-319-32674-0
Axline CMR, Kochan TJ, Nozick S et al. Refined methodology for quantifying Pseudomonas aeruginosa virulence using Galleria mellonella. Microbiol Spectr. 2025;13;e0166624. 10.1128/spectrum.01666-24
Barraud O, Laval L, Le Devendec L et al. Integrons from Aeromonas isolates collected from fish: a global indicator of antimicrobial resistance and anthropic pollution. Aquaculture. 2023;576;e739768. 10.1016/j.aquaculture.2023.739768
Bartkova S, Leekitcharoenphon P, Aarestrup FM et al. Epidemiology of Danish Aeromonas salmonicida subsp. salmonicida in fish farms using whole genome sequencing. Front Microbiol. 2017;8,2411.
Bortolaia V, Kaas RS, Ruppe E et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75;3491–500. 10.1093/jac/dkaa345
Brenner DJ, Krieg NR, Staley JT et al. Aeromonadales. In: Bergey’s Manual® of Systematic Bacteriology: The Proteobacteria, Part B: The Gammaproteobacteria, 2nd ed New York, USA:Springer 2005;557–578. 10.1007/0-387-28022-7_12
Browne N, Surlis C, Maher A et al. Prolonged pre-incubation increases the susceptibility of Galleria mellonella larvae to bacterial and fungal infection. Virulence. 2015;6;458–65. 10.1080/21505594.2015.1021540
Burr SE, Frey J et al. Analysis of type III effector genes in typical and atypical Aeromonas salmonicida. J Fish Dis. 2007;30;711–4. 10.1111/j.1365-2761.2007.00859.x
Burr SE, Pugovkin D, Wahli T et al. Attenuated virulence of an Aeromonas salmonicida subsp. salmonicida type III secretion mutant in a rainbow trout model. Microbiology (Reading). 2005;151;2111–2118. 10.1099/mic.0.27926-0
Charette SJ. Microbe profile: A eromonas salmonicida: an opportunistic pathogen with multiple personalities. Microbiology. 2021;167. 10.1099/mic.0.001052
Chen S, Zhou Y, Chen Y et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34;i884–90. 10.1093/bioinformatics/bty560
Chu S, Noonan B, Cavaignac S et al. Endogenous mutagenesis by an insertion sequence element identifies Aeromonas salmonicida AbcA as an ATP-binding cassette transport protein required for biogenesis of smooth lipopolysaccharide. Proc Natl Acad Sci USA. 1995;92;5754–8. 10.1073/pnas.92.12.5754
Costa TRD, Felisberto-Rodrigues C, Meir A et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Micro. 2015;13;343–59. 10.1038/nrmicro3456
Cutuli MA, Petronio Petronio G, Vergalito F et al. Galleria mellonella as a consolidated in vivo model hosts: new developments in antibacterial strategies and novel drug testing. Virulence. 2019;10;527–541. 10.1080/21505594.2019.1621649
Dacanay A, Knickle L, Solanky KS et al. Contribution of the type III secretion system (TTSS) to virulence of Aeromonas salmonicida subsp. salmonicida. Microbiology. 2006;152;1847–56. 10.1099/mic.0.28768-0
Daher RK, Filion G, Tan SGE et al. Alteration of virulence factors and rearrangement of pAsa5 plasmid caused by the growth of Aeromonas salmonicida in stressful conditions. Vet Microbiol. 2011;152;353–60. 10.1016/j.vetmic.2011.04.034
Dallaire-Dufresne S, Tanaka KH, Trudel MV et al. Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet Microbiol. 2014;169;1–7. 10.1016/j.vetmic.2013.06.025
Dautremepuits C, Fortier M, Croisetiere S et al. Modulation of juvenile brook trout (Salvelinus fontinalis) cellular immune system after Aeromonas salmonicida challenge. Vet Immunol Immunopathol. 2006;110;27–36. 10.1016/j.vetimm.2005.09.008
Desbois AP, Coote PJ. Utility of greater wax moth larva (Galleria mellonella) for evaluating the toxicity and efficacy of new antimicrobial agents. Adv Appl Microbiol. 2012;78;25–53. 10.1016/B978-0-12-394805-2.00002-6
Ebanks RO, Knickle LC, Goguen M et al. Expression of and secretion through the Aeromonas salmonicida type III secretion system. Microbiology (Reading). 2006;152;1275–86. 10.1099/mic.0.28485-0
Emond-Rheault JG, Vincent AT, Trudel MV et al. AsaGEI2b: a new variant of a genomic island identified in the Aeromonas salmonicida subsp. salmonicida JF3224 strain isolated from a wild fish in Switzerland. FEMS Microbiol Lett. 2015a;362;1–6. 10.1093/femsle/fnv093
Emond-Rheault JG, Vincent AT, Trudel MV et al. Variants of a genomic island in Aeromonas salmonicida subsp. salmonicida link isolates with their geographical origins. Vet Microbiol. 2015b;175;68–76. 10.1016/j.vetmic.2014.11.014
European Medicines Agency. Authorised fish products: situation in Europe (EMA/CMDv/650880/2018 rev 4) [Excel spreadsheet]. Amsterdam: European Medicines Agency. 2022.
