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 A B S T R A C T

Unitary gates with high entangling power are relevant for several quantum-enhanced technolo-
gies due to their entangling capabilities. For symmetric multiqubit systems, such as spin states 
or bosonic systems, the particle exchange symmetry restricts these gates and also the set of 
not-entangled states. In this work, we analyze the entangling power of unitary gates in these 
systems by reformulating it as an inner product between vectors with components given by 
SU(2) invariants. For small number of qubits, this approach allows us to study analytically the 
entangling power including the detection of the unitary gate that maximizes it. We observe that 
extremal unitary gates exhibit entanglement distributions with high rotational symmetry, same 
that are linked to a convex combination of Husimi functions of certain states. Furthermore, we 
explore the connection between entangling power and the Schmidt numbers admissible in some 
quantum state subspaces. Thus, the geometrical approach presented here suggests new paths 
for studying entangling power linked to other concepts in quantum information theory.

. Introduction

Entanglement is a foundational concept in quantum theory and a vital resource for quantum technologies such as quantum 
omputing, cryptography, metrology and simulation [1–3]. In multipartite quantum systems, it is generated through nonlocal 
nitary transformations, since local operations cannot alter the entanglement of a state [1]. It is therefore natural to investigate the 
ntangling capacity of nonlocal unitary gates, and how to create highly entangled states via the evolution of nonlocal Hamiltonians 
r pulse sequences in physical systems [4–11]. On the theoretical side, several concepts have been proposed to assess the capability 
f unitary gates in generating quantum resources such as gate typicality, disentangling power, or perfect entanglers [12–15]. One 
f the most intuitively appealing quantities is the entangling power of a unitary gate [12] which is defined as the average 
ntanglement generated by a unitary gate over the set of separable (not-entangled) states. Extensive studies of the entangling 
ower have been carried out in bipartite systems [16–23] with generalizations to two-qubit global noise channels [24] and 
ultipartite systems [25,26]. The entangling power of a unitary operator is also connected to its entanglement in its own Schmidt 
ecomposition [16,27] or to invariant quantities under local transformations [8,28,29]. Furthermore, connections have been 
dentified between highly entangling unitary gates and Quantum Error-Correcting Codes [25], absolutely maximally entangled 
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(AME) states [26], unitary operators invariant under local actions of diagonal unitary and orthogonal groups [30], and quantum 
versions of chaotic systems [31–33].

When a multiqubit system is restricted to its symmetric subspace, the set of product states is significantly reduced to the set of 
Spin-Coherent (SC) states, which form a 2-sphere within the Hilbert space of quantum states [3,34]. Additionally, the local unitary 
transformations are limited to the global rotations, specifically global SU(2) transformations generated by the angular momentum 
operators. Symmetric multiqubit states arise in bosonic systems, such as two-mode multiphotonic systems or spin-𝑗 states. Moreover, 
the symmetric subspace of 𝑁 qubit states is equivalent to the Hilbert space of spin-𝑗 (𝑗 = 𝑁∕2) states, which makes the study of 
the entangling power of single spin states relevant in distinct physical platforms.

For the symmetric two-qubit case, which can be thought of as a spin-1 system, the entangling power of 3 × 3 unitary matrices has 
been studied in Ref. [35]. One key mathematical feature that arises in the study of those unitaries is the Cartan decomposition, which 
factorizes any quantum gate as a non-local operation multiplied on each side by local SU(2) transformations [36]. The entangling 
power of the unitary is encoded into the non-local factor, which is obtained by exponentiating the maximally commuting (Cartan) 
subalgebra of su(3). This allows to represent the unitaries with equivalent entangling properties in an euclidean two-dimensional 
space [35]. For symmetric 𝑁-qubit systems with 𝑁 > 2, the Cartan decomposition would not represent such a significant advantage, 
since the number of relevant parameters grows quadratically with the dimension of the system.

In this work, we study the entangling power of unitary transformations acting in symmetric multiqubit systems. We reformulate 
its original expression in terms of SU(2) invariant quantities of the unitary operators. This geometrical approach connects the 
entangling power to other well-known quantities in quantum information theory.

The structure of the paper is as follows: Section 2 considers symmetric multiqubit states and reviews, in this context, the formal 
definitions of the entropy of entanglement and of the entangling power — we derive the above mentioned geometric expression 
of the latter in Section 3. We then calculate the entangling power and the entanglement distribution on the sphere for systems 
with a small number of qubits in Sections 4 and 5, respectively, including the search of unitary gates with the best entangling 
capabilities. Section 6 contains the calculation of the average entangling power over all unitary gates. An interesting connection 
between entangling power and Schmidt numbers is explored in 7. We give some last remarks in Section 8.

2. Basic concepts

2.1. Equivalence between symmetric multiqubit states and spin-𝑗 states

We start this section by briefly describing the equivalence between the symmetric sector of 𝑁 qubits and a spin 𝑗 = 𝑁∕2 state 
(see Ref. [37] for a detailed discussion of this equivalence). The symmetric sector of the 𝑁-qubit system is spanned, for instance, 
by the Dicke states |𝐷(𝑁)

𝑘 ⟩

|𝐷(𝑁)
𝑘 ⟩ = 𝐾

∑

𝛱
𝛱

⎛

⎜

⎜

⎜

⎝

|+⟩⊗⋯⊗ |+⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝑁−𝑘

⊗ |−⟩⊗⋯⊗ |−⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝑘

⎞

⎟

⎟

⎟

⎠

, (1)

where 𝐾 is a normalization factor and the sum runs over all the permutations of the qubits. If we consider that the qubits are spins 
1∕2, the states |𝐷(𝑁)

𝑘 ⟩ are eigenvectors of the angular momentum operators 𝐽𝑧 and 𝐉2 = 𝐽 2
𝑥 + 𝐽 2

𝑦 + 𝐽 2
𝑧

𝐉2|𝐷(𝑁)
𝑘 ⟩ = 𝑗(𝑗 + 1)|𝐷(𝑁)

𝑘 ⟩,

𝐽𝑧|𝐷
(𝑁)
𝑘 ⟩ = 𝑚|𝐷(𝑁)

𝑘 ⟩.
(2)

with 𝑚 = 𝑗 − 𝑘. Thus, the span of the Dicke states constitute a spin-𝑗 Hilbert space, denoted as (𝑗), and where we can identify 
|𝐷(𝑁)

𝑘 ⟩ = |𝑗, 𝑚⟩. This space constitutes a spinor system because its elements transform under rotations with respect to the spin-𝑗
irreducible representation (irrep) of SU(2). From now on, we mostly work in the language of spins where the SU(2) irreps appear 
naturally.

2.2. Bipartite entanglement and entangling power

We consider a single spin-𝑗 (symmetric 𝑁 = 2𝑗-qubits) system with Hilbert space (𝑗) and the Hilbert–Schmidt (HS) space of 
bounded operators ((𝑗)) acting on (𝑗). In this framework, we consider a bipartition of these 2𝑗 qubits (𝑗) ⊂ 𝐴 ⊗ 𝐵 and 
assume, without loss of generality, that dim(𝐴) ⩽ dim(𝐵). Moreover, since any subsystem of a symmetric state is also symmetric, 
we can take as subsystems 𝐴 ≅ (𝑞∕2) and 𝐵 ≅ (𝑗−𝑞∕2). In other words, the bipartition involves states of spins 𝑞∕2 and 𝑗 − 𝑞∕2, 
respectively. The entanglement of a bipartite state |𝛹⟩ ∈ 𝐴 ⊗ 𝐵 can be quantified by the (normalized) linear entanglement 
entropy [12] 

𝐸(|𝛹⟩) ≡ 𝑑
𝑑 − 1

[

1 − Tr
(

𝜌2𝐴
)]

, (3)

where 𝐸(|𝛹⟩) ∈ [0, 1], 𝜌𝐴 = Tr𝐵(|𝛹⟩⟨𝛹 |) is the reduced mixed state after tracing out the subsystem 𝐵, and 𝑑 = dim
(

𝐴
)

. For a 
general bipartite pure state with Schmidt decomposition 

|𝛹⟩ =
𝑑
∑

√

𝛤 𝑘|𝜓𝐴,𝑘⟩⊗ |𝜓𝐵,𝑘⟩, (4)

𝑘=1

2 
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where {|𝜓𝐴,𝑘⟩}𝑘 ⊂ 𝐴 and {|𝜓𝐵,𝑘⟩}𝑘 ⊂ 𝐵 are orthogonal sets of states and 
∑

𝑘 𝛤𝑘 = 1, we have 

𝐸(|𝛹⟩) = 𝑑
𝑑 − 1

[

1 −
𝑑
∑

𝑘=1
𝛤 2
𝑘

]

. (5)

In particular, 𝐸(|𝛹⟩) = 0 for bipartite product states |𝛹⟩ = |𝜓𝐴⟩ ⊗ |𝜓𝐵⟩. On the other hand, the maximally entangled states have 
Schmidt numbers 𝛤𝑘 = 1∕

√

𝑑 and 𝐸(|𝛹⟩) = 1. Each bipartition with 𝑞 ≤ ⌊𝑗⌋ defines a different measure of entanglement 𝐸𝑞 . This 
because Tr(𝜌2𝐴) = Tr(𝜌2𝐵), and thus measures of entanglement 𝐸𝑞 for 𝑞 > ⌊𝑗⌋ are linear combinations of those of lower 𝑞 values.

