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Abstract—This work explores how transfer learning can im-
prove reinforcement learning for tertiary voltage control, which
is a simulation-intensive process. The model is pre-trained over
the supervised learning of a power flow simulator, as a way of
incorporating physics inside the model. Two transfer strategies
are proposed and compared against a transfer-free baseline.
The case60nordic test case, which provides diversified operating
conditions, including topological variations, is used to assess
performance. Results indicate that fine-tuning the pre-trained
model can effectively improve performance or reduce training
time on the target task. This study emphasizes the potential
of transfer learning for accelerating the training of power grid
control downstream tasks.

Index Terms—Transfer learning, Power systems, Tertiary volt-
age control, Graph neural networks

I. INTRODUCTION

Tertiary Voltage Control (TVC) is crucial for the stability
and efficiency of transmission grid operation. Inadequate TVC
may lead to grid instability, equipment damage and system
collapse in the worst-case scenario. The growing integration
of intermittent renewable energy, notably wind and solar,
makes voltage control even more critical to operate the grid
properly. Deep learning, and particularly Graph Neural Net-
works (GNNs), which are designed to handle graph data, are
very promising for transmission grid challenges. Examples of
GNNs applied on transmission grids include grid control [1]–
[3], forecasting [4], [5] and state estimation [6], [7].

This article builds upon the GNN-based Reinforcement
Learning (RL) approach to TVC proposed in [8]. A very large
number of power flow simulations is required by this method
to assess actions tried out during the learning iterations, which
slows down the overall learning process. Available machine
learning techniques could attenuate this downside. In particu-
lar, this article focuses on transfer learning [9]–[11], a machine
learning methodology that aims at reusing knowledge acquired
by a model learnt to solve a source task to improve the learning
of solutions for other target tasks. Transfer learning methods
have already been applied successfully in power systems to

reduce training time or accommodate a lack of labeled data in
downstream target tasks [12], [13].

More specifically, to solve the TVC task by RL we inves-
tigate the use of power flow (PF) simulation [14]–[18] as a
source task, as it captures meaningful physical information
about the grid that the TVC task could reuse. Whereas the RL-
based TVC task needs on-the-fly simulations during training,
the supervised PF simulation task only requires computing the
ground truths once before training using the chosen power flow
simulator. In practice, the considered RL-based TVC training
involved over 108 power flow simulations, contrasting to the
105 required for pre-training a machine learning approxima-
tion of the PF simulator (on the same dataset).

In this work, we assess the potential of supervised pre-
training on the PF simulation task to improve the RL-based
TVC training from our previous work [8]. Our results on the
case60nordic test case [8], [19] show that fine-tuning models
stemming from our proposed pre-training outperforms training
from scratch, yielding better objective values and fewer voltage
violations while accelerating training speed.

The paper is organized as follows. Section 2 details the
methodology, explaining both the source task of PF simulation
and the target task of TVC, as well as the transfer strategies. In
Section 3, the experimental settings and results are presented
with a comparison of two different transfer learning strategies
against training from scratch and a classical optimization
baseline [8]. Finally, Section 4 concludes the paper with key
insights from the study and openings for potential future
research directions.

II. METHODOLOGY

This section outlines the proposed transfer learning method-
ology. The process is designed to exploit knowledge gained
from the source task, PF simulation, to enhance performance
on the target task, TVC. The approach is decomposed into
four key components: (A) a robust data representation and
specialized GNN architecture designed for power systems, (B)
PF simulation task definition and training methodology, (C)
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TVC task definition and training procedure, and (D) transfer
learning from PF simulation to TVC. Figure 1 provides a
visual overview of our proposed pre-training and transfer
stages.

A. Data representation and graph neural network

We employ the Hyper-Heterogeneous Multi Graph (H2MG)
[20] framework to represent power systems data. It renders the
diversity of object classes encountered in the representation of
power systems. It allows to represent these objects as they are
without simplifying them into standard node-and-edge graphs.

