[en] Post-harvest management of agricultural products is crucial for minimizing spoilage and economic losses. Volatile organic compounds (VOCs) have emerged as effective indicators of early-stage deterioration, offering a promising approach to improving detection methods. This review examines the role of VOCs in spoilage identification, emphasizing key markers such as terpenes, ketones, esters, and aldehydes in fruits, vegetables, grains, and legumes. Various detection techniques-including spectrometry, electronic noses, spectroscopy, and sensor arrays-are evaluated and compared for their potential to assess spoilage and freshness by correlating their limits of detection (LOD) with typical VOC concentrations in agricultural scenarios. Future development trend in VOC research focus on enhancing sensor sensitivity, developing portable detection devices, integrating VOC monitoring with smart systems, and leveraging artificial intelligence for predictive analysis. These advancements aim to optimize post-harvest management strategies and improve food safety through more accurate and timely spoilage detection.
Disciplines :
Biotechnology
Author, co-author :
Sun, Lu ; Université de Liège - ULiège > TERRA Research Centre ; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Ma, Junning; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Purcaro, Giorgia ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Wang, Gang; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Jin, Jing; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Xing, Fuguo; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
Language :
English
Title :
A comprehensive review of post-harvest agricultural product deterioration signature volatile organic compounds.
This research was supported by the National Key Research and Development Program of China (2022YFD2100104) and National Agricultural Science and Technology Innovation Program (CAAS-ZDRW202414, CAAS-ASTIP-G2025-IFST-09). The authors are grateful for the support provided by the foundation.
Abina, A., Puc, U., Jazbinšek, M., Zidanšek, A., Analytical gas sensing in the terahertz spectral range. Micromachines, 14(11), 2023, 1987, 10.3390/mi14111987.
Afreen, H., Bajwa, I.S., An IoT-based real-time intelligent monitoring and notification system of cold storage. IEEE Access 9 (2021), 38236–38253, 10.1109/access.2021.3056672.
Ali, A., Mansol, A.S., Khan, A.A., Muthoosamy, K., Siddiqui, Y., Electronic nose as a tool for early detection of diseases and quality monitoring in fresh postharvest produce: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 22:3 (2023), 2408–2432, 10.1111/1541-4337.13151.
Amundsen, M., Hykkerud, A.L., Kelanne, N., Tuominen, S., Schmidt, G., Laaksonen, O., Aaby, K., Composition of sugars, organic acids, phenolic compounds, and volatile organic compounds in lingonberries (Vaccinium vitis-idaea L.) at five ripening stages. Foods, 12(11), 2023, 10.3390/foods12112154.
Andre, R.S., Mercante, L.A., Facure, M.H.M., Sanfelice, R.C., Fugikawa-Santos, L., Swager, T.M., Correa, D.S., Recent Progress in amine gas sensors for food quality monitoring: Novel architectures for sensing materials and systems. ACS Sensors 7:8 (2022), 2104–2131, 10.1021/acssensors.2c00639.
Arslan, M., Zareef, M., Tahir, H.E., Guo, Z., Rakha, A., Xuetao, H., Khan, M.R., Discrimination of rice varieties using smartphone-based colorimetric sensor arrays and gas chromatography techniques. Food Chemistry, 368, 2022, 130783, 10.1016/j.foodchem.2021.130783.
Assimakopoulos, F., Vassilakis, C., Margaris, D., Kotis, K., Spiliotopoulos, D., Artificial intelligence tools for the agriculture value chain: Status and prospects. Electronics 13:22 (2024), 2079–9292, 10.3390/electronics13224362.
Ba Hashwan, S.S., Khir, M.H.M., Nawi, I.M., Ahmad, M.R., Hanif, M., Zahoor, F., Junaid, M., A review of piezoelectric MEMS sensors and actuators for gas detection application. Discover nano, 18(1), 2023, 25, 10.1186/s11671-023-03779-8.
Baimatova, N., Gionfriddo, E., Needle trap devices in analytical chemistry: A critical review of development, applications, and future perspectives. Analytical Chemistry 97:13 (2025), 6911–6921, 10.1021/acs.analchem.4c06984.
Bick, J.A., Lange, B.M., Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane. Archives of Biochemistry and Biophysics 415:2 (2003), 146–154, 10.1016/s0003-9861(03)00233-9.
Bonah, E., Huang, X., Aheto, J.H., Osae, R., Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: A review. Journal of Food Science and Technology 57:6 (2020), 1977–1990, 10.1007/s13197-019-04143-4.
