[en] Unitary gates with high entangling power are relevant for several quantum-enhanced technologies due to their entangling capabilities. For symmetric multiqubit systems, such as spin states or bosonic systems, the particle exchange symmetry restricts these gates and also the set of not-entangled states. In this work, we analyze the entangling power of unitary gates in these systems by reformulating it as an inner product between vectors with components given by SU(2) invariants. For small number of qubits, this approach allows us to study analytically the entangling power including the detection of the unitary gate that maximizes it. We observe that extremal unitary gates exhibit entanglement distributions with high rotational symmetry, same that are linked to a convex combination of Husimi functions of certain states. Furthermore, we explore the connection between entangling power and the Schmidt numbers admissible in some quantum state subspaces. Thus, the geometrical approach presented here suggests new paths for studying entangling power linked to other concepts in quantum information theory.
Disciplines :
Physics
Author, co-author :
Serrano Ensástiga, Eduardo ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Morachis Galindo, Diego ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Departamento de Física, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de Mexico, Ensenada, Mexico
Maytorena, Jesús A.; Departamento de Física, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de Mexico, Ensenada, Mexico
Chryssomalakos, Chryssomalis; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Mexico
Language :
English
Title :
Entangling power for symmetric multiqubit systems: A geometrical approach
UNAM - Universidad Nacional Autónoma de México EU - European Union ULiège - University of Liège F.R.S.-FNRS - Fund for Scientific Research
Funding text :
ESE acknowledges support from the postdoctoral fellowship of the IPD-STEMA program of the University of Li\u00E8ge (Belgium) . DMG acknowledges support from the F.R.S.-FNRS under the Excellence of Science (EOS) programme . CC acknowledges support from the UNAM-PAPIIT project IN112224 . JAM and DMG acknowledge support from the UNAM-PAPIIT project IN111122 (M\u00E9xico).
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K., Quantum entanglement. Rev. Modern Phys. 81 (2009), 865–942, 10.1103/RevModPhys.81.865.
Nielsen, M.A., Chuang, I.L., Quantum Computation and Quantum Information: 10th Anniversary Edition. Tenth, 2011, Cambridge University Press, New York, NY, USA.
Bengtsson, I., Życzkowski, K., Geometry of Quantum States (2nd Ed.). 2017, Cambridge University Press.
Wolf, M.M., Eisert, J., Plenio, M.B., Entangling power of passive optical elements. Phys. Rev. Lett., 90, 2003, 047904, 10.1103/PhysRevLett.90.047904.
Xiong, H.-N., Lu, X.-M., Wang, X., Partial entangling power for the Jaynes–Cummings model. J. Phys. B: At. Mol. Opt. Phys., 45(1), 2011, 015501, 10.1088/0953-4075/45/1/015501.
Kraus, B., Cirac, J.I., Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A, 63, 2001, 062309, 10.1103/PhysRevA.63.062309.
Zhang, J., Vala, J., Sastry, S., Whaley, K.B., Geometric theory of nonlocal two-qubit operations. Phys. Rev. A, 67, 2003, 042313, 10.1103/PhysRevA.67.042313.
Kalsi, T., Romito, A., Schomerus, H., Three-fold way of entanglement dynamics in monitored quantum circuits. J. Phys. A, 55(26), 2022, 264009, 10.1088/1751-8121/ac71e8.
Tang, H.L., Connelly, K., Warren, A., Zhuang, F., Economou, S.E., Barnes, E., Designing globally time-optimal entangling gates using geometric space curves. Phys. Rev. Appl., 19, 2023, 044094, 10.1103/PhysRevApplied.19.044094.
Caruso, F., Chin, A.W., Datta, A., Huelga, S.F., Plenio, M.B., Entanglement and entangling power of the dynamics in light-harvesting complexes. Phys. Rev. A, 81, 2010, 062346, 10.1103/PhysRevA.81.062346.
Zanardi, P., Zalka, C., Faoro, L., Entangling power of quantum evolutions. Phys. Rev. A, 62, 2000, 030301, 10.1103/PhysRevA.62.030301.