Fehr D, Casanova C, Liverman A et al. AopP, a type III effector protein of Aeromonas salmonicida, inhibits the NF-kappaB signalling pathway. Microbiology. 2006;152;2809–18. 10.1099/mic.0.28889-0
Fournier KC, Paquet VE, Attéré SA et al. Expansion of the pRAS3 plasmid family in Aeromonas salmonicida subsp. salmonicida and growing evidence of interspecies connections for these plasmids. Antibiotics. 2022;11;1047. 10.3390/antibiotics11081047
Frey J, Origgi FC. Type III secretion system of Aeromonas salmonicida undermining the host’s immune response. Front Mar Sci. 2016;3;130.10.3389/fmars.2016.00130
Froquet R, Cherix N, Burr SE et al. Alternative host model to evaluate Aeromonas virulence. Appl Environ Microb. 2007;73;5657–9. 10.1128/AEM.00908-07
Garduño RA, Moore AR, Olivier G et al. Host cell invasion and intracellular residence by Aeromonas salmonicida: role of the S-layer. Can J Microbiol. 2000;46;660–8. 10.1139/w00-034
Gauthier J, Marquis H, Paquet VE et al. Genomic perspectives on Aeromonas salmonicida subsp. salmonicida strain 890054 as a model system for pathogenicity studies and mitigation of fish infections. Front Mar Sci. 2021;8;744052. 10.3389/fmars.2021.744052
Giammarino A, Bellucci N, Angiolella L. Galleria mellonella as a model for the study of fungal pathogens: advantages and disadvantages. Pathogens. 2024;13;233. 10.3390/pathogens13030233
Girard SB, Marcoux PÉ, Paquet VE et al. Expansion of the tetracycline resistome in Aeromonas salmonicida with a tet(D) gene found in plasmids pAsa-2900 and pAsa-2900b. Front Bacteriol. 2024;3;e1418706. 10.3389/fbrio.2024.1418706
Godoy M, Montes de Oca M, Suarez R et al. Genomics of re-emergent Aeromonas salmonicida in Atlantic salmon outbreaks. Microorganisms. 2024;12;64. 10.3390/microorganisms12010064
Gordon L, Cloeckaert A, Doublet B et al. Complete sequence of the floR-carrying multiresistance plasmid pAB5S9 from freshwater Aeromonas bestiarum. J Antimicrob Chemother. 2008;62;65–71. 10.1093/jac/dkn166
Gurevich A, Saveliev V, Vyahhi N et al. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29;1072–5. 10.1093/bioinformatics/btt086
Gustafson CE, Chu S, Trust TJ. Mutagenesis of the paracrystalline surface protein array of Aeromonas salmonicida by endogenous insertion elements. J Mol Biol. 1994;237;452–63. 10.1006/jmbi.1994.1247
Hayatgheib N, Calvez S, Fournel C et al. Antimicrobial susceptibility profiles and resistance genes in genus Aeromonas spp. isolated from the environment and rainbow trout of two fish farms in France. Microorganisms. 2021;9;1201. 10.3390/microorganisms9061201
Hussain Bhat RA, Thakuria D, Dubey MK et al. Lethal dose and histopathological alterations induced by Aeromonas salmonicida in experimentally challenged common carp, Cyprinus carpio. Microb Pathog. 2021;158;105110. 10.1016/j.micpath.2021.105110
Kang YR, Kim A, Lee Y et al. Complete genome sequence of Aeromonas salmonicida subsp. masoucida strain BR19001YR, isolated from diseased Korean rockfish (Sebastes schlegelii). Microbiol Resour Announc. 2021;10;e01281–20. 10.1128/MRA.01281-20
Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinf. 2008;9;286–98. 10.1093/bib/bbn013
Kim A, Nguyen TL, Kim DH. Complete genome sequence of the virulent Aeromonas salmonicida subsp. masoucida strain RFAS1. Genome Announc. 2018;6;e00470–18. 10.1128/genomeA.00470-18
Kim JH, Choresca CH, Shin SP et al. Biological control of Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) using Aeromonas phage PAS-1. Transbound Emerg Dis. 2015;62;81–86. 10.1111/tbed.12088