The product (separable) states in (𝑗), for any bipartition, are the spin-coherent (SC) states |𝑗, 𝐧⟩ ≡ 𝐷(𝑗)(𝐧)|𝑗, 𝑗⟩ which constitute 
a 2-sphere in (𝑗) [34]. A possible parametrization of them is given by the rotations 𝐷(𝑗)(𝐧) = 𝐷(𝑗)(0, 𝜃, 𝜙) which align the 𝐳 axis to 
the direction 𝐧 with spherical angles (𝜃, 𝜙). 𝐷(𝑗)(𝛼, 𝛽, 𝛾) denotes the irreducible representation 𝑗 (𝑗-irrep) of a rotation matrix in the 
Euler angle parametrization [38]. The entangling power of a quantum unitary gate 𝑈 ∈ ((𝑗)), with respect to 𝐸𝑞 , is defined as 
the average entanglement produced by 𝑈 acting on the SC states [12], 

𝑒p(𝐸𝑞 , 𝑈 ) ≡ 𝐸𝑞(𝑈 |𝑗,𝐧⟩) = 1
4𝜋 ∫𝑆2

𝐸𝑞(𝑈 |𝑗,𝐧⟩)d𝐧. (6)

It is easily seen that 
𝑒p
(

𝐸𝑞 , 𝑅1𝑈𝑅2
)

= 𝑒p(𝐸𝑞 , 𝑈 ), (7)

for all 𝑞, where 𝑅1,2 are matrices representing arbitrary SU(2) elements. If 𝑈 itself is an SU(2) element, then 𝑒p(𝐸𝑞 , 𝑈 ) = 0 for all 𝑞.
Lastly, and since we will use for our main results, we specify the coupled basis of two spins 

|𝑗1, 𝑗2, 𝐿,𝑀⟩ ≡
𝑗2
∑

𝑚2=−𝑗2

𝑗1
∑

𝑚1=−𝑗1

𝐶𝐿𝑀𝑗1𝑚1𝑗2𝑚2
|𝑗1, 𝑚1⟩|𝑗2, 𝑚2⟩, (8)

with |𝑗1, 𝑚1⟩|𝑗2, 𝑚2⟩ = |𝑗1, 𝑚1⟩⊗ |𝑗2, 𝑚2⟩, and 𝐶𝐿𝑀𝑗1𝑚1𝑗2𝑚2
 denoting the Clebsch–Gordan coefficients.

2.3. Case 𝑗 = 1 (N = 2)

For a generic unitary matrix 𝑈 ∈ SU(3), the entangling power 𝑒p(𝐸𝑞 , 𝑈 ) for 𝑗 = 1 and 𝑞 = 1 can be written as [35] 

𝑒p(𝐸1, 𝑈 ) = 3
5

(

1 − 1
9
|Tr (𝑚)|2

)

, (9)

where 
Tr(𝑚) = Tr(𝑈𝑇

𝐵𝑈𝐵), (10)

and 𝑈𝐵 is the unitary matrix 𝑈 transformed in the symmetric Bell states basis, 𝑈𝐵 = 𝑄†𝑈𝑄1 with 

𝑄 = 1
√

2

⎛

⎜

⎜

⎜

⎝

1 0 𝑖

0 𝑖
√

2 0

1 0 −𝑖

⎞

⎟

⎟

⎟

⎠

. (11)

After some algebra, we can also write Eq. (10) as 

Tr(𝑚) = Tr
(

𝛷𝑈𝑇𝛷𝑈
)

, with 𝛷 =

⎛

⎜

⎜

⎜

⎝

0 0 −1

0 1 0

−1 0 0

⎞

⎟

⎟

⎟

⎠

. (12)

The unitary transformations of spin-1 states can be parametrized using the Cartan decomposition [35,36], with the SU(2) subgroup 
generated by the 𝑗 = 1 angular momentum operators. A possible parametrization is 𝑈 = 𝑅1𝐴𝑅2 with 𝑅1, 𝑅2 ∈ SU(2) and 

𝐴 =

⎛

⎜

⎜

⎜

⎝

𝜆1+𝜆3
2 0 𝜆1−𝜆3

2

0 𝜆2 0
𝜆1−𝜆3

2 0 𝜆1+𝜆3
2

⎞

⎟

⎟

⎟

⎠

, (13)

with 
𝜆1 = 𝑒

𝑖
2
(

−𝑐1+𝑐2+𝑐3
)

, 𝜆2 = 𝑒
𝑖
2
(

𝑐1+𝑐2−𝑐3
)

, 𝜆3 = 𝑒
𝑖
2
(

𝑐1−𝑐2+𝑐3
)

, (14)

and where the real parameters 𝑐𝑘 fulfill 𝑐1 + 𝑐2 + 𝑐3 = 0 [35]. Given that the entangling power is invariant under left and right 
rotations (see Eq. (7)), 𝑒p(𝐸1, 𝑈 ) only depends on the 𝑐𝑖’s, 

𝑒p(𝐸1, 𝑈 ) = 4
15

(

sin2 𝑐12 + sin2 𝑐13 + sin2 𝑐23
)

, (15)

1 Here, we consider the 𝑄 matrix of [35] in the symmetric subspace of ⊗2 .
1∕2

3 
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Fig. 1. Plot of the function 𝑒p(𝐸1 , 𝑈 ) given in Eq. (15). One can clearly access a maximum with 𝑐2 = 0 (blue curve). Two particular maxima are shown (green 
points); the one on the right, corresponding to 𝑐1 = 2𝜋∕3, gives the 𝑈0 in (16).

with 𝑐𝑖𝑗 = 𝑐𝑖 − 𝑐𝑗 . We plot 𝑒p(𝐸1, 𝑈 ) as a function of 𝑐1 and 𝑐2 in Fig.  1. For 𝑐2 = 0, we observe two unitary matrices attaining the 
maximum at 𝑐1 = 𝜋∕3 and 2𝜋∕3, respectively. The latter solution has corresponding unitary matrix (with 𝑅1,2 = 𝐼) 

𝑈0 =

⎛

⎜

⎜

⎜

⎝

1
2 (𝜔 + 1) 0 1

2 (𝜔 − 1)

0 𝜔−1 0
1
2 (𝜔 − 1) 0 1

2 (𝜔 + 1)

⎞

⎟

⎟

⎟

⎠

, (16)

where 𝜔 = 𝑒−𝑖𝜋∕3 is a cubic root of −1 and 𝑒p(𝐸1, 𝑈0) = 3∕5. One can find two rotations to construct another unitary gate 𝑈 ′
0 = 𝑅1𝑈0𝑅2

with the same entangling power as 𝑈0 but consisting simply of a permutation matrix 

𝑈 ′
0 =

⎛

⎜

⎜

⎜

⎝

1 0 0

0 0 1

0 1 0

⎞

⎟

⎟

⎟

⎠

. (17)

3. Entangling power for symmetric 𝑵 = 𝟐𝒋 qubits

Our first result is the reformulation of 𝐸𝑞(𝑈 |𝑗,𝐧⟩) for a general 𝑈 ∈ SU(𝑁 + 1) in the form 

𝐸𝑞(𝑈 |𝑗,𝐧⟩) =1 − ⟨2𝑗,𝐧| †𝑞 |2𝑗,𝐧⟩, (18)

where  ≡ 𝑈 ⊗ 𝑈 and 

𝑞 ≡
𝑞 + 1
𝑞

2𝑗
∑

𝐿=0
(−1)2𝑗+𝐿𝜒(𝑞, 𝑗, 𝐿)𝐿, (19)

with  ,𝑞 ∈ ((𝑗)⊗2), 

𝜒(𝑞, 𝑗, 𝐿) ≡
𝑞
∑

𝜎=1
(2𝜎 + 1)

{

𝑞∕2 𝑞∕2 𝑞

𝑞∕2 𝑞∕2 𝜎

}{

𝑗 𝑗 𝐿

𝑗 𝑗 𝜎

}

{

𝑗 𝑗 2𝑗

𝑗 𝑗 𝜎

} (20)

and 

𝐿 ≡
𝐿
∑

𝑀=−𝐿
|𝑗, 𝑗, 𝐿,𝑀⟩⟨𝑗, 𝑗, 𝐿,𝑀|. (21)

Here, the curly bracket represents the Wigner 6-j symbol [38]. 𝐿 is the projector operator in the subspace of (𝑗)⊗2 defined with 
the states of coupled basis (8) with total angular momentum 𝐿. The derivation of Eq. (18) is given in Appendix  A. We now use the 
resolution of unity of the SC states [39], 

1
4𝜋 ∫ |2𝑗,𝐧⟩⟨2𝑗,𝐧|d𝐧 =

2𝑗

4𝑗 + 1
≡  , (22)

to calculate 𝑒p, yielding 
( † )

(23)
𝑒p(𝐸𝑞 , 𝑈 ) =1 − Tr  𝑞 .

4 
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The fact that both operators   and 𝑞 are linear combinations of 𝐿’s, which are orthogonal among themselves, Tr(𝐿𝐾 ) =
(2𝐿+1)𝛿𝐿𝐾 , suggests a further reformulation of the 𝑒p. Indeed, to an operator 𝑉 ∈ ((𝑗)⊗2), we associate the (2𝑗+1)-dimensional 
vector ⃖⃖⃗𝑉  with SU(2)-invariant components, 

⃖⃖⃗𝑉 =

(

Tr
(

𝑉 ̃0
)

,… ,Tr
(

𝑉 ̃𝐿
)

,… ,Tr
(

𝑉 ̃2𝑗
)

)

, (24)

where ̃𝐿 = 𝐿∕
√

2𝐿 + 1. We obtain that 
⟨

̂ ⃖⃖⃖⃖⃗ , ⃖⃖⃖⃖⃗𝑞

⟩

= Tr
(

 †𝑞
)

, (25)

where ⟨⋅, ⋅⟩ is the euclidean inner product, 
⟨

⃖⃖⃗𝑉 , ⃖⃖⃖⃖⃗𝑊
⟩

≡
2𝑗
∑

𝑘=0
𝑉𝑘𝑊𝑘, (26)

and ̂  is a (2𝑗 + 1) × (2𝑗 + 1) real matrix with entries 
(

̂
)

𝑚𝑛
= Tr

(

 ̃𝑚 †̃𝑛
)

. (27)

Therefore, the entangling power reads 
𝑒p(𝐸𝑞 , 𝑈 ) = 1 −

⟨

̂ ⃖⃖⃖⃖⃗ , ⃖⃖⃖⃖⃗𝑞

⟩

. (28)

From Eqs. (26) and (27), we deduce that ⟨̂ ⃖⃖⃖⃖⃗ , ⃖⃖⃖⃖⃗𝑞
⟩

=
⟨⃖⃖⃖⃖⃗ , ̂ 𝑇 ⃖⃖⃖⃖⃗𝑞

⟩

. To summarize, we have expressed 𝑒p(𝐸𝑞 , 𝑈 ) in terms of 
the euclidean inner product of two vectors, with components given by SU(2)-invariant quantities of the operators   and 𝑞 , one 
of them transformed by the unitary transformation  . A similar formula for 𝑒p, in terms of operators associated to the multipole 
operators [38], is given in Appendix  B.

