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ARTICLE INFO ABSTRACT

Keywords: Unitary gates with high entangling power are relevant for several quantum-enhanced technolo-
Unitary gates gies due to their entangling capabilities. For symmetric multiqubit systems, such as spin states
Entangling power or bosonic systems, the particle exchange symmetry restricts these gates and also the set of

Symmetric multipartite systems

h not-entangled states. In this work, we analyze the entangling power of unitary gates in these
Geometrical methods

systems by reformulating it as an inner product between vectors with components given by
SU(2) invariants. For small number of qubits, this approach allows us to study analytically the
entangling power including the detection of the unitary gate that maximizes it. We observe that
extremal unitary gates exhibit entanglement distributions with high rotational symmetry, same
that are linked to a convex combination of Husimi functions of certain states. Furthermore, we
explore the connection between entangling power and the Schmidt numbers admissible in some
quantum state subspaces. Thus, the geometrical approach presented here suggests new paths
for studying entangling power linked to other concepts in quantum information theory.

1. Introduction

Entanglement is a foundational concept in quantum theory and a vital resource for quantum technologies such as quantum
computing, cryptography, metrology and simulation [1-3]. In multipartite quantum systems, it is generated through nonlocal
unitary transformations, since local operations cannot alter the entanglement of a state [1]. It is therefore natural to investigate the
entangling capacity of nonlocal unitary gates, and how to create highly entangled states via the evolution of nonlocal Hamiltonians
or pulse sequences in physical systems [4-11]. On the theoretical side, several concepts have been proposed to assess the capability
of unitary gates in generating quantum resources such as gate typicality, disentangling power, or perfect entanglers [12-15]. One
of the most intuitively appealing quantities is the entangling power of a unitary gate [12] which is defined as the average
entanglement generated by a unitary gate over the set of separable (not-entangled) states. Extensive studies of the entangling
power have been carried out in bipartite systems [16-23] with generalizations to two-qubit global noise channels [24] and
multipartite systems [25,26]. The entangling power of a unitary operator is also connected to its entanglement in its own Schmidt
decomposition [16,27] or to invariant quantities under local transformations [8,28,29]. Furthermore, connections have been
identified between highly entangling unitary gates and Quantum Error-Correcting Codes [25], absolutely maximally entangled
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(AME) states [26], unitary operators invariant under local actions of diagonal unitary and orthogonal groups [30], and quantum
versions of chaotic systems [31-33].

When a multiqubit system is restricted to its symmetric subspace, the set of product states is significantly reduced to the set of
Spin-Coherent (SC) states, which form a 2-sphere within the Hilbert space of quantum states [3,34]. Additionally, the local unitary
transformations are limited to the global rotations, specifically global SU(2) transformations generated by the angular momentum
operators. Symmetric multiqubit states arise in bosonic systems, such as two-mode multiphotonic systems or spin-; states. Moreover,
the symmetric subspace of N qubit states is equivalent to the Hilbert space of spin-j (j = N/2) states, which makes the study of
the entangling power of single spin states relevant in distinct physical platforms.

For the symmetric two-qubit case, which can be thought of as a spin-1 system, the entangling power of 3 x 3 unitary matrices has
been studied in Ref. [35]. One key mathematical feature that arises in the study of those unitaries is the Cartan decomposition, which
factorizes any quantum gate as a non-local operation multiplied on each side by local SU(2) transformations [36]. The entangling
power of the unitary is encoded into the non-local factor, which is obtained by exponentiating the maximally commuting (Cartan)
subalgebra of su(3). This allows to represent the unitaries with equivalent entangling properties in an euclidean two-dimensional
space [35]. For symmetric N-qubit systems with N > 2, the Cartan decomposition would not represent such a significant advantage,
since the number of relevant parameters grows quadratically with the dimension of the system.

In this work, we study the entangling power of unitary transformations acting in symmetric multiqubit systems. We reformulate
its original expression in terms of SU(2) invariant quantities of the unitary operators. This geometrical approach connects the
entangling power to other well-known quantities in quantum information theory.

The structure of the paper is as follows: Section 2 considers symmetric multiqubit states and reviews, in this context, the formal
definitions of the entropy of entanglement and of the entangling power — we derive the above mentioned geometric expression
of the latter in Section 3. We then calculate the entangling power and the entanglement distribution on the sphere for systems
with a small number of qubits in Sections 4 and 5, respectively, including the search of unitary gates with the best entangling
capabilities. Section 6 contains the calculation of the average entangling power over all unitary gates. An interesting connection
between entangling power and Schmidt numbers is explored in 7. We give some last remarks in Section 8.

2. Basic concepts
2.1. Equivalence between symmetric multiqubit states and spin-; states
We start this section by briefly describing the equivalence between the symmetric sector of N qubits and a spin j = N /2 state

(see Ref. [37] for a detailed discussion of this equivalence). The symmetric sector of the N-qubit system is spanned, for instance,
by the Dicke states |D(kN ))

DM =KY |+ @ ®+)®|-)® & |-, @
1 ~ d
N—-k k

where K is a normalization factor and the sum runs over all the permutations of the qubits. If we consider that the qubits are spins
1/2, the states |Df(N ) are eigenvectors of the angular momentum operators J, and J? = J2 + I+ 7

P10y = jG + DIDY),

(&3]
71Dy = m| DY)

with m = j — k. Thus, the span of the Dicke states constitute a spin-j Hilbert space, denoted as H"), and where we can identify
|D§{N )y = |j,m). This space constitutes a spinor system because its elements transform under rotations with respect to the spin-j
irreducible representation (irrep) of SU(2). From now on, we mostly work in the language of spins where the SU(2) irreps appear
naturally.