A power system operating condition, denoted by x, con-
tains numerical features as well as topological features (i.e.,
connectivity between components). The numerical features of
x include, among others:

• Active and reactive powers of all loads,
• Voltage bounds of all buses,
• Active powers, reactive power bounds, and voltage set-

points of all generators,
• Admittances of all lines and all transformers,
• Nominal reactive powers of all shunts.

In the H2MG framework, an operating condition x is com-
posed of multiple classes of objects (generators, loads, lines,
etc.). Each element of a class is described by its numerical
features and its connection to other objects.

We use the companion H2MGNODE architecture to handle
this data. It consists of a Graph Neural Network (GNN)
designed for power systems that leverages Neural Ordinary
Differential Equations (NODE) [21]. This GNN architecture
is used to map the input x to a task-specific output y ∈ Y(x),

ŷθ(x) = DθD ◦CθC ◦EθE (x). (1)

This architecture consists of three successive components:
the encoding E, the coupling C, and the decoding D, with
corresponding parameters θE , θC and θD. During encoding,
every object feature vector is mapped into an encoded version,
denoted x̃ := EθD (x), by a Multi Layer Perceptron (MLP)
specific to the class of the object. The coupling function, cen-
tral to the GNN, leverages message passing to generate latent
variables at each bus location in the power grid. The latent
variables h := CθC (x̃) are progressively computed during
the resolution of the NODE by combining information from
the neighboring object’s encoded features via MLPs. Finally,
class-specific MLP decoders combine these latent variables
with the encoded input features to generate the desired output
features ŷ := DθD (h, x̃). We refer the interested reader to
[8], [20] for a more precise description and motivation of the
H2MGNODE model.

B. Source task: Power flow simulation

The source task consists in predicting the power flow
simulation outputs, denoted ypf , knowing its input features
x. It is framed as a supervised learning problem. Here we
consider, without limitation, a static AC power flow simulation
task based on the Newton-Raphson method while ensuring that
reactive generator limits are respected. This source task thus

incorporates relevant knowledge about the physics of power
grids.

The considered power flow simulation outputs ypf contain
the following features:

• Voltage magnitudes and phase angles at all buses,
• Active and reactive powers of all generators,
• Active and reactive power flows of all branches (i.e. lines

and transformers),
• Current magnitudes and loading percentages of all

branches.

The model is trained on this task by minimizing the mean
squared error (MSE) between the model’s predictions and the
ground truths precomputed by the Newton-Raphson method.
The overall loss function of the PF simulation problem is:

Lpf (θpf ) = Ex∼p(·)

[
MSE

(
ŷpf
θpf (x), y

pf (x)
)]

, (2)

where p is the considered distribution of operating conditions.

C. Target task: Tertiary voltage control

The target task consists in controlling generator voltage
setpoints to maintain voltages within operational limits, as
defined in [8]. The task amounts to minimizing a cost function
c(x, yvc), which takes as inputs the operating condition x
and the generator voltage setpoints yvc, and balances three
objectives: minimizing voltage and current operational limit
violations and reducing Joule losses in the grid,

yvc(x) ∈ argmin
yvc∈Yvc(x)

c(x, yvc). (3)

To solve this problem for every x, we teach a H2MGNODE to
map the input features x to a solution ŷvc via RL. Following
[8], a stochastic policy Πθvc for voltage setpoints is defined as
a multivariate Gaussian distribution, with its mean predicted by
the neural network ŷvcθvc : Πθvc(·|x) = N (ŷvcθvc(x), σ2I), where
σ > 0 is a fixed parameter and I is the identity matrix.

The aim is to minimize the expected cost under this stochas-
tic policy:

Lvc(θvc) = E x∼p(.)
yvc∼Πθvc (.|x)

[c(x, yvc)] . (4)

The parameters θvc are trained to minimize this loss by
following the REINFORCE method. According to the well-
known “log-trick”, the gradient of Lvc can be formulated as
follows:

∇θvcLvc(θvc) = E x∼p(.)
yvc∼Πθvc (.|x)

[c(x, yvc)∇θvc lnΠvc
θvc(yvc|x)] . (5)

This gradient is estimated via Monte Carlo simulation over
mini-batches of operating conditions x, with power flow
simulations (same simulator as above) used to evaluate the
cost function for voltage control candidates (see [8] for the
exact algorithm statement).