Cellini, A., Spinelli, F., Donati, I., Ryu, C.M., Kloepper, J.W., Bacterial volatile compound-based tools for crop management and quality. Trends in Plant Science 26:9 (2021), 968–983, 10.1016/j.tplants.2021.05.006.
Chalupowicz, D., Veltman, B., Droby, S., Eltzov, E., Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit. Sensors and Actuators B: Chemical, 311, 2020, 10.1016/j.snb.2020.127896.
Chang, H.K., Chang, G.T., Thokchom, A.K., Kim, T., Park, J., Ultra-fast responsive colloidal-polymer composite-based volatile organic compounds (VOC) sensor using nanoscale easy tear process. Scientific Reports, 8(1), 2018, 5291, 10.1038/s41598-018-23616-8.
Chen, H.-Z., Zhang, M., Bhandari, B., Guo, Z., Evaluation of the freshness of fresh-cut green bell pepper (Capsicum annuum var. grossum) using electronic nose. Lwt 87 (2018), 77–84, 10.1016/j.lwt.2017.08.052.
Chen, H.-Z., Zhang, M., Guo, Z., Discrimination of fresh-cut broccoli freshness by volatiles using electronic nose and gas chromatography-mass spectrometry. Postharvest Biology and Technology 148 (2019), 168–175, 10.1016/j.postharvbio.2018.10.019.
Chen, S., Chen, X., Su, H., Guo, M., Liu, H., Advances in synthetic-biology-based whole-cell biosensors: Principles, genetic modules, and applications in food safety. International Journal of Molecular Sciences, 24(9), 2023, 10.3390/ijms24097989.
Chen, T., Chen, X., Meng, L., Wei, Z., Chen, B., Wang, Y., Chen, H., Cheng, Q., Characteristic fingerprint analysis of the moldy odor in Guangxi fragrant rice by gas chromatography - ion mobility spectrometry (GC-IMS). Analytical Letters 55:13 (2022), 2033–2045, 10.1080/00032719.2022.2043337.
Chen, W.Y., Jiang, X., Lai, S.N., Peroulis, D., Stanciu, L., Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nature Communications, 11(1), 2020, 1302, 10.1038/s41467-020-15092-4.
Chowdhury, M.A.Z., Rice, T.E., Oehlschlaeger, M.A., VOC-net: A deep learning model for the automated classification of rotational THz spectra of volatile organic compounds. Applied Sciences, 12(17), 2022, 10.3390/app12178447.
Christmann, J., Rohn, S., Weller, P., Finding features - variable extraction strategies for dimensionality reduction and marker compounds identification in GC-IMS data. Food Research International, 161, 2022, 111779, 10.1016/j.foodres.2022.111779.
Conrado, M., Sequinel, J.A., Dias, R., Silvestre, B.C., Batista, M.A.D., Petruci, J.F.D.S., Chemical QR code: A simple and disposable paper-based optoelectronic nose for the identification of olive oil odor. Food Chemistry, 350, 2021, 10.1016/j.foodchem.2021.129243.
Dey, S., Nag, S., Santra, S., Ray, S.K., Guha, P.K., Voltage-controlled NiO/ZnO p-n heterojunction diode: A new approach towards selective VOC sensing. Microsystems & Nanoengineering, 6, 2020, 35, 10.1038/s41378-020-0139-1.
Duan, Y., Lin, H., He, P., Chen, Q., Detection of volatile marker in the wheat infected with aspergillus flavus by porous silica nanospheres doped Bodipy dyes. Sensors and Actuators B: Chemical, 330, 2021, 10.1016/j.snb.2020.129407.
Dudareva, N., Klempien, A., Muhlemann, J.K., Kaplan, I., Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198:1 (2013), 16–32, 10.1111/nph.12145.
Ebrahimi, E., Mollazade, K., Babaei, S., Toward an automatic wheat purity measuring device: A machine vision-based neural networks-assisted imperialist competitive algorithm approach. Measurement 55 (2014), 196–205, 10.1016/j.measurement.2014.05.003.
Epping, R., Koch, M., On-site detection of volatile organic compounds (VOCs). Molecules, 28(4), 2023, 10.3390/molecules28041598.
Erler, A., Riebe, D., Beitz, T., Lohmannsroben, H.G., Grothusheitkamp, D., Kunz, T., Methner, F.J., Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry. Journal of Mass Spectrometry, 55(5), 2020, e4501, 10.1002/jms.4501.