2.2. Bipartite entanglement and entangling power

We consider a single spin-j (symmetric N = 2j-qubits) system with Hilbert space %) and the Hilbert-Schmidt (HS) space of
bounded operators H.S(H) acting on H"). In this framework, we consider a bipartition of these 2j qubits ¥ ¢ H, ® Hp and
assume, without loss of generality, that dim(H4) < dim(H ). Moreover, since any subsystem of a symmetric state is also symmetric,
we can take as subsystems M, = H@/2 and H, =~ HU~4/?, In other words, the bipartition involves states of spins ¢/2 and j — ¢/2,
respectively. The entanglement of a bipartite state |¥) € H, ® Hp can be quantified by the (normalized) linear entanglement
entropy [12]

Ew) = 4 [1-Te ()], ®)

where E(|?)) € [0,1], p4 = Trg(|?)(¥]) is the reduced mixed state after tracing out the subsystem B, and d = dim (HA). For a
general bipartite pure state with Schmidt decomposition

d
1) = 3 Vw0 ® lwiy). @
k=1
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where {|y,,)}; C Hy and {|yp,)}, C Hp are orthogonal sets of states and Y, I}, = 1, we have

d
E(¥)) = ddTl [1 - 21",3] : €)
k=1

In particular, E(|)) = 0 for bipartite product states |¥) = |y,4) ® |yp). On the other hand, the maximally entangled states have
Schmidt numbers I, = 1 /\/E and E(|¥)) = 1. Each bipartition with ¢ < || defines a different measure of entanglement E,. This
because Tr(pi) = Tr(p2B), and thus measures of entanglement E, for g > |j| are linear combinations of those of lower g values.

The product (separable) states in ), for any bipartition, are the spin-coherent (SC) states |j,n) = DY (n)|j, j) which constitute
a 2-sphere in H') [34]. A possible parametrization of them is given by the rotations DY) (n) = DY)(0, 6, ¢) which align the z axis to
the direction n with spherical angles (8, ¢). DY)(a, f, ) denotes the irreducible representation j (j-irrep) of a rotation matrix in the
Euler angle parametrization [38]. The entangling power of a quantum unitary gate U € HS(HY), with respect to E,, is defined as
the average entanglement produced by U acting on the SC states [12],

— 1 :
ep(Ep-U) = EUjn) = o~ /S2 E,(Ulj.n))dn. (6)
It is easily seen that
ep(E, RiURy) = ep(E,, U), @

for all g, where R, , are matrices representing arbitrary SU(2) elements. If U itself is an SU(2) element, then ep(E,,U)=0 for all q.
Lastly, and since we will use for our main results, we specify the coupled basis of two spins
J2 J1
|117J'2’LsM>EZ Clnl it mi)liz my), ®)

) TJimyjamy
my==jp mi==ji

CLM

M denoting the Clebsch-Gordan coefficients.
JimyJjamy

with |j, my)|jo, my) = |jy,my) ® |jp,my), and
2.3. Case j=1(N=2)
For a generic unitary matrix U € SU(3), the entangling power ep(E,, U) for j =1 and ¢ = 1 can be written as [35]
3 1
ep(ErU) =2 (1= 5 ITrom?). ©
where
Tr(m) = Tr(U L Up), (10)

and Uy is the unitary matrix U transformed in the symmetric Bell states basis, Uy = QTUQ"' with

1 0 i
o=Llo w2 ol an
\/5 1 0 —i
After some algebra, we can also write Eq. (10) as
0 0 -1
Tr(m) =Tr (@UT®U), witho=]0 1 0| (12)
-1 0 O

The unitary transformations of spin-1 states can be parametrized using the Cartan decomposition [35,36], with the SU(2) subgroup
generated by the j = 1 angular momentum operators. A possible parametrization is U = R AR, with R, R, € SU(2) and

A+4s 0 Al—A3

2 2
A= 0 Ay 0 |, 13
Al—A3 Al+A3
2 0 2
with
A= eé(—c|+cz+e3)’ by = eé(c|+cz—£3)’ Jy = eé(c|—£2+03)’ (14)

and where the real parameters ¢, fulfill ¢; + ¢, + ¢; = 0 [35]. Given that the entangling power is invariant under left and right
rotations (see Eq. (7)), ep(Ey,U) only depends on the ¢;’s,

ep(E,U) = 14—5 (sin® ¢15 + sin® ¢y3 +sin® ¢33) , (15)

®2

1 Here, we consider the Q matrix of [35] in the symmetric subspace of H; 2
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Fig. 1. Plot of the function e,(E,,U) given in Eq. (15). One can clearly access a maximum with ¢, = 0 (blue curve). Two particular maxima are shown (green
points); the one on the right, corresponding to ¢, = 2x/3, gives the U, in (16).

with ¢;; = ¢; — ¢;. We plot e, (E;,U) as a function of ¢; and ¢, in Fig. 1. For ¢, = 0, we observe two unitary matrices attaining the
maximum at ¢; = z/3 and 27 /3, respectively. The latter solution has corresponding unitary matrix (with R;, = I)
1 1
E(w +1) 0 E(w -1
U, = 0 ™! 0o |, (16)
1 1
Jo=1) 0 @+

where w = ¢=*/3 is a cubic root of —1 and ep(Ey,Up) = 3/5. One can find two rotations to construct another unitary gate Uj = R;UyR,
with the same entangling power as U, but consisting simply of a permutation matrix

1 0 0
vj=lo o 1f. a7)
01 0

3. Entangling power for symmetric N = 2j qubits

Our first result is the reformulation of E (U|j,n)) for a general U € SU(N + 1) in the form

E,(Ulj,n)) =1 = (2j,n|UT M, U|2j,n), (18)
where U = U ® U and
y1 &
M, = "T D 1P g, ). )Py 19
L=0

with U, M, € HS(HV®?),

{4/2 q/2 q}{j Jj L}
d a/2 /2 of \Ji Jj ©
2@.j,1)= Y Q20 +1)

o=l ioJo2
j Jj o
L

Pr= Y lj L. M)j.j. L M]. (21)
M=-L

(20)

and

Here, the curly bracket represents the Wigner 6-j symbol [38]. P, is the projector operator in the subspace of ?/)®2 defined with
the states of coupled basis (8) with total angular momentum L. The derivation of Eq. (18) is given in Appendix A. We now use the
resolution of unity of the SC states [39],

L / 2j.m2nldn = 2L = x° 22)
4 ’ ’ 4j+1 -7

to calculate e, yielding
ep(E,,U) =1 =Tr (UNTUM,). (23
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The fact that both operators A and M, are linear combinations of P, ’s, which are orthogonal among themselves, Tr(P,Px) =
(2L +1)5, g, suggests a further reformulation of the ep. Indeed, to an operator V € HS(HY®2), we associate the (2j + 1)-dimensional
vector V with SU(2)-invariant components,