The projectors 𝐿 change by a (−1)2𝑗+𝐿 sign under particle exchange in (𝑗)⊗2. Since the unitary operators  = 𝑈 ⊗𝑈 preserve 
this symmetry, Tr(2𝑗 †𝐿) vanishes unless 𝐿 ≡ 2𝑗 (mod 2). Thus, the vector ⃖ ⃖⃖⃖⃗ = (0, 0,… , 1∕

√

4𝑗 + 1) after a   transformation 
has components 

(

0,Tr
(

̃1
)

, 0,Tr
(

̃3
)

, 0,… ,Tr
(

̃2𝑗
)

)

,

(

Tr
(

̃0
)

, 0,Tr
(

̃2
)

, 0,… ,Tr
(

̃2𝑗
)

)

,

(29)

for 2𝑗 odd or even, respectively. On the other hand, ⃖ ⃖⃖⃖⃗𝑞 has components for 𝐿 both odd and even. As an example, the components 
of ⃖⃖⃖⃖⃗1 are 

(

⃖⃖⃖⃖⃗1

)

𝐿
=
𝐿(𝐿 + 1) − 2𝑗(𝑗 + 1)

2𝑗2
. (30)

Nevertheless, the relevant components of 𝑞 for 𝑒p are the ones in common with ̂ ⃖⃖⃖⃗𝑁 (29), i.e. , with 2𝑗 ≡ 𝐿 (mod 2). These 
components of ⃖ ⃖⃖⃖⃗  and ⃖⃖⃖⃖⃗𝑞 lie in a hyperplane after any unitary transformation  = 𝑈 ⊗ 𝑈 (see Identity  3 of Appendix  C) 

2𝑗
∑

𝐿=0
2𝑗≡𝐿 (mod 2)

√

2𝐿 + 1
(

̂ ⃖⃖⃖⃖⃗
)

𝐿
=

2𝑗
∑

𝐿=0
2𝑗≡𝐿 (mod 2)

Tr
(

𝐿 †
)

= 1,

2𝑗
∑

𝐿=0
2𝑗≡𝐿 (mod 2)

√

2𝐿 + 1
(

̂ ⃖⃖⃖⃖⃗𝑞

)

𝐿
=

(𝑗 + 1)(2𝑗 + 1)
2𝑗 + 1 − 𝑞

.

(31)

The components of ⃖⃖⃖⃖⃗𝑞 for several spin values are shown in Table  1 — they satisfy the inequalities 

0 ⩽ Tr
(

𝐿 †𝐾
)

⩽ min (2𝐿 + 1, 2𝐾 + 1) , (32)

for 𝐿 ≡ 𝐾 (mod 2). This becomes evident if we take into account that the operators 𝐿 and 𝐾 project onto subspaces of dimensions 
2𝐿 + 1 and 2𝐾 + 1, respectively. The unitary operator transforms this subspace while preserving its dimension. The trace in (32) 
then is just the projection of one of the subspaces, transformed by  , onto the other. These inequalities can be used to find bounds 
for the components of the vector 

𝑝𝐿 ≡
(

̂ ⃖⃖⃖⃖⃗
)

𝐿
, 0 ⩽ 𝑝𝐿 ⩽

√

2𝐿 + 1
4𝑗 + 1

. (33)

A unitary operator   that achieves a critical value of 𝑒p(𝐸𝑞 , 𝑈 ) must fulfill 

Tr
(

 † [ ,
])

= 0,  = 1⊗𝐺 + 𝐺 ⊗ 1, (34)
𝑞 𝑎 𝑎 𝑎 𝑎
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Table 1
Vectors of SU(2) invariants of 𝑞 (19) for the spin values 𝑗 = 1, 3∕2, 2, 5∕2 and 𝑞 = 1,… , ⌊𝑗⌋. 
 𝑗 𝑞 ⃖⃖⃖⃖⃗𝑞  
 1 1

(

−2,−
√

3,
√

5
)

 
 3/2 1

(

− 5
3
,− 11

3
√

3
,−

√

5
3
,
√

7
)

 
 2 1

(

− 3
2
,− 5

√

3
4
,− 3

√

5
4
, 0, 3

)

 
 2

(

− 1
4
,−

√

3
2
,− 3

√

5
4
,−

√

7
2
, 3
)

 
 5/2 1

(

− 7
5
,− 31

√

3
25

,− 23
5
√

5
,− 11

√

7
25

, 3
5
,
√

11
)

 
 2

(

− 7
20
,− 47

√

3
100

,− 31
10

√

5
,− 31

√

7
50

,− 3
5
,
√

11
)

 

for any generator of the Lie algebra 𝐺𝑎 ∈ su(2𝑗 + 1). If it satisfies additionally that the Hessian of 𝑒p evaluated at  , 

𝐻𝑎𝑏 ≡ −Tr
(

 † [[𝑞 ,𝑎
]

,𝑏
])

, (35)

has only negative eigenvalues, then   is a local maximum. Due to the invariance of 𝑒p(𝐸𝑞 , 𝑈 ) under left and right SU(2)
operations (7), at least 6 eigenvalues of 𝐻 are equal to zero.

4. 𝒆p for small number of qubits

4.1. 𝑁 = 2 (𝑗 = 1)

We calculate again 𝑒p(𝐸1, 𝑈 ) for 𝑗 = 1 using the formulation given in the previous section. In this case, ̂ ⃖⃖⃖⃖⃗ = (𝑝0, 0, 𝑝2). The 
restriction to the hyperplane (31), 𝑝0 +

√

5𝑝2 = 1, lets us write 𝑒p in terms of only 𝑝0, 

𝑒p(𝐸1, 𝑈 ) = 1 −
⟨

̂ ⃖⃖⃖⃖⃗ , ⃖⃖⃖⃖⃗1

⟩

= 3𝑝0 (36)

We recover (9) by calculating 𝑝0, 
5𝑝0 =Tr

(

2 †0
)

=Tr
(

 (1 − 0 − 1) †0
)

=1 − Tr
(

0 †0
)

.

(37)

Since 0 is a rank one operator, the last expression can be rewritten as 

5𝑝0 = 1 − |

|

|

Tr
(

0
)

|

|

|

2
= 1 − 1

9
|

|

|

Tr
(

𝛷𝑈𝑇𝛷𝑈
)

|

|

|

2
, (38)

where 𝛷 is defined in Eq. (12) and the last equality is derived as follows 
Tr(0 ) =

∑

𝑚1 𝑚2
𝑛1 𝑛2

𝐶00
1𝑚11𝑚2

𝐶00
1𝑛11𝑛2

𝑈𝑚1𝑛1𝑈𝑚2𝑛2

= 1
3

∑

𝑚1 𝑛1

(−1)𝑚1+𝑛1𝑈𝑚1𝑛1𝑈−𝑚1−𝑛1

= 1
3
Tr
(

𝛷𝑈𝑇𝛷𝑈
)

.

(39)

We obtain the upper bound 𝑒p(𝐸1, 𝑈 ) ⩽ 3∕5 from Eq. (33) — the inequality is in fact saturated by 𝑈0 (16). In Fig.  2 (left frame) 
we plot the vectors ̂ ⃖⃖⃖⃖⃗  for random unitary operators, produced with the Haar measure, as well as the vector ̂0

⃖⃖⃖⃖⃗  with 𝑈0 given 
by (16). We also plot the orthogonal complement ⃖⃖⃖⃗𝑀⟂

𝑞  of ⃖⃖⃖⃗𝑀𝑞 with respect to the inner product (26). As expected, 0 meets the 
criteria for a local maximum (34)–(35), with the Hessian there having two eigenvalues equal to −4 and six equal to 0.

4.2. 𝑁 = 3 (𝑗 = 3∕2)

The vector ̂ ⃖⃖⃖⃖⃗ = (0, 𝑝1, 0, 𝑝3) is restricted in the hyperplane (31)
√

3𝑝1 +
√

7𝑝3 = 1. Hence, 𝑒p(𝐸1, 𝑈 ) is also a function of one 
SU(2) invariant for 𝑗 = 3∕2, 

𝑒p(𝐸1, 𝑈 ) =
20

√

3
9

𝑝1 ⩽
20
21
. (40)

The bound is saturated by the unitary operator 

𝑈0 =

⎛

⎜

⎜

⎜

⎜

⎜

0 1 0 0

0 0 0 𝑖

𝑖 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

, (41)
⎝

0 0 1 0
⎠

6 
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Fig. 2.  Vectors of SU(2) invariants in the plane where ̂ ⃖⃖⃖⃖⃗ has non-zero components (29) for (a) 𝑁 = 2 and (b) 𝑁 = 3. The black dots are the vectors 
corresponding to random, according to the Haar measure, unitary operators. The solid red segment is the part of the hyperplane (31) that also satisfies (33). 
The contour lines of 𝑒p(𝐸1 , 𝑈 ) are parallel to the dashed blue line representing ⃖⃖⃖⃖⃗⟂

1 . The entangling power of 𝑈 increases as the euclidean distance from 𝑈⃖⃖⃖⃖⃗
to ⃖⃖⃖⃖⃗⟂

1  decreases. The upper bounds are saturated for the unitary transformations (16) (also (17)) for 𝑁 = 2 and (41), for 𝑁 = 3. To simplify the axes labels, 
we use the scaled variables 𝑝′𝜎 =

√

2𝜎 + 1𝑝𝜎 .

which we identified as outlined in Section 7. Note that, in order to simplify the notation, we denote the optimal entangles by 𝑈0
for all values of spin — which unitary operator is involved should be clear from the context. We plot the vectors ̂ ⃖⃖⃖⃖⃗  for random 
unitary operators, as well as ̂0

⃖⃖⃖⃖⃗  and ⃖ ⃖⃖⃖⃗⟂
𝑞  in Fig.  2 (right frame). Again, it is verified that 𝑈0 is a critical value of 𝑒p with Hessian 

having eigenvalues equal to −8, −8∕5 and 0, with degeneracies 4, 5 and 6, respectively.