Ezhilan, M., Nesakumar, N., Jayanth Babu, K., Srinandan, C.S., Rayappan, J.B.B., An electronic Nose for Royal Delicious Apple Quality Assessment - A tri-layer approach. Food Research International 109 (2018), 44–51, 10.1016/j.foodres.2018.04.009.
Fan, M., Rakotondrabe, T.F., Chen, G., Guo, M., Advances in microbial analysis: Based on volatile organic compounds of microorganisms in food. Food Chemistry, 418, 2023, 135950, 10.1016/j.foodchem.2023.135950.
Feng, X., Zhang, H., Yu, P., X-ray fluorescence application in food, feed, and agricultural science: a critical review. Critical Reviews in Food Science and Nutrition 61:14 (2021), 2340–2350, 10.1080/10408398.2020.1776677.
Giménez-Campillo, C., Pastor-Belda, M., Campillo, N., Arroyo-Manzanares, N., Viñas, P., Fingerprinting of volatile organic compounds and discrimination of pear samples by gas chromatography-ion mobility spectrometry. Food chemistry, 488, 2025, 144848 Advance online publication. https://doi.org/10.1016/j.foodchem.2025.144848.
Giungato, P., Di Gilio, A., Palmisani, J., Marzocca, A., Mazzone, A., Brattoli, M., Giua, R., de Gennaro, G., Synergistic approaches for odor active compounds monitoring and identification: State of the art, integration, limits and potentialities of analytical and sensorial techniques. TrAC Trends in Analytical Chemistry 107 (2018), 116–129, 10.1016/j.trac.2018.07.019.
Gu, I., Howard, L., Lee, S.-O., Volatiles in berries: Biosynthesis, composition, bioavailability, and health benefits. Applied Sciences, 12(20), 2022, 10.3390/app122010238.
Gu, S., Chen, W., Wang, Z., Wang, J., Huo, Y., Rapid detection of aspergillus spp. infection levels on milled rice by headspace-gas chromatography ion-mobility spectrometry (HS-GC-IMS) and E-nose. Lwt, 132, 2020, 10.1016/j.lwt.2020.109758.
Gu, S., Wang, J., Wang, Y., Early discrimination and growth tracking of aspergillus spp. contamination in rice kernels using electronic nose. Food Chemistry 292 (2019), 325–335, 10.1016/j.foodchem.2019.04.054.
Guo, L., Wang, T., Wu, Z., Wang, J., Wang, M., Cui, Z., Ji, S., Cai, J., Xu, C., Chen, X., Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks. Advanced Materials, 32(45), 2020, e2004805, 10.1002/adma.202004805.
Guo, Z., Guo, C., Chen, Q., Ouyang, Q., Shi, J., El-Seedi, H.R., Zou, X., Classification for penicillium expansum spoilage and defect in apples by electronic nose combined with chemometrics. Sensors, 20(7), 2020, 2130, 10.3390/s20072130.
Haghbin, N., Bakhshipour, A., Mousanejad, S., Zareiforoush, H., Monitoring Botrytis cinerea infection in kiwifruit using electronic Nose and machine learning techniques. Food and Bioprocess Technology 16:4 (2022), 749–767, 10.1007/s11947-022-02967-1.
Han, N.S., Lim, J.S., Review of gas-chromatographic measurement methodologies for atmospheric halogenated greenhouse gases. Critical reviews in analytical chemistry, 1–14. Advance online publication, 2024, 10.1080/10408347.2024.2302576.
Hindle, F., Kuuliala, L., Mouelhi, M., Cuisset, A., Bray, C., Vanwolleghem, M., Devlieghere, F., Mouret, G., Bocquet, R., Monitoring of food spoilage by high resolution THz analysis. The Analyst 143:22 (2018), 5536–5544, 10.1039/c8an01180j.
Hong, G.-H., Le, T.-C., Lin, G.-Y., Cheng, H.-W., Yu, J.-Y., Dejchanchaiwong, R., Tekasakul, P., Tsai, C.-J., Long-term field calibration of low-cost metal oxide VOC sensor: Meteorological and interference gas effects. Atmospheric Environment, 310, 2023, 10.1016/j.atmosenv.2023.119955.
Huang, Y., Doh, I.J., Bae, E., Design and validation of a portable machine learning-based electronic Nose. Sensors (Basel), 21(11), 2021, 10.3390/s21113923.