—

V= <Tr(V730),...,Tr(Vf’L),...,Tr(VfJZj)>, 24

where P; = P, /y/2L + 1. We obtain that
(TN M,) =Te (UNVTM,), (25)
where (., -) is the euclidean inner product,
2j
<7,’u7> =) VWi (26)
k=0
and ' is a (2j + 1) x (2j + 1) real matrix with entries
() =t (p,v'R,). @)
mn
Therefore, the entangling power reads
ep(E.U) = 1- (TN, M, ). (28)

From Egs. (26) and (27), we deduce that (ﬁﬁ,ﬂq) = (ﬁ @'\Tﬁq>. To summarize, we have expressed e,(E,,U) in terms of
the euclidean inner product of two vectors, with components given by SU(2)-invariant quantities of the operators A" and M,, one
of them transformed by the unitary transformation U°. A similar formula for e, in terms of operators associated to the multipole
operators [38], is given in Appendix B.

The projectors P; change by a (—1)¥*% sign under particle exchange in H#“®2. Since the unitary operators U" = U ® U preserve
this symmetry, Tr(U'Py; UTP,) vanishes unless L = 2j (mod 2). Thus, the vector N= 0,0,...,1/4/4j + 1) after a U" transformation
has components

p’

(O,Tr(j\ff?l) ,0,Tr (N'P;),0,...,Tr (Ni)zj)>,
(29)
(Tr (N'Py),0,Tr (NP,),0,...,Tr (Nf)zj)>,

for 2j odd or even, respectively. On the other hand, —Mq has components for L both odd and even. As an example, the components
of M, are

(-A—/il) _ L(L+1)—2j(j+1).
L

22 (30)

Nevertheless, the relevant components of M, for e, are the ones in common with U'N (29), ie. , with 2j = L (mod 2). These
components of N and ﬂq lie in a hyperplane after any unitary transformation U = U ® U (see Identity 3 of Appendix C)

. )
j\/2L +1 (ﬁﬁ)L = jTr (vPUiN) =1,
L=0 L=0

2j=L (mod 2) 2j=L (mod 2)

2j (B1)
~— i+ 12j+1
Z‘/ZLJ“I(UMq) = M
— L 2j+1-g¢q
2j=L (mod 2)
The components of ﬂq for several spin values are shown in Table 1 — they satisfy the inequalities
0K Tr(UP,UTPx) <min(2L + 1,2K + 1), (32)

for L = K (mod 2). This becomes evident if we take into account that the operators P; and Py project onto subspaces of dimensions
2L + 1 and 2K + 1, respectively. The unitary operator transforms this subspace while preserving its dimension. The trace in (32)
then is just the projection of one of the subspaces, transformed by 1/, onto the other. These inequalities can be used to find bounds
for the components of the vector

V2L +1

= (UN <pp < ——.
Pr (UN)L’ OSPes 3 (33)
A unitary operator U that achieves a critical value of ep(E,, U) must fulfill

Tr(UNUT[M,.C]) =0, ¢,=1®G,+G,®1, (34)



E. Serrano-Ensdstiga et al. Annals of Physics 481 (2025) 170143

$:5tl§rsl of SU(2) invariants of M, (19) for the spin values j = 1,3/2,2,5/2 and ¢ =1, ..., |j].
J q M,
1 1 (-2,—\/5,\/5)
3/2 1 (-g,—% -¥.V9)
2 1 (—3—%§ -22.0.3)
z )
72 1 (-1-88 -2 -0 L V)

for any generator of the Lie algebra G, € su(2j + 1). If it satisfies additionally that the Hessian of e, evaluated at V',

Hy = -Tr (UNUT[[M,.C,] . G]). (35)

has only negative eigenvalues, then V" is a local maximum. Due to the invariance of e,(E,,U) under left and right SU(2)
operations (7), at least 6 eigenvalues of H are equal to zero.

4. e, for small number of qubits
41. N=2(=1)

We calculate again e,(E,,U) for j = 1 using the formulation given in the previous section. In this case, UN = (po,0, pp). The
restriction to the hyperplane (31), p, + \/gpz =1, lets us write ep in terms of only p,
ep(Ej,U) =1 - <177\7,ﬂ1> =3p, (36)
We recover (9) by calculating p,
5py =Tt (UP,UTP)
=Tr (UL - Py - PPUTPy) (37)
=1 -Tr(UP,UP).

Since P, is a rank one operator, the last expression can be rewritten as

2 2
spo=1-[Tr (PU)| =1 - é |Tr (0" 0U)|". (38)
where @ is defined in Eq. (12) and the last equality is derived as follows
_ 00 00
Tr(PyU) = Z Comytmy C1ny 1ny Umim Uman,y
ol
s
1
= 5 Z (_1)m1+n1 Um]nl U—ml—nl (39)
my ny
1 T
=-Tr(®U" ®U).
LTe(@uov)

We obtain the upper bound ey(E1,U) <3 /5 from Eq. (33) — the inequality is in fact saturated by U, (16). In Fig. 2 (left frame)

we plot the vectors UN for random unitary operators, produced with the Haar measure, as well as the vector 1//‘\07 with U, given
by (16). We also plot the orthogonal complement M+ of M o, with respect to the inner product (26). As expected, U}, meets the
criteria for a local maximum (34)-(35), with the Hessian there having two eigenvalues equal to —4 and six equal to 0.