4.3. 𝑁 = 4 (𝑗 = 2)

Here, we have three different non-zero components in ̂ ⃖⃖⃖⃗𝑁 =
(

𝑝0, 0, 𝑝2, 0, 𝑝4
) restricted to the plane 𝑝0 +

√

5𝑝2 +3𝑝4 = 1, and two 
different non-equivalent bipartite entanglements 

𝑒p(𝐸𝑞 , 𝑈 ) =1
4

(

10𝑝0
𝑞

+ 7
√

5𝑝2

)

, (42)

for 𝑞 = 1, 2. Unlike the previous cases, the inequalities (33) provide a trivial bound for 𝑒p(𝐸𝑞 , 𝑈 ). Through numerical search, we 
identified unitary matrices 𝑈 (𝑞)

0  that we conjecture are optimal entanglers for 𝐸𝑞 , 𝑞 = 1, 2. They read 

𝑈 (1)
0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛽 cos 𝛼 0 0 0 𝑖𝛽 sin 𝛼

0 𝑒𝑖
𝜋
4 0 0 0

0 0 𝛽2 0 0

0 0 0 𝑒−𝑖
𝜋
4 0

−𝑖𝛽 sin 𝛼 0 0 0 −𝛽 cos 𝛼

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (43)

with 𝛼 = arctan
(

√

83∕53
)

 and 𝛽 = 𝑒−𝑖 arctan
(

√

53∕83
)

, and 

𝑈 (2)
0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 𝑖 0

𝑖 0 0 0 0

0 0 1 0 0

0 0 0 0 𝑖

0 𝑖 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (44)

Both unitary matrices fulfill the criteria for local maximum (34) and (35) for their respective 𝐸𝑞 , with entangling power 

𝑒p
(

𝐸1, 𝑈
(1)
0

)

= 6889
7140

≈ 0.9648 , 𝑒p
(

𝐸2, 𝑈
(2)
0

)

= 25
28

≈ 0.8929 . (45)

As for the previous cases, we plot the vectors ̂ ⃖⃖⃖⃖⃗ , ̂ (𝑞)⃖⃖⃖⃖⃗  and ⃖⃖⃖⃖⃗⟂ in Fig.  3.
0 𝑞

7 
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Fig. 3. Vectors ̂ ⃖⃖⃖⃖⃗ for 𝑗 = 2, where we plot only their non-zero components (29). The black dots are the vectors given by random unitary operators. The 
red plane is the restriction (31). The dashed blue and green lines denote the intersection of the red plane with ⃖⃖⃖⃖⃗⟂

1  and ⃖⃖⃖⃖⃗⟂
2 , respectively. The yellow cubes 

represent the position of the vector ⃖ ⃖⃖⃖⃗ and its corresponding transformed vector by the unitary operators 𝑈 (𝑞)
0  given by Eqs. (43) and (44), respectively.

4.4. 𝑒p of a unitary operator and its inverse

In this short section we comment on the relation between the entangling power of a unitary matrix 𝑈 and its inverse. We find 
that, for 𝑗 = 1 and 𝑗 = 3∕2, 𝑒p(𝐸1, 𝑈 ) = 𝑒p(𝐸1, 𝑈†) for all 𝑈 ∈ SU(2𝑗 + 1). These results are derived from the expressions 

𝑒p(𝐸1, 𝑈 ) = 3
5
[

1 − Tr
(

0 †0
)]

,  for 𝑗 = 1,

𝑒p(𝐸1, 𝑈 ) = 20
63

[

3 − Tr
(

1 †1
)]

,  for 𝑗 = 3∕2,
(46)

obtained from Eqs. (36)–(37) and Eq. (40), respectively. On the other hand, numerical calculations show that, in general, 𝑒p(𝐸𝑞 , 𝑈 ) ≠
𝑒p(𝐸𝑞 , 𝑈†) for 𝑗 ⩾ 2. In the case of 𝑗 = 2, for instance, the 𝑒p (42) can be rewritten as 

36𝑒p(𝐸𝑞 , 𝑈 ) = −10
𝑞
Tr

(

2 †0
)

− 7Tr
(

0 †2
)

+ 10
𝑞

[

1 − Tr
(

0 †0
)

]

+ 7
[

5 − Tr
(

2 †2
)

]

, (47)

where the first two terms on the right-hand side provide the difference between 𝑒p(𝐸𝑞 , 𝑈 ) and 𝑒p(𝐸𝑞 , 𝑈†).

5. Entanglement distribution and husimi functions

Now we would like to study the entanglement 𝐸𝑞(𝑈 |𝑗,𝐧⟩) as a function on the sphere where 𝐧 lives. We start with the expression 

𝐸𝑞(𝑈 |𝑗,𝐧⟩) = 1 − ⟨2𝑗,𝐧|𝑞(𝑈 )|2𝑗,𝐧⟩, (48)

with 
𝑞(𝑈 ) ≡ 2𝑗 †𝑞2𝑗 , (49)

which follows from (18) since the state |2𝑗,𝐧⟩ lies in the subspace associated to 2𝑗 . The matrix 𝑞 = 𝑞(𝑈 ) is Hermitian for any 
𝑈 and can be thought of as a (4𝑗 + 1) × (4𝑗 + 1) matrix when restricted to the image of 2𝑗 . Additionally, it rotates under SU(2)
transformations as 𝐷(2𝑗)(𝑅)𝑞𝐷(2𝑗)†(𝑅) with 𝐷(2𝑗)(𝑅) the (2𝑗)-irrep of the rotation 𝑅. By Eq. (48), 𝐸𝑞(𝑈 |𝑗,𝐧⟩) inherits the rotational 
symmetries of 𝑞 . These symmetries can be scrutinized by the Majorana representation for Hermitian operators [40]. In particular, 
we use it to verify the rotational symmetries of 𝐸𝑞(𝑈 |𝑗,𝐧⟩) for the unitary gates mentioned below.

The eigendecomposition 𝑞 =
∑4𝑗+1
𝑘=1 𝜎𝑘|𝜓𝑘⟩⟨𝜓𝑘| also helps to recast the entanglement distribution on the sphere as 

𝐸𝑞(𝑈 |𝑗,𝒏⟩) = 1 −
4𝑗+1
∑

𝑘=1
𝜎𝑘𝐻|𝜓𝑘⟩(𝐧), (50)

with 𝐻
|𝜓𝑘⟩(𝐧) = |⟨2𝑗,𝐧|𝜓𝑘⟩|2 being the Husimi function of |𝜓𝑘⟩ [39]. By averaging over the sphere, we find 

𝑒p(𝐸𝑞 , 𝑈 ) =1 −
4𝑗+1
∑

𝑘=1
𝜎𝑘𝐻|𝜓𝑘⟩(𝐧)

=1 − 1
4𝑗 + 1

4𝑗+1
∑

𝑘=1
𝜎𝑘

=1 −
Tr

[

𝑞(𝑈 )
]

,

(51)
4𝑗 + 1

8 
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Fig. 4. Entanglement distribution 𝐸1(𝑈 |𝑗,𝐧⟩) (Top) and its stereographic projection (Bottom) obtained by the SC states after the action of the unitary operator 
(a) (17) (b) (41) and (c) (43) for the spin values 𝑗 = 1, 3∕2, 2, respectively. 𝐸𝑞 (𝑈 |𝐧⟩) has tetrahedral, icosahedral and octahedral symmetry, respectively. These 
unitary operators maximize 𝑒p for 𝑗 = 1, 3∕2, and apparently for 𝑗 = 2, respectively. The numerical values of the contour lines are marked in each color bar.

which reduces to Eq. (28). Let us now study the entanglement distribution of the examples in Section 4.

5.1. 𝑁 = 2 (𝑗 = 1)

We plot in Fig.  4a the entanglement distribution 

𝐸1(𝑈 ′
0|𝐧⟩) = 4

√

2 sin5
( 𝜃
2

)

cos3
( 𝜃
2

)

cos(3𝜙) +
sin2

(

𝜃
2

)

32

[

90 + 105 cos(𝜃) + 54 cos(2𝜃) + 7 cos(3𝜃)
]

, (52)

with 𝑈 ′
0 defined in (17). Its corresponding matrix 1 is equal to 

1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0

0 −1 0 0
√

2

0 0 1 0 0

0 0 0 1 0

0
√

2 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (53)

which exhibits tetrahedral symmetry. The same point group can be observed in the entanglement distribution of 𝑈 ′
0 plotted in Fig. 

4a. 𝑈 ′
0 does not create any entanglement when applied to four SC states pointing in the vertices of a regular tetrahedron, one of 

which is |𝐳⟩. On the other hand, it transforms the SC states pointing along the vertices of the antipodal tetrahedron into maximally 
entangled states. For instance, 𝑈 ′

0|−𝐳⟩ = |1, 0⟩. An alternative way to show the tetrahedral symmetry of the entanglement distribution 
is by direct calculation of the eigendecomposition of 1

1 = 15 − 3|𝜓T⟩⟨𝜓T| , (54)

with 

|𝜓𝑇 ⟩ = −
√

2
3
|2, 1⟩ + 1

√

3
|2,−2⟩ (55)

a spin-2 state with tetrahedral symmetry [41]. By direct algebra, we obtain that 

𝐸 (𝑈 ′, |1,𝐧⟩) = 3𝐻 (𝐧), (56)
1 0 |𝜓𝑇 ⟩

9 
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i.e. , the entanglement distribution of 𝑈 ′
0 is proportional to the Husimi function of the tetrahedron state |𝜓𝑇 ⟩.