Ifmalinda, A., Assessment the volatile organic compound of avocado during ripening process and mechanical damage using electronic-nose system. IOP Conference Series : Earth and Environmental Science, 1059, 2022, 10.1088/1755-1315/1059/1/012023.
Ioannidis, A.G., Kerckhof, F.M., Riahi Drif, Y., Vanderroost, M., Boon, N., Ragaert, P., Devlieghere, F., Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce. International Journal of Food Microbiology 279 (2018), 1–13, 10.1016/j.ijfoodmicro.2018.04.034.
Ji, J., Huang, H., Li, L., Ye, J., Sun, J., Sheng, L., Ye, Y., Zheng, Y., Zhang, Z., Sun, X., Volatile metabolite profiling of wheat kernels contaminated by fusarium graminearum. Journal of Agricultural and Food Chemistry(71) (2022), 3508–3517, 10.1021/acs.jafc.2c06711.
Jiang, L., Dumlao, M.C., Donald, W.A., Steel, C.C., Schmidtke, L.M., Rapid in-field volatile sampling for detection of Botrytis cinerea infection in wine grapes. Molecules (Basel, Switzerland), 28(13), 2023, 5227, 10.3390/molecules28135227.
Jiarpinijnun, A., Osako, K., Siripatrawan, U., Visualization of volatomic profiles for early detection of fungal infection on storage jasmine brown rice using electronic nose coupled with chemometrics. Measurement, 157, 2020, 107561, 10.1016/j.measurement.2020.107561.
Kataoka, H., Lord, H.L., Pawliszyn, J., Applications of solid-phase microextraction in food analysis. Journal of Chromatography. A 880:1–2 (2000), 35–62, 10.1016/s0021-9673(00)00309-5.
Ketola, R.A., Kotiaho, T., Cisper, M.E., Allen, T.M., Environmental applications of membrane introduction mass spectrometry. Journal of mass spectrometry : JMS 37:5 (2002), 457–476, 10.1002/jms.327.
Kim, C., Lee, K.K., Kang, M.S., Shin, D.M., Oh, J.W., Lee, C.S., Han, D.W., Artificial olfactory sensor technology that mimics the olfactory mechanism: A comprehensive review. Biomaterials Research, 26(1), 2022, 40, 10.1186/s40824-022-00287-1.
Kim, S.M., Lee, S.M., Seo, J.-A., Kim, Y.-S., Changes in volatile compounds emitted by fungal pathogen spoilage of apples during decay. Postharvest Biology and Technology 146 (2018), 51–59, 10.1016/j.postharvbio.2018.08.003.
Kovacevic, T.K., Major, N., Sivec, M., Horvat, D., Krpan, M., Hruskar, M., Goreta Ban, S., Phenolic content, amino acids, volatile compounds, antioxidant capacity, and their relationship in wild garlic (A. Ursinum L.). Foods, 12(11), 2023, 10.3390/foods12112110.
Kuchikata, H., Sano, M., Fujiwara, F., Murashima, K., Kumaishi, K., Narukawa, M., Kusano, M., Soil volatilomics uncovers tight linkage between soybean presence and soil omics profiles in agricultural fields. Scientific Reports, 14(1), 2024, 20541, 10.1038/s41598-024-70873-x.
Kwaśny, M., Bombalska, A., Optical methods of methane detection. Sensors (Basel, Switzerland), 23(5), 2023, 2834, 10.3390/s23052834.
Kwon, H., Park, J., Jang, H.W., Lim, H., Kim, S., Kim, S., Choi, J.W., Synergistic integration of laser oxidation and long short-term memory for advanced odor classification in next-generation artificial olfactory systems. ACS Sensors, 2025, 10.1021/acssensors.5c00152 Advance online publication.
Leary, P.E., Kizzire, K.L., Chan Chao, R., Niedziejko, M., Martineau, N., Kammrath, B.W., Evaluation of portable gas chromatography-mass spectrometry (GC-MS) for the analysis of fentanyl, fentanyl analogs, and other synthetic opioids. Journal of Forensic Sciences 68:5 (2023), 1601–1614, 10.1111/1556-4029.15340.
Lew, T.T.S., Koman, V.B., Silmore, K.S., Seo, J.S., Gordiichuk, P., Kwak, S.Y., Strano, M.S., Real-time detection of wound-induced H(2)O(2) signalling waves in plants with optical nanosensors. Nature Plants 6:4 (2020), 404–415, 10.1038/s41477-020-0632-4.