42. N=3(j=3/2)

The vector UN = (0, py, 0, p3) is restricted in the hyperplane (31) \/§p1 + \/71;3 = 1. Hence, e,(E;,U) is also a function of one
SU(2) invariant for j = 3/2,

2073 20
e, (E;,U) = TP] < ETR (40)
The bound is saturated by the unitary operator
0O 1 0 O
0 0 0 i
Uy = , (41)
i 0 0 O
0 0 1 O



E. Serrano-Ensdstiga et al. Annals of Physics 481 (2025) 170143

aAN=2(j=1 b)N=3(j=3/2)
P2 Py
1

1

1/2

A

0 1/10 1/5

0 1/7 2/7 3/7

Fig. 2. Vectors of SU(2) invariants in the plane where U'N has non-zero components (29) for (a) N = 2 and (b) N = 3. The black dots are the vectors
corresponding to random, according to the Haar measure, unitary operators. The solid red segment is the part of the hyperplane (31) that also satisfies (33).
The contour lines of e,(E;,U) are parallel to the dashed blue line representing AM]L The entangling power of U increases as the euclidean distance from 0N
to f\‘/l} decreases. The upper bounds are saturated for the unitary transformations (16) (also (17)) for N =2 and (41), for N = 3. To simplify the axes labels,

we use the scaled variables p! = V20 + 1p,.

which we identified as outlined in Section 7. Note that, in order to simplify the notation, we denote the optimal entangles by U,
for all values of spin — which umtary operator is involved should be clear from the context. We plot the vectors UN for random
unitary operators, as well as U‘UN and .Ml in Fig. 2 (right frame). Again, it is verified that U, is a critical value of ¢, with Hessian
having eigenvalues equal to —8, —8/5 and 0, with degeneracies 4, 5 and 6, respectively.

43. N=4(j=2)

Here, we have three different non-zero components in U'N = (po, 0, p,,0, p4) restricted to the plane p, + \/gpz +3p, =1, and two
different non-equivalent bipartite entanglements

10
ep(Eq,U)=%< Po +7\/—p2> (42)

for ¢ = 1,2. Unlike the previous cases, the inequalities (33) provide a trivial bound for ep(E, U). Through numerical search, we
identified unitary matrices U(()”) that we conjecture are optimal entanglers for E,, ¢ = 1,2. They read

Pcosa 0 0 0 ifsina

0 10 0 0
ul’=| o 0o g 0 o |, (43)
0 0 0 e 0

—ifsina 0 0 0 —fcosa

with a = arctan (\/83/53) and g = e_iaman( 53/83), and

0 0 i 0
i 0 0 0
vP=lo o 1 0 ol (44)
0O 0 0 0 i
0O i 0 0 O
Both unitary matrices fulfill the criteria for local maximum (34) and (35) for their respective E, with entangling power
e (EI,U(()])> g?iz ~ 0.9648 , (EQ, U(z)) % ~ 0.8929. (45)

As for the previous cases, we plot the vectors UN, @\gq)ﬁ and ﬂj in Fig. 3.
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Fig. 3. Vectors UN for Jj =2, where we plot only their non-zero components (29). The black dots are the vectors given by random unitary operators. The

red plane is the restriction (31). The dashed blue and green lines denote the intersection of the red plane with ﬁf- and J\-/i;, respectively. The yellow cubes

represent the position of the vector N and its corresponding transformed vector by the unitary operators U(()") given by Egs. (43) and (44), respectively.

4.4. e, of a unitary operator and its inverse

In this short section we comment on the relation between the entangling power of a unitary matrix U and its inverse. We find
that, for j =1 and j = 3/2, ep(Ep,U) = ep(E,, U ™) for all U € SU(2;j + 1). These results are derived from the expressions

ep(Ep,U) = 3 [1-Tr(UPUTRy)], forj=1,
2(5) (46)
ep(EU) == [3-Tr(UvP,UP)], forj=3/2,

obtained from Egs. (36)-(37) and Eq. (40), respectively. On the other hand, numerical calculations show that, in general, ep(E, U) #
ep(E, U ) for j > 2. In the case of j = 2, for instance, the ep (42) can be rewritten as

36e,(E,.U) = -%Tr (UP,UTPy) =TT (UP U Py) + % [1=Te (VPR | + 7[5 - Te (VPR (47)
where the first two terms on the right-hand side provide the difference between ep(E, U) and ep(E, U .

5. Entanglement distribution and husimi functions

Now we would like to study the entanglement E, (U|;,n)) as a function on the sphere where n lives. We start with the expression

E,(Ulj,m)) =1-(2j,n|D,U)[2j,m), (48)
with
D,WU) = P U MUPy,;, (49)

which follows from (18) since the state |2j,n) lies in the subspace associated to P, e The matrix D, = D,(U) is Hermitian for any
U and can be thought of as a (4j + 1) X (4 + 1) matrix when restricted to the image of P,;. Additionally, it rotates under SU(2)
transformations as D®)(R)D,D®)T(R) with D@)(R) the (2j)-irrep of the rotation R. By Eq. (48), E,(U|j,n)) inherits the rotational
symmetries of D,. These symmetries can be scrutinized by the Majorana representation for Hermitian operators [40]. In particular,
we use it to verify the rotational symmetries of E,(U|j,n)) for the unitary gates mentioned below.
The eigendecomposition D, = Zii +11 o lwi){wi| also helps to recast the entanglement distribution on the sphere as
4j+1
E,U)j,n))=1=Y o H,,,,m), (50)
k=1

with H lyy ) = [{2 j,n|z//k)|2 being the Husimi function of |y, ) [39]. By averaging over the sphere, we find

4j+1
ep(Ep,U) =1 = ) o, Hy, \(m)
k=1
1 4j+1

SN S (51)
4+ Z; %k

_ Tr[Dp,W)

B 4j+1
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a) b) c)

Fig. 4. Entanglement distribution E,(U|j,n)) (Top) and its stereographic projection (Bottom) obtained by the SC states after the action of the unitary operator
(@) (17) (b) (41) and (c) (43) for the spin values j = 1,3/2,2, respectively. E, (U|n)) has tetrahedral, icosahedral and octahedral symmetry, respectively. These
unitary operators maximize e, for j = 1,3/2, and apparently for j = 2, respectively. The numerical values of the contour lines are marked in each color bar.

which reduces to Eq. (28). Let us now study the entanglement distribution of the examples in Section 4.
51. N=2(@(=1)

We plot in Fig. 4a the entanglement distribution

- 20
sin ( 3 )
32
with Ué defined in (17). Its corresponding matrix D, is equal to

El(Uéln)) = 4\/5 sin® (g) cos® (g) cos(3¢) + [90 + 105 cos(0) + 54 cos(20) + 7 cos(30)] R (52)