L'Abée-Lund TM, Sørum H. A global non-conjugative Tet C plasmid, pRAS3, from Aeromonas salmonicida. Plasmid. 2002;47;172–81. 10.1016/S0147-619X(02)00001-X
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9;357–9. 10.1038/nmeth.1923
Le Bouquin S, Thomas R, Jamin M et al. A baseline survey of antimicrobial use and health issues in the freshwater salmonid industry in France. Aquac Rep. 2021;21;100906. 10.1016/j.aqrep.2021.100906
Leduc GR, Paquet VE, Piché LC et al. Isolation of vB_AsaM_LPM4 reveals the dynamics of Prophage 3 in Aeromonas salmonicida subsp. salmonicida. Arch Virol. 2023;168;912–7. 10.1007/s00705-022-05623-3
Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47;W256–9. 10.1093/nar/gkz239
Li H, Handsaker B, Wysoker A et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25;2078. 10.1093/bioinformatics/btp352
Lin B, Chen S, Cao Z et al. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: striking similarities and obvious differences with mammals. Mol Immunol. 2007;44;295–301. 10.1016/j.molimm.2006.03.001
Liu B, Zheng D, Zhou S et al. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022;50;D912–7. 10.1093/nar/gkab1107
Long M, Fan H, Gan Z et al. Comparative genomic analysis provides insights into taxonomy and temperature adaption of Aeromonas salmonicida. J Fish Dis. 2023;46;545–61. 10.1111/jfd.13767
Long M, Nielsen TK, Leisner JJ et al. Aeromonas salmonicida subsp. salmonicida strains isolated from Chinese freshwater fish contain a novel genomic island and possible regional-specific mobile genetic elements profiles. FEMS Microbiol Lett. 2016;363;fnw190. 10.1093/femsle/fnw190
Low AJ, Koziol AG, Manninger PA et al. ConFindr: rapid detection of intraspecies and cross-species contamination in bacterial whole-genome sequence data. PeerJ. 2019;7;e6995. 10.7717/peerj.6995
Marcoux PÉ, Vincent AT, Massicotte MA et al. Systematic analysis of the stress-induced genomic instability of type three secretion system in Aeromonas salmonicida subsp. salmonicida. Microorganisms. 2020;9;1–11. 10.3390/microorganisms9010085
Martinez-Murcia AJ, Monera A, Saavedra MJ et al. Multilocus phylogenetic analysis of the genus Aeromonas. Syst Appl Microbiol. 2011;34;189–99. 10.1016/j.syapm.2010.11.014
Martino ME, Fasolato L, Montemurro F et al. Aeromonas spp.: ubiquitous or specialized bugs?. Environ Microbiol. 2014;16;1005–18. 10.1111/1462-2920.12215
Martino ME, Fasolato L, Montemurro F et al. Determination of microbial diversity of Aeromonas strains on the basis of multilocus sequence typing, phenotype, and presence of putative virulence genes. Appl Environ Microb. 2011;77;4986–5000. 10.1128/AEM.00708-11
Massicotte MA, Vincent AT, Schneider A et al. One Aeromonas salmonicida subsp. salmonicida isolate with a pAsa5 variant bearing antibiotic resistance and a pRAS3 variant making a link with a swine pathogen. Sci Total Environ. 2019;690;313–20. 10.1016/j.scitotenv.2019.06.456
Ménard G, Rouillon A, Cattoir V et al. Galleria mellonella as a suitable model of bacterial infection: past, present and future. Front Cell Infect Microbiol. 2021;11;782733. 10.3389/fcimb.2021.782733
Minh BQ, Schmidt HA, Chernomor O et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37;1530–4. 10.1093/molbev/msaa015
Missawi O, Wouters C, Lambert J et al. Realistic microplastics harness bacterial presence and promote impairments in early zebrafish embryos: behavioral, developmental, and transcriptomic approaches. Chemosphere. 2024;350;141107. 10.1016/j.chemosphere.2023.141107
Morin R. L’utilisation des antibiotiques pour combattre la furonculose chez l’omble de fontaine génère de l’antibiorésistance chez Aeromonas salmonicida. L’aquicole. 2010;15;1–6.
