Transfer learning; Power systems; Tertiary voltage control; Graph neural networks
Abstract :
[en] This work explores how transfer learning can improve reinforcement learning for tertiary voltage control, which is a simulation-intensive process. The model is pre-trained over the supervised learning of a power flow simulator, as a way of incorporating physics inside the model. Two transfer strategies are proposed and compared against a transfer-free baseline. The case60nordic test case, which provides diversified operating conditions, including topological variations, is used to assess performance. Results indicate that fine-tuning the pre-trained model can effectively improve performance or reduce training time on the target task. This study emphasizes the potential of transfer learning for accelerating the training of power grid control downstream tasks.
Disciplines :
Electrical & electronics engineering Energy Computer science
Author, co-author :
Cubelier, François ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
Donon, Balthazar; RTE (Réseau de Transport d’Électricité)
Wehenkel, Louis ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
Language :
English
Title :
Boosting Reinforcement Learning for Tertiary Voltage Control by Transfer Learning from a Supervised Power Flow Simulation Task
Publication date :
2025
Journal title :
IEEE PES Innovative Smart Grid Technologies Conference Europe
ISSN :
2165-4816
eISSN :
2165-4824
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), United States