Li, G., Wang, Y., Zhao, Q., Yuan, P., Chang, B., PMVT: A lightweight vision transformer for plant disease identification on mobile devices. Frontiers in Plant Science, 14, 2023, 1256773, 10.3389/fpls.2023.1256773.
Li, H., Kang, X., Wang, S., Mo, H., Xu, D., Zhou, W., Hu, L., Early detection and monitoring for aspergillus flavus contamination in maize kernels. Food Control, 121, 2021, 107636, 10.1016/j.foodcont.2020.107636.
Li, M., Cappellin, L., Xu, J., Biasioli, F., Varotto, C., High-throughput screening for in planta characterization of VOC biosynthetic genes by PTR-ToF-MS. Journal of Plant Research 133:1 (2020), 123–131, 10.1007/s10265-019-01149-z.
Li, M., Dong, S., Cao, S., Cui, Q., Chen, Q., Ning, J., Li, L., A rapid aroma quantification method: Colorimetric sensor-coupled multidimensional spectroscopy applied to black tea aroma. Talanta, 263, 2023, 124622, 10.1016/j.talanta.2023.124622.
Li, X., Li, T., Li, M., Chen, D., Liu, X., Zhao, S., Dai, X., Chen, J., Kong, Z., Tan, J., Effect of pathogenic fungal infestation on the berry quality and volatile organic compounds of cabernet sauvignon and petit manseng grapes. Frontiers in Plant Science, 13, 2022, 942487, 10.3389/fpls.2022.942487.
Li, Z., Paul, R., Ba Tis, T., Saville, A.C., Hansel, J.C., Yu, T., Wei, Q., Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nature Plants 5:8 (2019), 856–866, 10.1038/s41477-019-0476-y.
Lin, H., Kang, W., Kutsanedzie, F.Y.H., Chen, Q., A Novel Nanoscaled Chemo Dye–Based Sensor for the Identification of Volatile Organic Compounds During the Mildewing Process of Stored Wheat. Food Analytical Methods 12:12 (2019), 2895–2907, 10.1007/s12161-019-01617-1.
Lin, H., Wang, F., Lin, J., Yang, W., Kang, W., Jiang, H., Chen, Q., Detection of wheat toxigenic aspergillus flavus based on nano-composite colorimetric sensing technology. Food Chemistry, 405(Pt A), 2023, 134803, 10.1016/j.foodchem.2022.134803.
Liu, Q., Zhao, N., Zhou, D., Sun, Y., Sun, K., Pan, L., Tu, K., Discrimination and growth tracking of fungi contamination in peaches using electronic nose. Food Chemistry 262 (2018), 226–234, 10.1016/j.foodchem.2018.04.100.
Lutz, É., Coradi, P.C., Applications of new technologies for monitoring and predicting grains quality stored: Sensors, internet of things, and artificial intelligence. Measurement, 188, 2022, 110609, 10.1016/j.measurement.2021.110609.
Ma, J., Guan, Y., Xing, F., Eltzov, E., Wang, Y., Li, X., Tai, B., Accurate and non-destructive monitoring of mold contamination in foodstuffs based on whole-cell biosensor array coupling with machine-learning prediction models. Journal of Hazardous Materials, 449, 2023, 131030, 10.1016/j.jhazmat.2023.131030.
Ma, J., Veltman, B., Tietel, Z., Tsror, L., Liu, Y., Eltzov, E., Monitoring of infection volatile markers using CMOS-based luminescent bioreporters. Talanta, 219, 2020, 121333, 10.1016/j.talanta.2020.121333.
Maffei, M.E., Gertsch, J., Appendino, G., Plant volatiles: Production, function and pharmacology. Natural Product Reports 28:8 (2011), 1359–1380, 10.1039/c1np00021g.
Malik, M., Demetrowitsch, T., Schwarz, K., Kunze, T., New perspectives on 'Breathomics': Metabolomic profiling of non-volatile organic compounds in exhaled breath using DI-FT-ICR-MS. Communications Biology, 7(1), 2024, 258, 10.1038/s42003-024-05943-x.
Mazzucotelli, M., Farneti, B., Khomenko, I., Gonzalez-Estanol, K., Pedrotti, M., Fragasso, M., Capozzi, V., Biasioli, F., Proton transfer reaction mass spectrometry: A green alternative for food volatilome profiling. Green Analytical Chemistry, 3, 2022, 10.1016/j.greeac.2022.100041.