Mowlds P, Kavanagh K. Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia. 2008;165;5–12. 10.1007/s11046-007-9069-9
Park SY, Han JE, Kwon H et al. Recent insights into Aeromonas salmonicida and its bacteriophages in aquaculture: a comprehensive review. J Microbiol Biotechnol. 2020;30;1443–57. 10.4014/jmb.2005.05040
Pavan ME, Abbott SL, Zorzópulos J et al. Aeromonas salmonicida subsp. pectinolytica subsp. nov., a new pectinase-positive subspecies isolated from a heavily polluted river. Int J Syst Evol Microbiol. 2000;50;1119–24. 10.1099/00207713-50-3-1119
Pereira MF, Rossi CC, da Silva GC et al. Galleria mellonella as an infection model: an in-depth look at why it works and practical considerations for successful application. Pathog Dis. 2020;78;ftaa056. 10.1093/femspd/ftaa056
Pfeiffer F, Zamora-Lagos MA, Blettinger M et al. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains. BMC Genom Data. 2018;19;20. 10.1186/s12864-017-4301-6
Pintor-Cora A, Tapia O, Elexpuru-Zabaleta M et al. Cytotoxicity and antimicrobial resistance of Aeromonas strains isolated from fresh produce and irrigation water. Antibiotics. 2023;12;511. 10.3390/antibiotics12030511
Pritchard L, Glover RH, Humphris S et al. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2015;8;12–24. 10.1039/C5AY02550H
Reith ME, Singh RK, Curtis B et al. The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics. 2008;9;427. 10.1186/1471-2164-9-427
Rissman AI, Mau B, Biehl BS et al. Reordering contigs of draft genomes using the Mauve Aligner. Bioinformatics. 2009;25;2071–3. 10.1093/bioinformatics/btp356
Roberts RJ. The bacteriology of teleosts. In: Fish Pathology, 4th edn. Chichester, United Kingdom:Wiley-Blackwell 2012;339–82. 10.1002/9781118222942
Robinson JT, Thorvaldsdóttir H, Winckler W et al. Integrative genomics viewer. Nat Biotechnol. 2011;29;24–26. 10.1038/nbt.1754
Roger F, Marchandin H, Jumas-Bilak E et al. Multilocus genetics to reconstruct aeromonad evolution. BMC Microbiol. 2012;12;62. 10.1186/1471-2180-12-62
Roh HJ, Kannimuthu D. Comparative resistome analysis of Aeromonas species in aquaculture reveals antibiotic resistance patterns and phylogeographic distribution. Environ Res. 2023;239;117273. 10.1016/j.envres.2023.117273
Samanta I, Bandyopadhyay S. Emergence of antimicrobial resistant bacteria in aquaculture: Perspective, Policy and Mitigation. In: Antimicrobial Resistance in Agriculture. London, United Kingdom: Academic Press (Elsevier) 2020;29–38. 10.1016/b978-0-12-815770-1.00004-3
Siguier P, Perochon J, Lestrade L et al. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34;32–36. 10.1093/nar/gkj014
St-Laurent RE, Vincent AT, Paquet VE et al. Characterization of Aeromonas salmonicida mesophilic isolates from Alberta (Canada) allows the development of a more sensitive Dictyostelium discoideum predation test. FEMS Microbiol Lett. 2024;371:fnae078. 10.1093/femsle/fnae078
Stuber K, Burr SE, Braun M et al. Type III secretion genes in Aeromonas salmonicida subsp. salmonicida are located on a large thermolabile virulence plasmid. J Clin Microbiol. 2003;41;3854–6. 10.1128/JCM.41.8.3854-3856.2003
Tanaka KH, Dallaire-Dufresne S, Daher RK et al. An insertion sequence-dependent plasmid rearrangement in Aeromonas salmonicida causes the loss of the type three secretion system. PLoS One. 2012;7;33725. 10.1371/journal.pone.0033725
Tanaka KH, Frenette M, Charette SJ. IS-mediated loss of virulence by Aeromonas salmonicida: a tangible piece of an evolutionary puzzle. Mobile Genet Elem. 2013;3;23498. 10.4161/mge.23498
Tanaka KH, Vincent AT, Emond-Rheault JG et al. Plasmid composition in Aeromonas salmonicida subsp. salmonicida 01-B526 unravels unsuspected type three secretion system loss patterns. BMC Genomics. 2017;18;528. 10.1186/s12864-017-3921-1
Tanaka KH, Vincent AT, Trudel MV et al. The mosaic architecture of Aeromonas salmonicida subsp. salmonicida pAsa4 plasmid and its consequences on antibiotic resistance. PeerJ. 2016;4;e2595. 10.7717/peerj.2595
Tonkin-Hill G, MacAlasdair N, Ruis C et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020;21;180. 10.1186/s13059-020-02090-4