Similar expressions for 1 and 𝐸1 are obtained for a general 𝑈 ∈ SU(3) using the parametrization (13). By taking only the 
non-local term of the unitary gate 𝑈 = 𝐴, we get that 

1 = 15 −
4𝛤𝐴
3

|𝜓𝐴⟩⟨𝜓𝐴|, (57)

with 
𝛤𝐴 = sin2 𝑐12 + sin2 𝑐13 + sin2 𝑐23 (58)

and 

|𝜓𝐴⟩ =

√

3
𝛤𝐴

sin 𝑐12
2

(

|2, 2⟩ + |2,−2⟩
)

+ 𝑖

(

cos 𝑐12 − 𝑒−𝑖(𝑐13+𝑐23)
√

2𝛤𝐴

)

|2, 0⟩. (59)

Thus, 

𝐸1(𝑈, |1,𝐧⟩) =
4𝛤𝐴
3
𝐻

|𝜓𝐴⟩(𝐧), (60)

with 𝛤𝐴 proportional to 𝑒p(𝐸1, 𝑈 ) (15).2

5.2. 𝑁 = 3 (𝑗 = 3∕2)

We now plot 𝐸1(𝑈0|3∕2,𝐧⟩), with 𝑈0 the unitary transformation in (41), in Fig.  4b. The entanglement distribution 

𝐸1(𝑈0|3∕2,𝐧⟩) =
1

1152
[

1090 + 192 sin5(𝜃) cos(𝜃) sin(5𝜙) −15 cos(2𝜃) − 18 cos(4𝜃) − 33 cos(6𝜃)] (61)

has an icosahedral symmetry, and takes values in the interval [8∕9, 80∕81]. The rotational symmetries are also reflected in 
the configuration of the minima and maxima, which are arranged in an icosahedron and a dodecahedron, respectively. The 
corresponding 1 matrix has eigendecomposition given by 

1 = 17 −
20
9

3
∑

𝑘=1
|𝜓𝑘⟩⟨𝜓𝑘|, (62)

with states3

|𝜓1⟩ = −𝑖
√

3
5
|3, 2⟩ +

√

2
5
|3,−3⟩, |𝜓2⟩ = 𝑖

√

2
5
|3, 3⟩ +

√

3
5
|3,−2⟩, |𝜓3⟩ = |3, 0⟩. (63)

The entanglement distribution is then given by 

𝐸1(𝑈0|3∕2,𝐧⟩) =
20
9

3
∑

𝑘=1
𝐻

|𝜓𝑘⟩(𝐧). (64)

5.3. 𝑁 = 4 (𝑗 = 2)

We plot 𝐸1(𝑈
(1)
0 , |2,𝐧⟩), with 𝑈 (1)

0  defined by (43), in Fig.  4c. We observe octahedral symmetry, confirmed by using the Majorana 
representation of mixed states [40]. In fact, the minima (maxima) of 𝐸1(𝑈

(1)
0 |2,𝐧⟩) lie on the vertices of a truncated octahedron 

(cuboctahedron) — the explicit expression of this function is rather long and is not particularly enlightening. On the other hand, 
𝐸2(𝑈

(2)
0 |2,𝐧⟩), with 𝑈 (2)

0  as in Eq. (44), is given by an affine transformation of the entanglement distribution plotted in Fig.  4b, 

4𝐸2(𝑈
(2)
0 |2,𝐧⟩) = 9𝐸1(𝑈

Eq. (41)
0 |3∕2,𝐧⟩) − 5. (65)

Thus, 𝐸2(𝑈
(2)
0 |2,𝐧⟩) has icosahedral symmetry.

6. Average of 𝒆p over the unitary orbit

We calculate the average of 𝑒p(𝐸𝑞 , 𝑈 ) over the unitary operators SU(𝑑), with 𝑑 = 2𝑗 +1, and with respect to the normalized Haar 
measure (∫ d𝜇(𝑈 ) = 1) 

𝑒p(𝐸𝑞 , 𝑈 )
SU(𝑑)

≡ ∫ 𝑒p(𝐸𝑞 , 𝑈 )d𝜇(𝑈 ) = 1 − 1
2𝑗 + 1 − 𝑞

, (66)

2 Using the multipole expansion (A.2), each spin-1 operator has associated to it a spin-2 state. Specifically, the components 𝝆2(𝑈 ) can be expressed as 
|𝝆2(𝑈 )⟩ =

∑2
𝑚=−2 𝜌2𝑚(𝑈 )|2, 𝑚⟩. In particular, for 𝑈 = 𝐴 ∈ SU(3), where 𝐴 is defined in Eq. (13), we obtain that |𝝆2(𝐴∗2)⟩ ∝ |𝜓𝐴⟩ (see Eq. (59)). However, this 

proportionality does not extend to higher spins.
3 The spin-3 states shown in Eq. (63) span a 3-dimensional 1-anticoherent subspace (see Ref. [42] for more details).
10 



E. Serrano-Ensástiga et al. Annals of Physics 481 (2025) 170143 
Table 2
Average of 𝑒p(𝐸𝑞 , 𝑈 ) over the set of unitary gates SU(2𝑗 + 1) for several values of 𝑗 and 𝑞. 
Additionally, we include the maximum possible value of 𝑒p for 𝑗 = 1 and 3/2, as well as the 
conjectured maximum values for 𝑗 = 2 obtained from numerical searches.
 𝑗 𝑞 𝑒p(𝐸𝑞 , 𝑈 )

SU(2𝑗+1)
max𝑈 𝑒p(𝐸𝑞 , 𝑈 ) 

 1 1 1∕2 3∕5  
 3∕2 1 2∕3 20∕21  
 2 1 3∕4 6889∕7140  
 2 2 2∕3 25∕28  

the details can be found in Appendix  D. The last equation can be written in terms of the dimensions of the initial and the reduced 
Hilbert spaces, (𝑞∕2) ⊗(𝑗−𝑞∕2) and (𝑞∕2) respectively, 

𝑒p(𝐸𝑞 , 𝑈 )
SU(𝑑)

= 1 −
dim((𝑞∕2))

dim((𝑞∕2) ⊗(𝑗−𝑞∕2))
. (67)

We observe that, similar to the non-symmetric case [25], the average of 𝑒p increases as the dimension of the initial (resp. reduced) 
Hilbert space increases (resp. decreases). However, this dependence differs from that of the non-symmetric case. To corroborate 
this, let us briefly review 𝑒p in the non-symmetric case.

We start with a system of 𝑛 qudits ⊗𝑛
𝐷 . Then, we calculate its average linear entanglement entropy after we trace out 𝑛 − 𝑞

constituents, 𝑄𝑞 (see [25] for the formal definition), where the average here means over all the possible bipartitions 𝑞|𝑛 − 𝑞 over 
the 𝑛 constituents. In particular, if the state is symmetric, 𝑄𝑞 = 𝐸𝑞 . Now, the entangling power with respect to a unitary matrix 
U ∈ SU(𝐷𝑛), 𝑒p(𝑄𝑞 ,U), is equal to 

𝑒p(𝑄𝑞 ,U) = ∫ 𝑄𝑞

(

U
(

|𝜓1⟩⊗ |𝜓2⟩⊗⋯⊗ |𝜓𝑛⟩
)

)

d𝜇(𝜓1)…d𝜇(𝜓𝑛) , (68)

where ∫ d𝜇(𝜓𝑘) = 1. It turns out that its average over the unitary orbit SU(𝐷𝑛) is equal to [25] 

𝑒p(𝑄𝑞 ,U)
SU(𝐷𝑛)

= 1 −
dim(⊗𝑞

𝐷 ) + 1

dim(⊗𝑛
𝐷 ) + 1

. (69)

where dim(⊗𝛼
𝐷 ) = 𝐷𝛼 . We can observe a difference between the previous equation and Eq. (66), which is to be expected because 

we integrated over different sets of product states (see Eqs. (6) and (68)) and over different sets of unitary gates (see Eqs. (66) and 
(69)). We tabulate 𝑒p(𝐸𝑞 , 𝑈 ) for several values of 𝑗 and 𝑞 in Table  2. Similar discrepancies appear between the averages of the purity 
and linear entropy, over the symmetric sector and the entire Hilbert space of 𝑁 qubits [43].

7. 𝒆p and Schmidt numbers

The reformulation of 𝑒p in Eq. (28) shows that the entangling power increases as the subspace associated with the image of 
 = 2𝑗∕(4𝑗 + 1), im( ), is transformed to the orthogonal complement of ⟂

𝑞 . The Schmidt numbers of the states |𝜓⟩ ∈ (𝑗)⊗2

are invariant under the action of  . For instance, the states associated to coupled basis |𝑗, 𝑗, 𝐿,𝑀⟩, or just |𝐿,𝑀⟩ for short, have a 
Schmidt decomposition in terms of the decoupled basis |𝑗, 𝑚1⟩|𝑗, 𝑚2⟩. We write the explicit expressions for the states of 𝑗 = 1 and 3∕2
in Appendix  E. In general, for a state |𝜓⟩ ∈ im(2𝑗 ) to be connected by a   transformation to a state |𝜙⟩ ∈ im(⟂

2𝑗 ), their Schmidt 
numbers have to be equal. We apply this idea to the search for the optimal unitary operators, for 𝑗 = 1 and 3∕2. In particular, this 
approach led us to the identification of 𝑈0 for 𝑗 = 3∕2, i.e. , Eq. (41).

7.1. 𝑁 = 2 (𝑗 = 1)

Eq. (36) implies that the unitary transformations  = 𝑈 ⊗𝑈 that maximize 𝑒p are those that transformed one state from im(2)
to im(0). Here, 0 contains only one state given by (see Appendix  E) 

|0, 0⟩ = 1
√

3

(

|1⟩|−1⟩ − |0⟩|0⟩ + |−1⟩|1⟩
)

, (70)

with Schmidt numbers (1, 1, 1)∕
√

3. By direct inspection, we find that the state |𝛹⟩ ∈ im(2) given by 

|𝛹⟩ = 1
√

3

(

√

2|2, 1⟩ − |2,−2⟩
)

= 1
√

3

(

|1⟩|0⟩ − |−1⟩|−1⟩ + |0⟩|1⟩
)

(71)

can be transformed, via 𝑈 ′ given in Eq. (17), to 𝑈 ′ ⊗𝑈 ′
|𝛹⟩ = |0, 0⟩ ∈ im( ). Thus, 𝑈 ′ maximizes 𝑒 .
0 0 0 0 0 p

11 
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7.2. 𝑁 = 3 (𝑗 = 3∕2)

Similarly, Eq. (40) suggests that   must transform three vectors from im(3) to im(1) in order to optimize 𝑒p. The |1,𝑀⟩ states 
have Schmidt numbers (see Appendix  E) 

1
√

10

(
√

3,
√

3, 2, 0
)

 for 𝑀 = ±1,

1

2
√

5
(3, 3, 1, 1)  for 𝑀 = 0.