Moon, Y.K., Kim, K.B., Jeong, S.Y., Lee, J.H., Designing oxide chemiresistors for detecting volatile aromatic compounds: Recent progresses and future perspectives. Chemical Communications (Cambridge, England) 58:36 (2022), 5439–5454, 10.1039/d2cc01563c.
Moshayedi, A.J., Sohail Khan, A., Hu, J., Nawaz, A., Zhu, J., E-Nose-driven advancements in Ammonia gas detection: A comprehensive review from traditional to cutting-edge Systems in Indoor to outdoor agriculture. Sustainability, 15(15), 2023, 11601, 10.3390/su151511601.
Murali-Baskaran, R.K., Mooventhan, P., Das, D., Dixit, A., Sharma, K.C., Senthil-Nathan, S., Ghosh, P.K., The future of plant volatile organic compounds (pVOCs) research: Advances and applications for sustainable agriculture. Environmental and Experimental Botany, 200, 2022, 10.1016/j.envexpbot.2022.104912.
Nagalingam, S., Seco, R., Kim, S., Guenther, A., Heat stress strongly induces monoterpene emissions in some plants with specialized terpenoid storage structures. Agricultural and Forest Meteorology, 333, 2023, 10.1016/j.agrformet.2023.109400.
Natarajan, S., Chakrabarti, P., Margala, M., Robust diagnosis and meta visualizations of plant diseases through deep neural architecture with explainable AI. Scientific Reports, 14(1), 2024, 13695, 10.1038/s41598-024-64601-8.
Nath, B., Chen, G., O'Sullivan, C.M., Zare, D., Research and technologies to reduce grain postharvest losses. A Review. Foods, 13(12), 2024, 10.3390/foods13121875.
Navarro, E., Costa, N., Pereira, A., A systematic review of IoT solutions for smart farming. Sensors (Basel), 20(15), 2020, 10.3390/s20154231.
Niklas, C., Wackerbarth, H., Ctistis, G., A short review of cavity-enhanced Raman spectroscopy for gas analysis. Sensors (Basel, Switzerland), 21(5), 2021, 1698, 10.3390/s21051698.
Nouri, B., Mohtasebi, S.S., Rafiee, S., Quality detection of pomegranate fruit infected with fungal disease. International Journal of Food Properties 23:1 (2020), 9–21, 10.1080/10942912.2019.1705851.
Picazo-Aragones, J., Terrab, A., Balao, F., Plant volatile organic compounds evolution: Transcriptional regulation, epigenetics and polyploidy. International Journal of Molecular Sciences, 21(23), 2020, 10.3390/ijms21238956.
Qaddos, A., Yaseen, M.U., Al-Shamayleh, A.S., Imran, M., Akhunzada, A., Alharthi, S.Z., A novel intrusion detection framework for optimizing IoT security. Scientific Reports, 14(1), 2024, 21789, 10.1038/s41598-024-72049-z.
Rezende, G.C., Le Calvé, S., Brandner, J.J., Newport, D., Micro milled microfluidic photoionization detector for volatile organic compounds. Micromachines, 10(4), 2019, 228, 10.3390/mi10040228.
Richards, L.C., Davey, N.G., Fyles, T.M., Gill, C.G., Krogh, E.T., Discrimination of constructed air samples using multivariate analysis of full scan membrane introduction mass spectrometry (MIMS) data. Rapid communications in mass spectrometry : RCM 32:4 (2018), 349–360, 10.1002/rcm.8049.
Sanjeevi, P., Siva Kumar, B., Prasanna, S., Maruthupandi, J., Manikandan, R., Baseera, A., An ontology enabled internet of things framework in intelligent agriculture for preventing post-harvest losses. Complex & Intelligent Systems 7:4 (2020), 1767–1783, 10.1007/s40747-020-00183-y.
Schuhfried, E., Betta, E., Cappellin, L., Aprea, E., Gasperi, F., Märk, T.D., Biasioli, F., Withering of plucked Trachelospermum jasminoides (star jasmine) flowers – Time-dependent volatile compound profile obtained with SPME/GC–MS and proton transfer reaction-mass spectrometry (PTR-MS). Postharvest Biology and Technology 123 (2017), 1–11, 10.1016/j.postharvbio.2016.08.006.