1 0 0 0 0
0 -1 0 0 V2

D=0 o 1 0 o] (53)
0 0 0 1 0
0 V2 0 0 0

which exhibits tetrahedral symmetry. The same point group can be observed in the entanglement distribution of U plotted in Fig.
4a. Ué does not create any entanglement when applied to four SC states pointing in the vertices of a regular tetrahedron, one of
which is |z). On the other hand, it transforms the SC states pointing along the vertices of the antipodal tetrahedron into maximally
entangled states. For instance, U(’)I—z) =|1,0). An alternative way to show the tetrahedral symmetry of the entanglement distribution
is by direct calculation of the eigendecomposition of D,

D, =15 = 3lyr Xl (54)
with
lwr) = —\/§ 2.1) + =2 -2) 55)
3 V3

a spin-2 state with tetrahedral symmetry [41]. By direct algebra, we obtain that

E|(Ug, 11,n)) = 3H,,, ,(n), (56)
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ie. , the entanglement distribution of U(’) is proportional to the Husimi function of the tetrahedron state |y ).
Similar expressions for D, and E, are obtained for a general U € SU(3) using the parametrization (13). By taking only the
non-local term of the unitary gate U = A, we get that

4r
Dy =15- TAlu/A)(WAla 57)
with
I, = sin’ ¢y + sin® ¢ + sin® ¢p3 (58)
and
3 sincp, [ coscpp — e7He13tens)
lwa) = ——(|2,2)+|2,—2))+1 — ] 12,0). (59)
ry 2 2T,
Thus,
4r,
E((U,|l,n)) = THWA)(H), (60)

with I', proportional to ep(Ep.U) (15).2
52. N=3(j=3/2)

We now plot E;(Uy|3/2,n)), with U, the unitary transformation in (41), in Fig. 4b. The entanglement distribution
E (Up|3/2,m)) = ﬁ [1090 + 192 5in°(8) cos(6) sin(5¢) —15 cos(26) — 18 cos(4) — 33 cos(66)] (61)

has an icosahedral symmetry, and takes values in the interval [8/9,80/81]. The rotational symmetries are also reflected in
the configuration of the minima and maxima, which are arranged in an icosahedron and a dodecahedron, respectively. The
corresponding D, matrix has eigendecomposition given by

3
20
Dy=1;-% le)(ll/kl, (62)
Py

with states®

ly1) = —i\/§|3,2> + \/§|3,—3>, ) = i\/g|3,3> + \/§|3,—2>, lys) = 13,0). 63)

The entanglement distribution is then given by

3
E,(Uy|3/2.m)) = % 3 Hy,y@). (64)
k=1

53. N=4(j=2)

We plot E,; (Uél), |2,n)), with Uél) defined by (43), in Fig. 4c. We observe octahedral symmetry, confirmed by using the Majorana
representation of mixed states [40]. In fact, the minima (maxima) of E, (Uél>|2, n)) lie on the vertices of a truncated octahedron
(cuboctahedron) — the explicit expression of this function is rather long and is not particularly enlightening. On the other hand,
E2(U(()2)|2, n)), with U(gz) as in Eq. (44), is given by an affine transformation of the entanglement distribution plotted in Fig. 4b,

Eq. (41)

4E,(U|2.m)) = 9E, (U,

|3/2,mn)) — 5. (65)

Thus, E2(U32)|2, n)) has icosahedral symmetry.
6. Average of e, over the unitary orbit

We calculate the average of ep(E,, U) over the unitary operators SU(d), with d = 2j + 1, and with respect to the normalized Haar
measure (/ du(U) = 1)

1

SU@) _
2j+1-¢q°

ep(E,,U) = / ep(E,, U)du(U) =1 - (66)

2 Using the multipole expansion (A.2), each spin-1 operator has associated to it a spin-2 state. Specifically, the components p,(U) can be expressed as
1p,(U)) = Zi,:fz pam(U)[2,m). In particular, for U = A € SU(3), where A is defined in Eq. (13), we obtain that |p,(4"?)) « |y,) (see Eq. (59)). However, this
proportionality does not extend to higher spins.

3 The spin-3 states shown in Eq. (63) span a 3-dimensional 1-anticoherent subspace (see Ref. [42] for more details).

10
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Table 2
Average of e,(E,,U) over the set of unitary gates SU(2j + 1) for several values of j and g.
Additionally, we include the maximum possible value of ¢, for j = 1 and 3/2, as well as the
conjectured maximum values for j = 2 obtained from numerical searches.

———su@j+)

J q ep(E,. U) maxy e,(E,,U)
1 1 1/2 3/5

3/2 1 2/3 20/21

2 1 3/4 6889/7140

2 2 2/3 25/28

the details can be found in Appendix D. The last equation can be written in terms of the dimensions of the initial and the reduced
Hilbert spaces, H@/? @ HU~4/2 and H/? respectively,

———SUW@) _ dim(H4/?)

ep(Eq U) T dim(H@/D @ HU-4/D) (67)

We observe that, similar to the non-symmetric case [25], the average of ep increases as the dimension of the initial (resp. reduced)
Hilbert space increases (resp. decreases). However, this dependence differs from that of the non-symmetric case. To corroborate
this, let us briefly review e, in the non-symmetric case.

We start with a system of n qudits Hg” . Then, we calculate its average linear entanglement entropy after we trace out n — ¢
constituents, Q, (see [25] for the formal definition), where the average here means over all the possible bipartitions g|n — g over
the n constituents. In particular, if the state is symmetric, Q, = E,. Now, the entangling power with respect to a unitary matrix
U € SU(D"), ¢,(Q,. 1), is equal to

ep(@,.1) =/Qq<U(IW1) ®W)® ® |wn>)>du(wl)...du(w,,), (68)

where [ du(y;) = 1. It turns out that its average over the unitary orbit SU(D") is equal to [25]

- suwr dim(H®) + 1

ep(Q(P[U)SU(D ) -1 %_ (69)
dim(H D )+ 1

where dim(Hg"’) = D”. We can observe a difference between the previous equation and Eq. (66), which is to be expected because

we integrated over different sets of product states (see Egs. (6) and (68)) and over different sets of unitary gates (see Egs. (66) and

(69)). We tabulate e, (E,, U) for several values of j and ¢ in Table 2. Similar discrepancies appear between the averages of the purity

and linear entropy, over the symmetric sector and the entire Hilbert space of N qubits [43].