(72)

We find that certain states in im(3) have the same Schmidt numbers. Moreover, the   defined by Eq. (41) effects the desired 
transformation 



(
√

3
5
|3,∓2⟩ −

√

2
5
|3,±3⟩

)

=|1,±1⟩,

 |3, 0⟩ =|1, 0⟩.

(73)

8. Conclusions and perspectives

In this work we have studied the entangling power of unitary operators acting on symmetric states of 𝑁 = 2𝑗 qubits, which can 
be viewed as spin-𝑗 states. The main differences with respect to the general non-symmetric case is that the set of product states are 
reduced to the SC states (see Eq. (6)), and the set of unitary gates is reduced from SU(2𝑁 ) to SU(𝑁+1) (See Section 6 for more details). 
𝑒p is reformulated as the inner product of two (𝑁+1)-vectors (28). One vector, 𝑞 , depends on the linear entanglement entropy 𝐸𝑞 , 
while the other vector,  , is transformed by the unitary matrix 𝑈 . The components of both vectors are SU(2)-invariant quantities, 
meaning that unitary transformations 𝑈 , 𝑈 ′, differing only by left or right rotations, 𝑈 ′ = 𝑅1𝑈𝑅2, preserve them. Following this 
approach, several results and derivations are obtained, also raising new questions, which we summarize below.

We study in detail 𝑒p for states with a small number of qubits. Specifically, we identified the unitary gates that maximize 𝑒p(𝐸1, 𝑈 )
for 𝑁 = 2 and 𝑁 = 3, given by Eqs. (17) and (41), respectively. Through numerical calculations, we also discovered two unitary 
gates, Eqs. (43)–(44), that are conjectured to maximize 𝑒p(𝐸𝑞 , 𝑈 ) for 𝑁 = 4 with 𝑞 = 1, 2, respectively. These extremal unitaries 
possess highly symmetric entanglement distributions on the sphere (see Fig.  4) — note that a similar characteristic is observed 
for the extremal spin states that maximize entanglement measures [44–47]. Additionally, the hermitian matrices 𝑞(𝑈 ) (48) of 
these extremal unitaries, associated with the entanglement distributions, display peculiar characteristics such as high point group 
symmetries and multiple degeneracies in their eigenspectra. Also notably, these extremal unitaries can be represented as linear 
combinations of at most two permutations matrices with complex entries. The 𝑒p reduces to an expression that contains the sum of 
the eigenvalues of 𝑞 . We also point out that 𝑒p(𝐸𝑞 , 𝑈 ) = 𝑒p(𝐸𝑞 , 𝑈†) holds true for 𝑁 = 2 and 3, but fails, in general, for a higher 
number of qubits. This symmetry of 𝑒p may be recast as time-reversal invariance, when 𝑈 is generated by a hamiltonian, 𝑈 = 𝑒−𝑖𝑡𝐻 .

We compute the average of 𝑒p(𝐸𝑞 , 𝑈 ) over unitary gates SU(𝑁 +1) with respect to the Haar measure, Eq. (66), where we observe 
a difference with respect to the non-symmetric case Eq. (69). By sampling Haar-uniform random unitaries, we find that most of 
their associated invariant vectors cluster near the mean value (see Table  2). These observations indicate that random unitary gates 
exhibit a statistical distribution with a narrow spread around the mean value. Further work could be done to derive the explicit 
statistical distribution of 𝑒p(𝐸𝑞 , 𝑈 ), as well as other variables such as the SU(2)-invariant components 𝑝𝐿 (33).

The vectors introduced in our geometrical approach to the calculation of 𝑒p have components associated to the subspace 
projectors 𝐿. Thus, finding the maximum of 𝑒p involves searching for the unitary gate that transforms a subspace into another. 
Additionally, unitary transformations do not alter the Schmidt decomposition of the states in 𝐿, suggesting that an alternative 
approach to maximizing 𝑒p is to examine the possible Schmidt decomposition for the states spanning im(𝐿). This approach proved 
useful in identifying the unitary gate that maximizes 𝑒p(𝐸1, 𝑈 ) for 𝑁 = 3. Another line of research, to be pursued in future work, 
is the calculation of the entangling power via the operator Schmidt decomposition, i.e., the intrinsic Schmidt decomposition of the 
unitary transformation 𝑈 [16]. For the general (non-necessarily symmetric) case, the entangling power of 𝑈 can be written in terms 
of its Schmidt numbers, the swap operator 𝑆, and the product 𝑈𝑆 [16]. 

Lastly, we remark that, for spin-𝑗 pure states, the linear entanglement entropy 𝐸𝑞 (3) coincides with the measure of anticoherence 
of order-𝑞 based on the purity (see Eq. (24) of Ref. [41]). Hence, the unitary gates with high (symmetric) entangling power 
correspond to those with high capacities to generate anticoherence in the SC states. Anticoherence for pure states is known to 
be a measure of non-classicality [48–51]. It is also known that anticoherent states are useful in quantum-enhanced metrology of 
rotations [42,46,52,53]. Other questions that broaden the scope of our work involve the semiclassical limit (𝑗 → ∞) of our results. 
One could explore the general tendency of formulas such as Eq. (23) and the respective SU(2)-invariants, or consider a family of 
well-known symmetric unitary gates defined for any 𝑗 and explore the behavior of their entangling power in the above limit.

In summary, we have examined in detail the concept of entangling power for unitary matrices acting on symmetric multiqubit 
states, introducing reformulations in terms of inner products between vectors associated to SU(2) invariants and transformation of 
subspaces of bipartite states among themselves. Additionally, the entanglement distribution of a unitary gate is associated with a 
linear combination of Husimi functions. These new perspectives could establish connections among quantities relevant for quantum 
information theory that initially appear unrelated, including those relevant to the non-symmetric case.
12 
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Appendix A. Master equation

Here, we derive Eq. (18). First, we introduce the basis of ((𝑗)) defined by the multipole operators 
{

𝑇 (𝑗)
𝜎𝜇

}

, with 𝜎 = 0,… , 2𝑗
and 𝜇 = −𝜎,… , 𝜎 [38,54] and where we omit the superindex when there is no possible confusion. The 𝑇𝜎𝜇 operators can be written 
in terms of the Clebsch–Gordan coefficients 𝐶𝑗𝑚𝑗1𝑚1𝑗2𝑚2

 [38] and they are orthonormal with respect to the HS scalar product 

Tr
(

𝑇 †
𝜎1𝜇1

𝑇𝜎2𝜇2
)

= 𝛿𝜎1𝜎2𝛿𝜇1𝜇2 . (A.1)

A density matrix 𝜌 ∈ ((𝑗)), representing a quantum state, can always be expanded in the {𝑇𝜎𝜇
} basis 

𝜌 =
2𝑗
∑

𝜎=0

𝜎
∑

𝜇=−𝜎
𝜌𝜎𝜇𝑇𝜎𝜇 =

2𝑗
∑

𝜎=0
𝝆𝜎 ⋅ 𝐓𝜎 , (A.2)

where 𝝆𝜎 =
(

𝜌𝜎𝜎 ,… , 𝜌𝜎−𝜎
) with 𝜌𝜎𝜇 = Tr(𝜌𝑇 †

𝜎𝜇), and 𝐓𝜎 =
(

𝑇𝜎𝜎 ,… , 𝑇𝜎−𝜎
) is a vector of matrices. In particular, 𝑇00 = (2𝑗 + 1)−1∕21, 

and then 𝜌00 = (2𝑗 +1)−1∕2 for any mixed state. In the picture of the spin-𝑗 states seen as 2𝑗-partite symmetric spin-1/2 systems, one 
can calculate the reduced density matrix 𝜌𝑞 = Tr2𝑗−𝑞𝜌, after tracing out 2𝑗 − 𝑞 spins-1/2. Notably, the multipole expansion (A.2) of 
𝜌𝑞 has a simple expression in terms of the original state 𝜌 [37,40] 

(

𝜌𝑞
)

𝜎𝜇 =
𝑞!

(2𝑗)!

√

(2𝑗 − 𝜎)!(2𝑗 + 𝜎 + 1)!
(𝑞 − 𝜎)!(𝑞 + 𝜎 + 1)!

𝜌𝜎𝜇 , (A.3)

with 𝜎 = 0,… , 𝑞 and 𝜇 = −𝜎,… , 𝜎.
Now we calculate the entangling power (3) for a general spin-𝑗 system. First, we write the general expression of the SC states, 

transformed by 𝑈 , 

𝑈 |𝑗,𝐧⟩⟨𝑗,𝐧|𝑈† = 1
√

2𝑗 + 1
𝑇 (𝑗)
00 +

2𝑗
∑

𝜎=1
𝝆𝜎 ⋅ 𝐓(𝑗)

𝜎 , (A.4)

with 
𝜌𝜎𝜇 = ⟨𝑗,𝐧|𝑈†𝑇 (𝑗)†

𝜎𝜇 𝑈 |𝑗,𝐧⟩. (A.5)

By tracing out the subsystem 𝐵, i.e. , 2𝑗 − 𝑞 spin-1/2 constituents, we obtain 
𝜌𝐴 =Tr2𝑗−𝑞

(

𝑈 |𝑗, 𝐧⟩⟨𝑗,𝐧|𝑈†)

= 1
√

𝑞 + 1
𝑇 (𝑞∕2)
00 +

𝑞
∑

𝜎=1

𝑞!
(2𝑗)!

√

(2𝑗 − 𝜎)!(2𝑗 + 𝜎 + 1)!
(𝑞 − 𝜎)!(𝑞 + 𝜎 + 1)!