Nielsen, M.A., Dawson, C.M., Dodd, J.L., Gilchrist, A., Mortimer, D., Osborne, T.J., Bremner, M.J., Harrow, A.W., Hines, A., Quantum dynamics as a physical resource. Phys. Rev. A, 67, 2003, 052301, 10.1103/PhysRevA.67.052301.
Jonnadula, B., Mandayam, P., Życzkowski, K., Lakshminarayan, A., Impact of local dynamics on entangling power. Phys. Rev. A, 95, 2017, 040302, 10.1103/PhysRevA.95.040302.
Clarisse, L., Ghosh, S., Severini, S., Sudbery, A., The disentangling power of unitaries. Phys. Lett. A 365:5 (2007), 400–402, 10.1016/j.physleta.2007.02.001.
Zanardi, P., Entanglement of quantum evolutions. Phys. Rev. A, 63, 2001, 040304, 10.1103/PhysRevA.63.040304.
Rezakhani, A.T., Characterization of two-qubit perfect entanglers. Phys. Rev. A, 70, 2004, 052313, 10.1103/PhysRevA.70.052313.
Balakrishnan, S., Sankaranarayanan, R., Characterizing the geometrical edges of nonlocal two-qubit gates. Phys. Rev. A, 79, 2009, 052339, 10.1103/PhysRevA.79.052339.
Shen, Y., Chen, L., Entangling power of two-qubit unitary operations. J. Phys. A, 51(39), 2018, 395303, 10.1088/1751-8121/aad7cb.
Wang, X., Sanders, B.C., Berry, D.W., Entangling power and operator entanglement in qudit systems. Phys. Rev. A, 67, 2003, 042323, 10.1103/PhysRevA.67.042323.
Yang, Y., Wang, X., Sun, Z., Entangling power of a two-qudit geometric phase gate. Phys. Lett. A 372:24 (2008), 4369–4372, 10.1016/j.physleta.2008.04.023.
Musz, M., Kuś, M., Życzkowski, K., Unitary quantum gates, perfect entanglers, and unistochastic maps. Phys. Rev. A, 87, 2013, 022111, 10.1103/PhysRevA.87.022111.
Chen, J., Ji, Z., Kribs, D.W., Zeng, B., Zhang, F., Minimum entangling power is close to its maximum. J. Phys. A, 52(21), 2019, 215302, 10.1088/1751-8121/ab15e3.
Kong, F.-Z., Zhao, J.-L., Generating a maximally entangled state via a pure global noise environment. Laser Phys. Lett., 21(5), 2024, 055206, 10.1088/1612-202X/ad3627.
Scott, A.J., Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A, 69, 2004, 052330, 10.1103/PhysRevA.69.052330.
Linowski, T., Rajchel-Mieldzioć, G., Życzkowski, K., Entangling power of multipartite unitary gates. J. Phys. A, 53(12), 2020, 125303, 10.1088/1751-8121/ab749a.
Wang, X., Zanardi, P., Quantum entanglement of unitary operators on bipartite systems. Phys. Rev. A, 66, 2002, 044303, 10.1103/PhysRevA.66.044303.
Makhlin, Y., Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quantum Inf. Process. 1 (2002), 243–252, 10.1023/A:1022144002391.
Balakrishnan, S., Sankaranarayanan, R., Entangling power and local invariants of two-qubit gates. Phys. Rev. A, 82, 2010, 034301, 10.1103/PhysRevA.82.034301.
Singh, S., Nechita, I., Diagonal unitary and orthogonal symmetries in quantum theory: Ii. evolution operators. J. Phys. A, 55(25), 2022, 255302, 10.1088/1751-8121/ac7017.
Scott, A.J., Caves, C.M., Entangling power of the quantum baker's map. J. Phys. A: Math. Gen., 36(36), 2003, 9553, 10.1088/0305-4470/36/36/308.
Pal, R., Lakshminarayan, A., Entangling power of time-evolution operators in integrable and nonintegrable many-body systems. Phys. Rev. B, 98, 2018, 174304, 10.1103/PhysRevB.98.174304.
Aravinda, S., Rather, S.A., Lakshminarayan, A., From dual-unitary to quantum Bernoulli circuits: Role of the entangling power in constructing a quantum ergodic hierarchy. Phys. Rev. Res., 3, 2021, 043034, 10.1103/PhysRevResearch.3.043034.