7. e, and Schmidt numbers

The reformulation of e, in Eq. (28) shows that the entangling power increases as the subspace associated with the image of
N =P, /&) + 1), im(N), is transformed to the orthogonal complement of Mj The Schmidt numbers of the states |y) € H)®2
are invariant under the action of U'. For instance, the states associated to coupled basis |}, j, L, M), or just |L, M) for short, have a
Schmidt decomposition in terms of the decoupled basis |j, m, )|/, m,). We write the explicit expressions for the states of j = 1 and 3/2
in Appendix E. In general, for a state |y) € im(P,;) to be connected by a U" transformation to a state |¢) € im(lej), their Schmidt
numbers have to be equal. We apply this idea to the search for the optimal unitary operators, for j = 1 and 3/2. In particular, this
approach led us to the identification of U, for j = 3/2, i.e. , Eq. (41).

71. N=2(=1

Eq. (36) implies that the unitary transformations U" = U ® U that maximize e
to im(P,). Here, P, contains only one state given by (see Appendix E)

p are those that transformed one state from im(P,)

1
10.0) = —=(I)I=1) = [0)10) + |=1)I1)). (70)
\/5( )

with Schmidt numbers (1,1,1) /\/3. By direct inspection, we find that the state |¥) € im(P,) given by
L
V3

can be transformed, via U; given in Eq. (17), to U; ® U;|¥) = |0,0) € im(P)). Thus, U] maximizes e

W) = - (V212 1) - 12, -2)) = —= (11)10) = [=1)|~1) + [0)]1)) 71)
V3

p*

11
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7.2. N=3(j=3/2)

Similarly, Eq. (40) suggests that " must transform three vectors from im(P;) to im(7,) in order to optimize e,,. The |1, M) states
have Schmidt numbers (see Appendix E)

\/L]_O (\/E, \/12,0) for M = =1,

1 (72)
—3,3,1,1) for M =0.

24/5

We find that certain states in im(;) have the same Schmidt numbers. Moreover, the " defined by Eq. (41) effects the desired
transformation

3. 2 B
U<\/g|3,+2)— \/g|3,i3)> =|1,£1), o3

U'|3,0) =|1,0).
8. Conclusions and perspectives

In this work we have studied the entangling power of unitary operators acting on symmetric states of N = 2 qubits, which can
be viewed as spin-j states. The main differences with respect to the general non-symmetric case is that the set of product states are
reduced to the SC states (see Eq. (6)), and the set of unitary gates is reduced from SUQ2V) to SU(N +1) (See Section 6 for more details).
ep is reformulated as the inner product of two (N +1)-vectors (28). One vector, M,, depends on the linear entanglement entropy E,,
while the other vector, N, is transformed by the unitary matrix U. The components of both vectors are SU(2)-invariant quantities,
meaning that unitary transformations U, U’, differing only by left or right rotations, U’ = R,UR,, preserve them. Following this
approach, several results and derivations are obtained, also raising new questions, which we summarize below.

We study in detail e, for states with a small number of qubits. Specifically, we identified the unitary gates that maximize e,(E,, U)
for N =2 and N = 3, given by Egs. (17) and (41), respectively. Through numerical calculations, we also discovered two unitary
gates, Egs. (43)-(44), that are conjectured to maximize ep(E,, U) for N = 4 with ¢ = 1,2, respectively. These extremal unitaries
possess highly symmetric entanglement distributions on the sphere (see Fig. 4) — note that a similar characteristic is observed
for the extremal spin states that maximize entanglement measures [44—47]. Additionally, the hermitian matrices D,U) (48) of
these extremal unitaries, associated with the entanglement distributions, display peculiar characteristics such as high point group
symmetries and multiple degeneracies in their eigenspectra. Also notably, these extremal unitaries can be represented as linear
combinations of at most two permutations matrices with complex entries. The e, reduces to an expression that contains the sum of
the eigenvalues of D,. We also point out that ep(E,U) = ep(E, U ) holds true for N = 2 and 3, but fails, in general, for a higher
number of qubits. This symmetry of e, may be recast as time-reversal invariance, when U is generated by a hamiltonian, U = emitH |

We compute the average of ep(E,, U) over unitary gates SUN +1) with respect to the Haar measure, Eq. (66), where we observe
a difference with respect to the non-symmetric case Eq. (69). By sampling Haar-uniform random unitaries, we find that most of
their associated invariant vectors cluster near the mean value (see Table 2). These observations indicate that random unitary gates
exhibit a statistical distribution with a narrow spread around the mean value. Further work could be done to derive the explicit
statistical distribution of ep(E,,U), as well as other variables such as the SU(2)-invariant components p; (33).

The vectors introduced in our geometrical approach to the calculation of e, have components associated to the subspace
projectors P . Thus, finding the maximum of e, involves searching for the unitary gate that transforms a subspace into another.
Additionally, unitary transformations do not alter the Schmidt decomposition of the states in P;, suggesting that an alternative
approach to maximizing e, is to examine the possible Schmidt decomposition for the states spanning im(P, ). This approach proved
useful in identifying the unitary gate that maximizes e,(E,,U) for N = 3. Another line of research, to be pursued in future work,
is the calculation of the entangling power via the operator Schmidt decomposition, i.e., the intrinsic Schmidt decomposition of the
unitary transformation U [16]. For the general (non-necessarily symmetric) case, the entangling power of U can be written in terms
of its Schmidt numbers, the swap operator .S, and the product US [16].

Lastly, we remark that, for spin-j pure states, the linear entanglement entropy E, (3) coincides with the measure of anticoherence
of order-q based on the purity (see Eq. (24) of Ref. [41]). Hence, the unitary gates with high (symmetric) entangling power
correspond to those with high capacities to generate anticoherence in the SC states. Anticoherence for pure states is known to
be a measure of non-classicality [48-51]. It is also known that anticoherent states are useful in quantum-enhanced metrology of
rotations [42,46,52,53]. Other questions that broaden the scope of our work involve the semiclassical limit (j — oo) of our results.
One could explore the general tendency of formulas such as Eq. (23) and the respective SU(2)-invariants, or consider a family of
well-known symmetric unitary gates defined for any j and explore the behavior of their entangling power in the above limit.