𝝆𝜎 ⋅ 𝐓
(𝑞∕2)
𝜎 ,

(A.6)

where we use Eq. (A.3). We then get that 

𝐸𝑞(𝑈 |𝑗,𝐧⟩) =1 − (𝑞 + 1)(𝑞!)2

𝑞(2𝑗)!2

𝑞
∑

𝜎=1

(2𝑗 − 𝜎)!(2𝑗 + 𝜎 + 1)!
(𝑞 − 𝜎)!(𝑞 + 𝜎 + 1)!

|

|

𝝆𝜎 ||
2 ,

=1 − ⟨𝑗,𝐧|⊗ ⟨𝑗,𝐧| †𝑞 |𝑗,𝐧⟩⊗ |𝑗,𝐧⟩
(A.7)

where  = 𝑈 ⊗ 𝑈 as defined in the main text, 

𝜎 =
𝜎
∑

𝑇𝜎𝜇 ⊗ 𝑇 †
𝜎𝜇 (A.8)
𝜇=−𝜎
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Table A.3
Vectors of SU(2) invariants of the operators  and 𝑞 (A.9) in the 𝜎 basis for the spin values 
𝑗 = 1, 3∕2, 2, 5∕2 and 𝑞 = 1,… , ⌊𝑗⌋. The vector ⃖⃖⃖⃖⃗𝑞 has 𝑞 non-zero entries.
 𝑗 ⃖⃖⃖⃖⃗ in 𝜎 basis ⃖⃖⃖⃖⃖⃖⃗𝑞 in 𝜎 basis  
 1

(

1
3
, 1
2
√

3
, 1
6
√

5

) (

0, 2
√

3, 0
)

 
 3/2

(

1
4
, 3

√

3
20
, 1
4
√

5
, 1
20
√

7

) (

0, 20
3
√

3
, 0, 0

)

 

 2
(

1
5
, 0, 2

5
√

3
, 2
7
√

5
, 1
10

√

7
, 1
210

)

⎧

⎪

⎨

⎪

⎩

(

0, 5
√

3
2
, 0, 0, 0

)

(

0, 15
√

3
8
, 7

√

5
8
, 0, 0

)  

 5/2
(

1
6
, 0, 5

14
√

3
, 5

√

5
84
, 5
36
√

7
, 1
84
, 1
252

√

11

)

⎧

⎪

⎨

⎪

⎩

(

0, 14
√

3
5
, 0, 0, 0, 0

)

(

0, 21
√

3
10

, 21
5
√

5
, 0, 0, 0

)  

and 

𝑞 =
(𝑞 + 1)(𝑞!)2

𝑞(2𝑗)!2

𝑞
∑

𝜎=1

(2𝑗 − 𝜎)!(2𝑗 + 𝜎 + 1)!
(𝑞 − 𝜎)!(𝑞 + 𝜎 + 1)!

𝜎 =
𝑞 + 1
𝑞

𝑞
∑

𝜎=1

{

𝑞∕2 𝑞∕2 𝑞

𝑞∕2 𝑞∕2 𝜎

}

{

𝑗 𝑗 2𝑗

𝑗 𝑗 𝜎

} 𝜎 . (A.9)

The 𝜎 ’s can be written as a linear combination of the 𝐿 operators (see Identity  1 of Appendix  C) 

𝜎 = (2𝜎 + 1)
2𝑗
∑

𝐿=0
(−1)2𝑗+𝐿

{

𝑗 𝑗 𝐿

𝑗 𝑗 𝜎

}

𝐿. (A.10)

This result gives the expression (19) of 𝑞 . Lastly, we use that |𝑗, 𝐧⟩⊗ |𝑗,𝐧⟩ = |2𝑗,𝐧⟩ to obtain Eq. (18).

Appendix B. The T operator basis

Identity  1 of Appendix  C lets us write 𝑒p (18) as an inner product of vectors of SU(2) invariants associated to the 𝜎 operators. 
The operator 𝑞 is written in Eq. (A.9), while   is expanded as 

 =
2𝑗
∑

𝐿=0

{

𝑗 𝑗 2𝑗

𝑗 𝑗 𝐿

}

𝐿. (B.1)

The 𝜎 operators are hermitian, orthogonal Tr(𝜎𝜎′ ) = (2𝜎 + 1)𝛿𝜎𝜎′ , and invariant under diagonal SU(2) transformations in the 
double-copy space (𝑗)⊗2. Thus, similarly as in Section 3, we associate to every operator 𝑉 ∈ ((𝑗)⊗2) a (2𝑗 + 1)-vector of SU(2)
invariants 

⃖⃖⃗𝑉  =
(

Tr
(

𝑉 ̃0
)

,… ,Tr
(

𝑉 ̃𝜎
)

,… ,Tr
(

𝑉 ̃2𝑗
)

)

, (B.2)

with ̃𝜎 = 𝜎∕
√

2𝜎 + 1, and where the superscript denotes that the vector is written in the   basis. We follow the same procedure 
as in Section 3 to obtain a similar reformulation of 𝑒p as an inner product of two vectors given in Eqs. (25)–(28) but now expressed 
in the   basis. We also have that each vector, now written in the   basis, lies in a hyperplane, even after the action of 𝑈 , 

2𝑗
∑

𝜎=0

(

̂ ⃖⃖⃖⃖⃗
)

𝜎
=

2𝑗
∑

𝜎=0
Tr

(

 †𝜎
)

= 1 ,
2𝑗
∑

𝜎=0

(

̂ ⃖⃖⃖⃖⃗𝑞

)

𝜎
=

2(𝑗 + 1)(2𝑗 + 1)
(2𝑗 − 𝑞 + 1)

. (B.3)

We prove these results in Identity  3 of Appendix  C. Since 0 is proportional to the identity, 
(

̂ ⃖⃖⃗𝑉
)

0
=

(

⃖⃖⃗𝑉
)

0
. In particular 

(

⃖⃖⃖⃖⃗
)

0
= 1∕(2𝑗 + 1) and 

(

⃖⃖⃖⃖⃗𝑞

)

0
= 0. We write   and 𝑞 for 𝑗 = 1, 3∕2, 2 and 5∕2 in the   basis in Table  A.3. The properties 

of the 6j-symbols show that the components of ⃖⃖⃖⃖⃗  and ⃖⃖⃖⃖⃗𝑞 are always positive in the   basis [38]. However, the disadvantage of 
the   basis is that a   transformation combines all the   components, not only half of them as in the  basis.

Appendix C. Useful identities

Here we prove several identities used throughout the paper. 

Identity 1.  The operators 𝜎 and 𝐿 are related by an invertible linear transformation, 

𝜎 = (2𝜎 + 1)
2𝑗
∑

(−1)2𝑗+𝐿
{

𝑗 𝑗 𝐿
}

𝐿, 𝐿 = (−1)2𝑗+𝐿(2𝐿 + 1)
2𝑗
∑

{

𝑗 𝑗 𝜎
}

𝜎 . (C.1)

𝐿=0 𝑗 𝑗 𝜎 𝜎=0 𝑗 𝑗 𝐿

14 



E. Serrano-Ensástiga et al. Annals of Physics 481 (2025) 170143 
Proof. 

𝜎 =
𝜎
∑

𝜇=−𝜎
𝑇𝜎𝜇 ⊗ 𝑇 †

𝜎𝜇

=
(

2𝜎 + 1
2𝑗 + 1

)

∑

𝜇

∑

𝑚,𝑚′
𝑛,𝑛′

𝐶𝑗𝑚𝑗𝑚′ ,𝜎𝜇𝐶
𝑗𝑛
𝑗𝑛′ ,𝜎𝜇|𝑗, 𝑚⟩⟨𝑗, 𝑚

′
|⊗ |𝑗, 𝑛′⟩⟨𝑗, 𝑛|

=
(

2𝜎 + 1
2𝑗 + 1

)

∑

𝜇

∑

𝑚,𝑚′
𝑛,𝑛′

∑

𝐿1 ,𝑀1
𝐿2 ,𝑀2

𝐶𝑗𝑚𝑗𝑚′ ,𝜎𝜇𝐶
𝑗𝑛
𝑗𝑛′ ,𝜎𝜇𝐶

𝐿1𝑀1
𝑗𝑚,𝑗𝑛′𝐶

𝐿2𝑀2
𝑗𝑚′ ,𝑗𝑛 |𝑗, 𝑗, 𝐿1,𝑀1⟩⟨𝑗, 𝑗, 𝐿2,𝑀2|

=
(

2𝜎 + 1
2𝑗 + 1

)

(−1)𝜎
∑

𝐿1 ,𝑀1
𝐿2 ,𝑀2

∑

𝑀

∑

𝑚,𝑚′
𝑛,𝑛′

𝐶𝐿1𝑀1
𝑗𝑚,𝑗𝑛′𝐶

𝑗𝑚
𝑗𝑚′ ,𝜎𝜇𝐶

𝐿2𝑀2
𝑗𝑚′ ,𝑗𝑛𝐶

𝑗𝑛
𝜎𝜇,𝑗𝑛′ |𝑗, 𝑗, 𝐿1,𝑀1⟩⟨𝑗, 𝑗, 𝐿2,𝑀2|

= (2𝜎 + 1)
∑

𝐿1 ,𝑀1

(−1)2𝑗+𝐿1

{

𝑗 𝑗 𝐿1

𝑗 𝑗 𝜎

}

|𝐿1,𝑀1⟩𝐶 ⟨𝐿1,𝑀1|𝐶

=(2𝜎 + 1)
2𝑗
∑

𝐿=0
(−1)2𝑗+𝐿

{

𝑗 𝑗 𝐿

𝑗 𝑗 𝜎

}

𝐿,

(C.2)

where we use the decoupled and coupled bases of the angular momentum (8) and the definition of the 6j symbol (see p. 291, Eq. (8) 
of Ref. [38]). Lastly, we invert the previous equation with the orthogonality of the 6j symbols (See page 291 or Ref. [38] for the 
general formula) 

(2𝜎 + 1)
2𝑗
∑

𝐿=0
(2𝐿 + 1)

{

𝑗 𝑗 𝐿

𝑗 𝑗 𝜎

}{

𝑗 𝑗 𝐿

𝑗 𝑗 𝜎′

}

= 𝛿𝜎𝜎′ , (C.3)

to write 𝐿 in terms of the operators 𝜎 . □

Identity 2.  For any unitary transformation  = 𝑈 ⊗ 𝑈 and operator 𝑉 =
∑2𝑗
𝐾=0 𝑣𝐾𝐾 , it holds that 

2𝑗
∑

𝐿=0
2𝑗≡𝐿+𝛿 (mod 2)

Tr
(

 𝑉 †𝐿
)

=
2𝑗
∑

𝐿=0
2𝑗≡𝐿+𝛿 (mod 2)

Tr
(

𝑉 𝐿
)

, (C.4)

for 𝛿 = 0 and 1. In particular, 
2𝑗
∑

𝐿=0
𝐾≡𝐿 (mod 2)