Chryssomalakos, C., Guzmán-González, E., Serrano-Ensástiga, E., Geometry of spin coherent states. J. Phys. A: Math. Theor., 51(16), 2018, 165202, 10.1088/1751-8121/aab349.
Morachis Galindo, D., Maytorena, J.A., Entangling power of symmetric two-qubit quantum gates and three-level operations. Phys. Rev. A, 105, 2022, 012601, 10.1103/PhysRevA.105.012601.
Byrd, M., Differential geometry on SU(3) with applications to three state systems. J. Math. Phys. 39:11 (1998), 6125–6136, 10.1063/1.532618.
Denis, J., Martin, J., Extreme depolarization for any spin. Phys. Rev. Res., 4, 2022, 013178, 10.1103/PhysRevResearch.4.013178.
Varshalovich, D., Moskalev, A., Khersonskii, V., Quantum Theory of Angular Momentum. 1988, World Scientific.
Agarwal, G.S., Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions. Phys. Rev. A 24 (1981), 2889–2896, 10.1103/PhysRevA.24.2889.
Serrano-Ensástiga, E., Braun, D., Majorana representation for mixed states. Phys. Rev. A, 101(2), 2020, 022332, 10.1103/PhysRevA.101.022332.
Baguette, D., Martin, J., Anticoherence measures for pure spin states. Phys. Rev. A, 96, 2017, 032304, 10.1103/PhysRevA.96.032304.
Serrano-Ensástiga, E., Chryssomalakos, C., Martin, J., Quantum metrology of rotations with mixed spin states. Phys. Rev. A, 111, 2025, 022435, 10.1103/PhysRevA.111.022435.
Seshadri, A., Madhok, V., Lakshminarayan, A., Tripartite mutual information, entanglement, and scrambling in permutation symmetric systems with an application to quantum chaos. Phys. Rev. E, 98, 2018, 052205, 10.1103/PhysRevE.98.052205.
Martin, J., Giraud, O., Braun, P.A., Braun, D., Bastin, T., Multiqubit symmetric states with high geometric entanglement. Phys. Rev. A, 81, 2010, 062347, 10.1103/PhysRevA.81.062347.
Giraud, O., Braun, P., Braun, D., Quantifying quantumness and the quest for queens of quantum. New J. Phys., 12(6), 2010, 063005, 10.1088/1367-2630/12/6/063005.
Chryssomalakos, C., Hanotel, L., Guzmán-González, E., Braun, D., Serrano-Ensástiga, E., Życzkowski, K., Symmetric multiqudit states: Stars, entanglement, and rotosensors. Phys. Rev. A, 104, 2021, 012407, 10.1103/PhysRevA.104.012407.
Goldberg, A.Z., Klimov, A.B., Grassl, M., Leuchs, G., Sánchez-Soto, L.L., Extremal quantum states. AVS Quantum Sci., 2(4), 2020, 044701, 10.1116/5.0025819.
Zimba, J., Anticoherent spin states via the majorana representation. Electron. J. Theor. Phys. 3:10 (2006), 143–156.
Crann, J., Pereira, R., Kribs, D.W., Spherical designs and anticoherent spin states. J. Phys. A, 43(25), 2010, 255307, 10.1088/1751-8113/43/25/255307.
Giraud, O., Braun, D., Baguette, D., Bastin, T., Martin, J., Tensor representation of spin states. Phys. Rev. Lett., 114, 2015, 080401, 10.1103/PhysRevLett.114.080401.
Baguette, D., Damanet, F., Giraud, O., Martin, J., Anticoherence of spin states with point-group symmetries. Phys. Rev. A, 92(5), 2015, 052333, 10.1103/PhysRevA.92.052333.
Goldberg, A.Z., James, D.F.V., Quantum-limited Euler angle measurements using anticoherent states. Phys. Rev. A, 98, 2018, 032113, 10.1103/PhysRevA.98.032113.
Fano, U., Geometrical characterization of nuclear states and the theory of angular correlations. Phys. Rev. 90:4 (1953), 577–579, 10.1103/physrev.90.577.
Zhang, L., Matrix integrals over unitary groups: An application of Schur-Weyl duality. 2015 arXiv:1408.3782 URL https://arxiv.org/abs/1408.3782.