In summary, we have examined in detail the concept of entangling power for unitary matrices acting on symmetric multiqubit
states, introducing reformulations in terms of inner products between vectors associated to SU(2) invariants and transformation of
subspaces of bipartite states among themselves. Additionally, the entanglement distribution of a unitary gate is associated with a
linear combination of Husimi functions. These new perspectives could establish connections among quantities relevant for quantum
information theory that initially appear unrelated, including those relevant to the non-symmetric case.

12
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Appendix A. Master equation

Here, we derive Eq. (18). First, we introduce the basis of H.S(}")) defined by the multipole operators {T,ﬁf) }, with 6 =0,...,2j
and y = —o,...,0 [38,54] and where we omit the superindex when there is no possible confusion. The T, . operators can be written
in terms of the Clebsch-Gordan coefficients C’/™ , [38] and they are orthonormal with respect to the HS scalar product

Jimyjpm
Tr (T;m]T‘fzuz) = 50’1526!41142' (A1)
A density matrix p € HS(HY), representing a quantum state, can always be expanded in the {sz} basis
2j o 2j
= z Z PouTon = ZPG'TU’ (A.2)
o=0 y=—0 =0

where p, = (pggs -+ Poq) With p,, = Tr(pT,,), and T, = (T,,....,T,_,) is a vector of matrices. In particular, Ty, = (2j + D)~'/21,
and then py, = (2j + 1)~!/2 for any mixed state. In the picture of the spin-j states seen as 2j-partite symmetric spin-1/2 systems, one
can calculate the reduced density matrix p, = Tr,;_,p, after tracing out 2 — ¢ spins-1/2. Notably, the multipole expansion (A.2) of
p, has a simple expression in terms of the original state p [37,40]

_ ¢ [@i-o)j+o+1)!
(”‘f)w_(zj)! G—o)g+o+ D Pow (a.3)

with 6 =0,...,qand u = —o0,...,0.
Now we calculate the entangling power (3) for a general spin-j system. First, we write the general expression of the SC states,
transformed by U,

2j
. . 1 i P
Uljimy(onv’ = ——19+ Y p, - T, (A.4)
o=1

V2j+1

with
Poy = (mlUTTY U j m). (A.5)
By tracing out the subsystem B, i.e. , 2j — g spin-1/2 constituents, we obtain

pa =Try;_, (Ulj.m)(j.m|U")

_ 1 Tég/z)_'_i q.! 2j-0)!2j+0+1)! G_T(aq/z)’ (A.6)
a1 e\ @-olg+o+1)!
where we use Eq. (A.3). We then get that
. (q+ D@ & 2 —0)!Q2j+o+ D! 2
E (U|j,n)) =1 - s >
o(Ulm) q2)!? Z{ (g=)Ng+o+1D)! o] (A7)
=1-(j,n|® (j,n|U M, Uj,n) ® |j.n)
where U = U ® U as defined in the main text,
T,= Y T,,®T), (A.8)

H==c

13
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Table A.3
Vectors of SU(2) invariants of the operators N and M, (A.9) in the T, basis for the spin values
j=1,3/2,2,5/2 and ¢ =1,...,|j]. The vector ﬂq has g non-zero entries.

j N in 7, basis Wq in 7, basis
1 (%f\ﬁf\ﬁ) (0,2 3,0)
372 (55 w7 =) (0.537-0.0)
0,22 ,0,0,0
0, Y3 0,0,0,0
5/2 (Lo 2t o) {EOZI;OBSZ\IEOO)O>

and

{4/2 a/2 q}
M_(4+1)(q!)22(21—6)!(2j+a+1)lr_q-;—lzq: alz_al2 o) .
o=1 o=1

q
= = . (A.9)
UNCYE @-olg+o+ Dl 7 TRV AT
Jj Jj ¢
The 7_’s can be written as a linear combination of the P; operators (see Identity 1 of Appendix C)
2j i i L
T, =Qc+1) Z(—l)zf“ j j P;. (A.10)
L=0 J J °

This result gives the expression (19) of M,. Lastly, we use that |j,n) ® |j,n) = |2j,n) to obtain Eq. (18).

Appendix B. The T operator basis

Identity 1 of Appendix C lets us write e, (18) as an inner product of vectors of SU(2) invariants associated to the T, operators.
The operator M, is written in Eq. (A.9), while N is expanded as

(i i 2
N = T,. (B.1)
Lgo{j j L} r

The T, operators are hermitian, orthogonal Tr(7,7,,) = (26 + 1)6,,/, and invariant under diagonal SU(2) transformations in the
double-copy space H)®2, Thus, similarly as in Section 3, we associate to every operator V € HS(HY®2) a (2 + 1)-vector of SU(2)
invariants

VT = (Te (V7)o e (VT,) o TE (V) ), (B.2)
with 7, = 7,/4/20 + 1, and where the superscript denotes that the vector is written in the 7 basis. We follow the same procedure

as in Section 3 to obtain a similar reformulation of e, as an inner product of two vectors given in Egs. (25)-(28) but now expressed
in the 7 basis. We also have that each vector, now written in the 7 basis, lies in a hyperplane, even after the action of U,

2j 2j 2j . .
Z‘a (177/’): = Z})Tr(vﬂvm) =1, ;) (ﬁﬂq): = % (B.3)

T _N\T
We prove these results in Identity 3 of Appendix C. Since 7 is proportional to the identity, (UV)O = (V)O. In particular

—\T —\T
(N) =1/2j + 1) and (Mq) = 0. We write A" and M, for j = 1,3/2,2 and 5/2 in the T basis in Table A.3. The properties
0 0

of the 6j-symbols show that the components of N and ﬂq are always positive in the 7~ basis [38]. However, the disadvantage of
the 7 basis is that a U" transformation combines all the 7 components, not only half of them as in the P basis.

Appendix C. Useful identities
Here we prove several identities used throughout the paper.