Tr
(

𝐿 †𝐾
)

= 2𝐾 + 1,
2𝑗
∑

𝐿=0
2𝑗≡𝐿 (mod 2)

Tr
(

𝐿 †𝑞
)

=
(𝑗 + 1)(2𝑗 + 1)
2𝑗 + 1 − 𝑞

. (C.5)

Proof. By resolution of the unity of the 𝐿 operators, we have that 
2𝑗
∑

𝐿=0
Tr

(

𝐿 †𝐾
)

= Tr
(

𝐾
)

= 2𝐾 + 1. (C.6)

Now, the unitary transformations  = 𝑈 ⊗ 𝑈 preserve the orthogonality between the projectors of different parity 
Tr(𝐿 †𝐾 ) = 0, for 𝐿 ≡ 𝐾 + 1 (mod 2), (C.7)

because they preserve the permutation exchange of the states |𝛹⟩ ∈ (𝑗)⊗2. Thus, any operator 𝑉 =
∑2𝑗
𝐾=0 𝑣𝐾𝐾 can be split in the 

components with 𝐾 odd and even, and these components do not mix after a transformation by  . This proves (C.4). In particular, 
2𝑗
∑

𝐿=0
Tr

(

𝐿 †𝐾
)

=
2𝑗
∑

𝐿=0
𝐾≡𝐿 (mod 2)

Tr
(

𝐿 †𝐾
)

= Tr
(

𝐾
)

= 2𝐾 + 1. (C.8)

For 𝑞 , we have that 
2𝑗
∑

𝐿=0
2𝑗≡𝐿+𝛿 (mod 2)

Tr
(

𝑞 †𝐿
)

= 1
2

2𝑗
∑

𝐿=0

[

1 + (−1)2𝑗+𝐿+𝛿
]

Tr
(

𝑞𝐿
)

= (−1)𝛿
(𝑗 + 1)(2𝑗 + 1)
2𝑗 + 1 − 𝑞

, (C.9)

where we use identities of the 6j symbols [38]. □

Identity 3.  Any hermitian operator 𝑉 =
∑2𝑗
𝜎=0 𝑣𝜎𝜎 satisfies 

2𝑗
∑

Tr
(

 𝑉 †𝜎
)

=
2𝑗
∑

Tr
(

𝑉 𝜎
)

, (C.10)

𝜎=0 𝜎=0
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where  = 𝑈 ⊗ 𝑈 and 𝑈 a unitary operator. In particular, 
2𝑗
∑

𝜎=0
Tr

(

𝑞𝜎
)

=
2(𝑗 + 1)(2𝑗 + 1)
(2𝑗 − 𝑞 + 1)

,
2𝑗
∑

𝜎=0
Tr

(

𝜎
)

=
2𝑗

2𝑗 + 1
. (C.11)

Proof. The following calculation will prove convenient later on, 
2𝑗
∑

𝜎=0
𝜎 =

2𝑗
∑

𝜎=0

𝜎
∑

𝜇=−𝜎

∑

𝑚1 ,𝑚2
𝑛1 ,𝑛2

(−1)2𝑗−𝑚2−𝑛2𝐶𝜎𝜇𝑗𝑚1𝑗−𝑚2
𝐶𝜎𝜇𝑗𝑛1𝑗−𝑛2 |𝑗, 𝑚1, 𝑗, 𝑛2⟩⟨𝑗, 𝑚2, 𝑗, 𝑛1|

=
∑

𝑚1 ,𝑚2
𝑛1 ,𝑛2

(−1)2𝑗−𝑚2−𝑛2𝛿𝑚1 ,𝑛1𝛿𝑚2𝑛2 |𝑗, 𝑚1, 𝑗, 𝑛2⟩⟨𝑗, 𝑚2, 𝑗, 𝑛1|

=
∑

𝑚1 ,𝑚2

|𝑗, 𝑚1, 𝑗, 𝑚2⟩⟨𝑗, 𝑚2, 𝑗, 𝑚1|

(C.12)

where we use that 2(𝑗 − 𝑚) is always an even integer number. Now, let us prove the result for the 𝜎 operators 
2𝑗
∑

𝜎=0
Tr

(

 †𝜏𝜎
)

=
𝜏
∑

𝜈=−𝜏

∑

𝑚1 ,𝑚2

⟨𝑗, 𝑚2|𝑈
†𝑇𝜏𝜈𝑈 |𝑗, 𝑚1⟩⟨𝑗, 𝑚1|𝑈

†𝑇 †
𝜏𝜈𝑈 |𝑗, 𝑚2⟩ = 2𝜏 + 1 =

2𝑗
∑

𝜎=0
Tr

(

𝜏𝜎
)

, (C.13)

The first equality will be valid for any 𝑉  by linearity. In particular, we get for 𝑉 =   that 
2𝑗
∑

𝜎=0
Tr

(

𝜎
)

=
2𝑗
∑

𝜎=0

2𝑗
∑

𝐿=1

{

𝑗 𝑗 2𝑗

𝑗 𝑗 𝐿

}

Tr
(

𝐿𝜎
)

=
2𝑗
∑

𝐿=1
(2𝐿 + 1)

{

𝑗 𝑗 2𝑗

𝑗 𝑗 𝐿

}

=
2𝑗

2𝑗 + 1
, (C.14)

where we use the following identities of the 6j symbol [38] 
2𝑗
∑

𝐿=0
(2𝐿 + 1)

{

𝑗 𝑗 2𝑗

𝑗 𝑗 𝐿

}

= 1 ,

{

𝑗 𝑗 2𝑗

𝑗 𝑗 0

}

= 1
2𝑗 + 1

. (C.15)

Similarly, 

2𝑗
∑

𝜎=0
Tr

(

𝑞𝜎
)

=
𝑞 + 1
𝑞

𝑞
∑

𝜏=1
(2𝜏 + 1)

{

𝑞∕2 𝑞∕2 𝑞

𝑞∕2 𝑞∕2 𝜏

}

{

𝑗 𝑗 2𝑗

𝑗 𝑗 𝜏

} =
2(𝑗 + 1)(2𝑗 + 1)

2𝑗 + 1 − 𝑞
. □ (C.16)

Appendix D. Proof of Eq. (66)

We start with the following identity regarding the integration over the SU(𝑑) unitary matrices and where 𝐴 is a 𝑑2 × 𝑑2 matrix 
(see Proposition 3.9 in [55]) 

∫ 𝐴 †d𝜇(𝑈 ) =
[

Tr(𝐴)
𝑑2 − 1

−
Tr(𝐴𝐹 )
𝑑(𝑑2 − 1)

]

1𝑑2 −
[

Tr(𝐴)
𝑑(𝑑2 − 1)

−
Tr(𝐴𝐹 )
𝑑2 − 1

]

𝐹 (D.1)

where 𝐹 |𝜓1⟩|𝜓2⟩ = |𝜓2⟩|𝜓1⟩ is the swap operator. In particular 𝐹𝐿 = 𝐿𝐹 = (−1)2𝑗−𝐿𝐿. Thus, 

∫ 𝑒p(𝐸𝑞 , 𝑈 )d𝜇(𝑈 ) =1 − Tr
([

∫  †d𝜇(𝑈 )
]

𝑞

)

= 1 − 1
𝑑(𝑑 + 1)

[

Tr
(

𝑞
)

+ Tr
(

𝐹𝑞
)]

. (D.2)

We add the resolution of the unity 1𝑑2 =
∑2𝑗
𝐿=0 𝐿 to use Eq. (C.9) in the last equation 

∫ 𝑒p(𝐸𝑞 , 𝑈 )d𝜇(𝑈 ) = 1 −
2(𝑗 + 1)(2𝑗 + 1)

𝑑(𝑑 + 1)(2𝑗 + 1 − 𝑞)
=

2𝑗 − 𝑞
2𝑗 + 1 − 𝑞

. (D.3)

Appendix E. Spin states in the coupled and decoupled bases

Here, we write the coupled basis |𝐿,𝑀⟩ ≡ |𝑗1, 𝑗2, 𝐿,𝑀⟩ in terms of the decoupled basis |𝑚1⟩|𝑚2⟩ ≡ |𝑗1, 𝑚1⟩|𝑗2𝑚2⟩. For 𝑗 = 1, we 
have 

|2,±2⟩ = |±1⟩|±1⟩,

|2,±1⟩ = 1
√

2

(

|±1⟩|0⟩ + |0⟩|±1⟩
)

,

|2, 0⟩ = 1
√

6

(

|1⟩|−1⟩ + 2|0⟩|0⟩ + |−1⟩|1⟩
)

,

|0, 0⟩ = 1
√

(

|1⟩|−1⟩ − |0⟩|0⟩ + |−1⟩|1⟩
)

,

(E.1)
3
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And for 𝑗 = 3∕2, it reads 

|3,±3⟩ =
|

|

|

|

±3
2

⟩

|

|

|

|

±3
2

⟩

,

|3,±2⟩ = 1
√

2

(

|

|

|

|

±3
2

⟩

|

|

|

|

±1
2

⟩

+
|

|

|

|

±1
2

⟩

|

|

|

|

±3
2

⟩

)

,

|3,±1⟩ = 1
√

5

(

|

|

|

|

±3
2

⟩

|

|

|

|

∓1
2

⟩

+
|

|

|

|

∓1
2

⟩

|

|

|

|

±3
2

⟩

+
√

3
|

|

|

|

±1
2

⟩

|

|

|

|

±1
2

⟩

)

,

|3, 0⟩ = 1

2
√

5

(

|

|

|

|

3
2

⟩

|

|

|

|

−3
2

⟩

+
|

|

|

|

−3
2

⟩

|

|

|

|

3
2

⟩

+ 3
|

|

|

|

1
2

⟩

|

|

|

|

−1
2

⟩

+ 3
|

|

|

|

−1
2

⟩

|

|

|

|

1
2

⟩

)

,

(E.2)

|1,±1⟩ = 1
√

10

(

√

3
|

|

|

|

±3
2

⟩

|

|

|

|

∓1
2

⟩

+
√

3
|

|

|

|

∓1
2

⟩

|

|

|

|

±3
2

⟩

− 2
|

|

|

|

±1
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