Shi, H., Zhang, M., Adhikari, B., Advances of electronic nose and its application in fresh foods: A review. Critical Reviews in Food Science and Nutrition 58:16 (2017), 2700–2710, 10.1080/10408398.2017.1327419.
da Silva, V., Ferreira, M., Barbosa, J.L. Jr., Kamruzzaman, M., Barbin, D.F., Low-cost electronic-nose (LC-e-nose) systems for the evaluation of plantation and fruit crops: Recent advances and future trends. Analytical methods : advancing methods and applications 15:45 (2023), 6120–6138, 10.1039/d3ay01192e.
Snyder, A.B., Martin, N., Wiedmann, M., Microbial food spoilage: Impact, causative agents and control strategies. Nature Reviews. Microbiology 22:9 (2024), 528–542, 10.1038/s41579-024-01037-x.
Song, C., Hong, X., Zhao, S., Liu, J., Schulenburg, K., Huang, F.C., Schwab, W., Glucosylation of 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, the key strawberry flavor compound in strawberry fruit. Plant Physiology 171:1 (2016), 139–151, 10.1104/pp.16.00226.
Stathers, T., Holcroft, D., Kitinoja, L., Mvumi, B.M., English, A., Omotilewa, O., Torero, M., A scoping review of interventions for crop postharvest loss reduction in sub-Saharan Africa and South Asia. Nature Sustainability 3:10 (2020), 821–835, 10.1038/s41893-020-00622-1.
Sun, P., Schuurink, R.C., Caissard, J.C., Hugueney, P., Baudino, S., My way: Noncanonical biosynthesis pathways for plant volatiles. Trends in Plant Science 21:10 (2016), 884–894, 10.1016/j.tplants.2016.07.007.
Tabassum, S., Kumar, R., Dong, L., Nanopatterned optical Fiber tip for guided mode resonance and application to gas sensing. IEEE Sensors Journal 17:22 (2017), 7262–7272, 10.1109/jsen.2017.2748593.
Tantiwanichapan, K., Jolivot, R., Jomphoak, A., Srisuai, N., Chananonnawathorn, C., Lertvanithpol, T., Horprathum, M., Boonruang, S., Demonstration of cross reaction in hybrid graphene oxide/tantalum dioxide guided mode resonance sensor for selective volatile organic compound. Scientific Reports, 13(1), 2023, 10799, 10.1038/s41598-023-37795-6.
Tiwari, S., Kate, A., Mohapatra, D., Tripathi, M.K., Ray, H., Akuli, A., Modhera, B., Volatile organic compounds (VOCs): Biomarkers for quality management of horticultural commodities during storage through e-sensing. Trends in Food Science & Technology 106 (2020), 417–433, 10.1016/j.tifs.2020.10.039.
Ulrich, D., Kecke, S., Olbricht, K., What do we know about the chemistry of strawberry aroma?. Journal of Agricultural and Food Chemistry 66:13 (2018), 3291–3301, 10.1021/acs.jafc.8b01115.
Vandendriessche, T., Keulemans, J., Geeraerd, A., Nicolai, B.M., Hertog, M.L., Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiology 32:2 (2012), 406–414, 10.1016/j.fm.2012.08.002.
Veltman, B., Harpaz, D., Melamed, S., Tietel, Z., Tsror, L., Eltzov, E., Whole-cell bacterial biosensor for volatile detection from Pectobacterium-infected potatoes enables early identification of potato tuber soft rot disease. Talanta, 247, 2022, 123545, 10.1016/j.talanta.2022.123545.
Voss, H.G.J., Stevan, S.L., Ayub, R.A., Peach growth cycle monitoring using an electronic nose. Computers and Electronics in Agriculture, 163, 2019, 10.1016/j.compag.2019.104858.
Walters, K.J., Lopez, R.G., Behe, B.K., Leveraging controlled-environment agriculture to increase key basil Terpenoid and Phenylpropanoid concentrations: The effects of radiation intensity and CO(2) concentration on consumer preference. Frontiers in Plant Science, 11, 2020, 598519, 10.3389/fpls.2020.598519.
Wang, J., Jiang, H., Chen, Q., High-precision recognition of wheat mildew degree based on colorimetric sensor technique combined with multivariate analysis. Microchemical Journal, 168, 2021, 10.1016/j.microc.2021.106468.
Wang, S., Mo, H., Xu, D., Hu, H., Hu, L., Shuai, L., Li, H., Determination of volatile organic compounds by HS-GC-IMS to detect different stages of aspergillus flavus infection in Xiang Ling walnut. Food Science & Nutrition 9:5 (2021), 2703–2712, 10.1002/fsn3.2229.