Identity 1. The operators 7, and P; are related by an invertible linear transformation,

2j . i L 2j . .
r‘,:(zg_,.l)z(_l)zjﬂ{; j G}pb pL:(_1)21+L(2L+1)2{; j G}TJ. (C.1)

L=0 =0

14
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Proof.

n:ir QT!

ou
u=-c

20+ 1
=<21+1>Z Z i o j,,,wlj,m)O,m [ ® 1j,n"){j.nl

(5

jn 1My Ly M, . ..
)Z Z > O 2R g Ly M) (s Ly, My

Hoomm! LyMy
nn! Ly.M

(C.2)
(2041 - clMie LMy .
_<2j+ 1 )( 1) LG; Z Z imojnt ,m’ auCJM’/n ,,M,,,|J Jo Ly, M) j Ly, My
1-My m,m
Ly My nn!
; ioJ Ly
=@2o+1) Z (=D*h { o } [Ly, My)c{L, M;|c
Li,M; J J ©
2j L
=Qo+1) ) (-D¥*E J / Pr.
L=0 J J ©

where we use the decoupled and coupled bases of the angular momentum (8) and the definition of the 6j symbol (see p. 291, Eq. (8)
of Ref. [38]). Lastly, we invert the previous equation with the orthogonality of the 6j symbols (See page 291 or Ref. [38] for the
general formula)

2j L L
Qo+1) Y @QL+1) o s = 8,015 (C.3)
=0 i Jj e i j
to write P; in terms of the operators 7,. []

Identity 2. For any unitary transformation U" = U @ U and operator V = Zij;o vk Pk, it holds that

2j 2j
Y Tr(Uvrtr) = Y Tr(vey), 4
ZJELJ:S:(Umod 2) 2/£L+1:5:(0mod 2)

for 6 =0 and 1. In particular,

2j 2j . .
+D2j+1)
Tr(UPLU Py ) = 2K +1, Tr(UP viam) = X DG D C5
Lz:;) r(UP, ) + gr( L UTM,) Sy - (C.5)
K=L (mod 2) 2j=L (mod 2)
Proof. By resolution of the unity of the P, operators, we have that
2j
Y Tr(UPLUTPy) =Tr (Pg) =2K + 1. (C.6)
L=0
Now, the unitary transformations V" = U ® U preserve the orthogonality between the projectors of different parity
Tr(UP, UTPy) =0, for L=K + 1 (mod 2), 7

because they preserve the permutation exchange of the states |¥) € H()®2, Thus, any operator V = Zij=0 vk Pk can be split in the
components with K odd and even, and these components do not mix after a transformation by . This proves (C.4). In particular,

2j 2j
YT (UPUTP)= Y Tr(UPUTPg)=Tr(Pg)=2K+1. (C.8)
L=0 L=0

K=L (mod 2)

For M,, we have that

& G+DQj+1)
Tr (UM, UP,) 1 D2HEHS] T P B (e L C.9
LZ::‘)r(M L) Z[+() JTr (MyPy) = (-1 === (C.9)
2j=L+é (mod 2)
where we use identities of the 6j symbols [38]. [
Identity 3. Any hermitian operator V = Zi’: o Vo T satisfies
2j 2j
Y Ir(UvUiT,) =Y Tr(V7,). (C.10)
=0 =i
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where U= U ® U and U a unitary operator. In particular,

2j . . 2j .
2+ D(2j+1) o 2j
2 Tr(M,T,) = e ;:()Tr(/\fr,,) =541 (C11)

Proof. The following calculation will prove convenient later on,

2j
2T,
=0

(2
2y —
Z 2 Z (=D¥=m "ch,f:” ,,,7Cfn” iy 1o 1105 s 12) (o, sy |

o=0 p=—oc MM
ny.ny

X DTG Bl my) Gy, o | (C.12)

my,my
ny.ny

2 ljsmys j.mp){j.my. j.my|

my,my

where we use that 2(j — m) is always an even integer number. Now, let us prove the result for the 7 operators

2j T J
YT (VITUT) = Y Y Gemy U U m YW m UTT U ljomy) =20+ 1= ) Tr (T,7,). (C.13)
o=0 V== my,my

The first equality will be valid for any V' by linearity. In particular, we get for V = N that

& &G [ jo2 2j
;}Tr( zz Tr (7,7, Z(2L+l) P ey (C.14)

0=0L=

where we use the following identities of the 6j symbol [38]

2j Y T
Y @eL+1) e G R L (C.15)
= i i L i Jj 0 2j+1

Similarly,
{q/ 2 q/2 q}
q/2 q/2 2+ DQ2j+ 1)

2j q
3 Tr (M, T,) = % Y@r+n =2 .o (C.16)
=0 =1

i oJ 2 2j+1—¢q
Jj J T

We start with the following identity regarding the integration over the SU(d) unitary matrices and where A is a d*> x d> matrix
(see Proposition 3.9 in [55])

Tr(A)  Tr(AF) Tr(A) Tr(AF)
/UAUTd U) = [ 1T i@-D 1)] 1p - [—d(dZ 521 ] F (D.1)

Appendix D. Proof of Eq. (66)

where F|y;)|y,) = [y,)|y,) is the swap operator. In particular FP; = P, F = (=1)%~LP,. Thus,
/eP(Eq,U)dM(U) =1 -Tr([/ UNUTdM(U)] Mq> =1- m [Tr (M,) +Tr (FM,)]. (D.2)

We add the resolution of the unity 1, = Zi’;o P, to use Eq. (C.9) in the last equation

20+D@j+D  _ 2i-4
dd+1D)Q2j+1-¢q) 2j+1-¢q°

/ep(Eq,U)dﬂ(U) =1- (D.3)

Appendix E. Spin states in the coupled and decoupled bases

Here, we write the coupled basis |L, M) = |j,, j,, L, M) in terms of the decoupled basis |m,)|m,) = |j,, m;)|j,m,). For j =1, we
have

[2,£2) = |x1)]|£1),
1) = - (1£1)[0) + [0)[£1)),

V2

12,0) = \L@(|1>|—1>+2|0>|0>+|—1>|1>), (E1)
1

10,0y = —L (11)[=1) — [0)[0) + |~1)[1)).
\/5( )
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And for j =3/2, it reads

3.43) =[+3) |+3)-

3.42) -é (J2) =30+ [=3)3)).

et = () ) r)led) Vil ed))
o2 (B DR D).

e ﬁ (ﬁ|ig)|¢;>+«§1¢;>1+lz> _12\%> ;1%2), ”
L= R =B - -0

Data availability

Data will be made available on request.
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