Trudel MV, Tanaka KH, Filion G et al. Insertion sequence AS5 (IS AS5) is involved in the genomic plasticity of Aeromonas salmonicida. Mobile Genet Elem. 2013;3;25640. 10.4161/mge.25640
Uhrynowski W, Decewicz P, Dziewit L et al. Analysis of the genome and mobilome of a dissimilatory arsenate reducing Aeromonas sp. O23A reveals multiple mechanisms for heavy metal resistance and metabolism. Front Microbiol. 2017;8;9. 10.3389/fmicb.2017.00936
Vanden Bergh P, Frey J. Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb Biotechnol. 2014;7;381. 10.1111/1751-7915.12091
Vasimuddin M, Sanchit M, Heng L et al. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. Proceedings–2019 IEEE 33rd International Parallel and Distributed Processing Symposium, IPDPS 2019;314–24. 10.1109/IPDPS.2019.00041
Vasquez I, Hossain A, Gnanagobal H et al. Comparative genomics of typical and atypical Aeromonas salmonicida complete genomes revealed new insights into pathogenesis evolution. Microorganisms. 2022;10;1189. 10.3390/microorganisms10010189
Verner-Jeffreys DW, Algoet M, Pond MJ et al. Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture. 2007;270;475–84. 10.1016/j.aquaculture.2007.05.023
Vincent AT, Charette SJ. Completion of genome of Aeromonas salmonicida subsp. salmonicida 01-B526 reveals how sequencing technologies can influence sequence quality and result interpretations. New Microbes New Infect. 2018;25;24–26. 10.1016/j.nmni.2018.05.007
Vincent AT, Charette SJ. To be or not to be mesophilic, that is the question for Aeromonas salmonicida. Microorganisms. 2022;10;240. 10.3390/microorganisms10020240
Vincent AT, Fernández-Bravo A, Sanchis M et al. Investigation of the virulence and genomics of Aeromonas salmonicida strains isolated from human patients. Infect Genet Evol. 2019;68;1–9. 10.1016/j.meegid.2018.11.019
Vincent AT, Hosseini N, Charette SJ. The Aeromonas salmonicida plasmidome: a model of modular evolution and genetic diversity. Ann NY Acad Sci. 2021a;1488;16–32. 10.1111/nyas.14503
Vincent AT, Intertaglia L, Loyer V et al. AsaGEI2d: a new variant of a genomic island identified in a group of Aeromonas salmonicida subsp. salmonicida isolated from France, which bears the pAsa7 plasmid. FEMS Microbiol Lett. 2021b;368;fnab021. 10.1093/femsle/fnab021
Vincent AT, Rouleau FD, Moineau S et al. Study of mesophilic Aeromonas salmonicida A527 strain sheds light on the species' lifestyles and taxonomic dilemma. FEMS Microbiol Lett. 2017;364. 10.1093/femsle/fnx239
Vincent AT, Trudel MV, Freschi L et al. Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in Aeromonas salmonicida. BMC Genom. 2016;17;1. 10.1186/s12864-016-2381-3
Vincent AT, Trudel MV, Paquet VE et al. Detection of variants of the pRAS3, pAB5S9, and pSN254 plasmids in Aeromonas salmonicida subsp. salmonicida: multidrug resistance, interspecies exchanges, and plasmid reshaping. Antimicrob Agents Chemother. 2014;58;7367–74. 10.1128/AAC.03730-14
Wang P, Li J, He TT et al. Pathogenic characterization of Aeromonas salmonicida subsp. masoucida turbot isolate from China. J Fish Dis. 2020;43;1145–54. 10.1111/jfd.13224
Wiklund T, Dalsgaard I. Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species: a review. Dis Aquat Org. 1998;32;49–69. 10.3354/dao032049
Wojda I. Immunity of the greater wax moth Galleria mellonella. Insect Sci. 2017;24;342–57. 10.1111/1744-7917.12325
Xu Z, Ding Z, Shi L et al. Coevolution between marine Aeromonas and phages reveals temporal trade-off patterns of phage resistance and host population fitness. ISME J. 2023;17;2200–9. 10.1038/s41396-023-01529-3
Yang Y, Mao T, Xu B et al. Aeromonas salmonicida subsp. masoucida causes an emerging infectious disease and immune response in red swamp crayfish (Procambarus clarkii). Aquaculture. 2024;578;740121. 10.1016/j.aquaculture.2023.740121
Zhong Y, Qi W, Xu W et al. Insights into mesophilic virulence, antibiotic resistance and human pathogenicity: a genomics study on the Aeromonas salmonicida SRW-OG1 newly isolated from the Asian fish Epinephelus coioides. Aquaculture. 2021;539;736630. 10.1016/j.aquaculture.2021.736630