Wang, X., Bouzembrak, Y., Lansink, A.O., van der Fels-Klerx, H.J., Application of machine learning to the monitoring and prediction of food safety: A review. Comprehensive Reviews in Food Science and Food Safety 21:1 (2022), 416–434, 10.1111/1541-4337.12868.
Wang, X., Liu, J., Vegetable disease detection using an improved YOLOv8 algorithm in the greenhouse plant environment. Scientific Reports, 14(1), 2024, 4261, 10.1038/s41598-024-54540-9.
Weraduwage, S.M., Rasulov, B., Sahu, A., Niinemets, U., Sharkey, T.D., Isoprene measurements to assess plant hydrocarbon emissions and the methylerythritol pathway. Methods in Enzymology 676 (2022), 211–237, 10.1016/bs.mie.2022.07.020.
Wu, J., Cao, J., Chen, J., Huang, L., Wang, Y., Sun, C., Sun, C., Detection and classification of volatile compounds emitted by three fungi-infected citrus fruit using gas chromatography-mass spectrometry. Food Chemistry, 412, 2023, 135524, 10.1016/j.foodchem.2023.135524.
Wu, Q., Yuan, Y., Wang, X., Bu, X., Jiao, M., Liu, W., Han, C., Hu, L., Wang, X., Li, X., Highly selective ionic gel-based gas sensor for halogenated volatile organic compound detection: Effect of dipole-dipole interaction. ACS Sensors 8:12 (2023), 4566–4576, 10.1021/acssensors.3c01476.
Yang, S., Meng, Z., Li, Y., Chen, R., Yang, Y., Zhao, Z., Evaluation of physiological characteristics, soluble sugars, organic acids and volatile compounds in 'Orin' apples (Malus domestica) at different ripening stages. Molecules, 26(4), 2021, 10.3390/molecules26040807.
You, D.W., Seon, Y.S., Jang, Y., Bang, J., Oh, J.S., Jung, K.W., A portable gas chromatograph for real-time monitoring of aromatic volatile organic compounds in air samples. Journal of Chromatography. A, 1625, 2020, 461267, 10.1016/j.chroma.2020.461267.
Zhang, J., Zhang, B., Dong, J., Tian, Y., Lin, Y., Fang, G., Wang, S., Identification of mouldy rice using an electronic nose combined with SPME-GC/MS. Journal of Stored Products Research, 95, 2022, 101921, 10.1016/j.jspr.2021.101921.
Zhang, W., Chen, W., Pan, H., Sanaeifar, A., Hu, Y., Shi, W., Guo, J., Ding, L., Zhou, J., Li, X., He, Y., Rapid identification of the aging time of Liupao tea using AI-multimodal fusion sensing technology combined with analysis of tea polysaccharide conjugates. International Journal of Biological Macromolecules, 278(Pt 2), 2024, 134569, 10.1016/j.ijbiomac.2024.134569.
Zhang, Y., Zhu, D., Ren, X., Shen, Y., Cao, X., Liu, H., Li, J., Quality changes and shelf-life prediction model of postharvest apples using partial least squares and artificial neural network analysis. Food Chemistry, 394, 2022, 133526, 10.1016/j.foodchem.2022.133526.
Zhou, J., Al Husseini, D., Li, J., Lin, Z., Sukhishvili, S., Cote, G.L., Lin, P.T., Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors. Scientific Reports, 12(1), 2022, 5572, 10.1038/s41598-022-09597-9.
Zhu, J., Ji, S., Ren, Z., Wu, W., Zhang, Z., Ni, Z., Liu, L., Zhang, Z., Song, A., Lee, C., Triboelectric-induced ion mobility for artificial intelligence-enhanced mid-infrared gas spectroscopy. Nature Communications, 14(1), 2023, 2524, 10.1038/s41467-023-38200-6.
Zhu, J., Wen, H., Fan, Y., Yang, X., Zhang, H., Wu, W., Zhou, Y., Hu, H., Recent advances in gas and environmental sensing: From micro/nano to the era of self-powered and artificial intelligent (AI)-enabled device. Microchemical Journal, 181, 2022, 107833, 10.1016/j.microc.2022.107833.
Zytek, A., Rusinek, R., Oniszczuk, A., Gancarz, M., Effect of the consolidation level on organic volatile compound emissions from maize during storage. Materials (Basel), 16(8), 2023, 10.3390/ma16083066.