Fig. 1: GNN-based transfer learning workflow for TVC of transmission systems. The process begins by pre-training the GNN
on the source task, PF simulation, through supervised learning. The pre-trained model is then transferred to the target task,
TVC, and adapted using RL, with two strategies: PF Frozen or PF Fine-Tuned. Transfer Learning relies on the fact that both
tasks share the same input representation x and the same parametric architecture for their encoder and coupler components.

D. Transfer learning

The Transfer Learning procedure begins with the pre-
training of the parameters θpf on the source task, PF sim-
ulation, as described earlier (II-B). Then, the trained encoder
and coupler weights, θpfE and θpfC , are injected into the TVC
model, while its decoder weights θvcD are randomly initialized.
Notice that this is only possible if both models share the same
encoder and coupler architectures.

The model is then trained on the target task (II-C) following
one of the two proposed transfer strategies: PF Frozen or PF
Fine-Tuned. In both strategies, the pre-trained parameters serve
as initialization of the encoder-coupler.

1) PF Frozen: The pre-trained encoder-coupler parameters
remain fixed while only the TVC decoder is trained. With
this approach, latent variables can be pre-computed for each
operating condition, offering a computational advantage dur-
ing training. Notice that decoding does not involve message
passing. Therefore, this strategy assumes that pre-trained latent
variables contain sufficient information to determine near-
optimal generator voltage setpoints.

2) PF Fine-Tuned: Both the pre-trained encoder-coupler
parameters and the TVC decoder are trained together on the
target task.

III. EXPERIMENTS

This section details the settings of the experiments and
their results on the case60nordic test case. Results on the
source task summarise the pre-trained model performance. For
the target task TVC, the cost evolutions during training are
analyzed, as well as the resulting operational limit violations
obtained by the different models, showing the efficacy of fine-
tuning.

A. Settings

Let us first describe the experimental settings. Each exper-
iment is run 5 times with different random seeds.

Case study: Experiments are run on the Standard dataset
1 from [8] (100,000 operating conditions for training, 2,000

1Dataset available at https://zenodo.org/records/10825468

for validation, and 10,000 for testing), generated from the
case60nordic power grid [19]. This dataset, used in previous
work, is representative of the variability of real-life operating
conditions. It displays topological variations with up to four
lines disconnected, randomization of the loads (both total and
individual demands) and generation (from 6 to 19 generators).
The dataset generation process is described in [22]. In our
study, generator voltage magnitude setpoints (initially fixed
at 1 p.u. in [8]) are uniformly and independently sampled
between 0.9 and 1.1 p.u. This sampling may lead to power
flow non-convergence (in practice, less than 1% of the time), in
which case resampling is iteratively applied until convergence.
Power flow simulations are run with the PandaPower library
[23]. Input features are normalized following the approach
described in [22].

ACOPF solver: A classical AC Optimal Power Flow
(ACOPF) solver serves as the golden standard, as described
in [22]. Notice that this solver is known to adapt poorly to
large power grids and discrete control variables, thus making
our learning-based methodology competitive.

Baseline: The Baseline for TVC follows the methodology
introduced in our previous work [8] (see also II-C). For
simplicity and excluding negligible changes, we reuse the
same hyper-parameters as in the original article. For the neural
network architecture, we use a latent dimension of 64, two
hidden layers of hidden size 128 and 64 for the MLP encoders
and decoders and 1 hidden layer of size 128 for the coupling
MLPs. The model parameters θvc are optimized by mini-
batch gradient descent on the loss (4) for 200,000 iterations
with the Adam optimizer [24] (with standard parameters). The
learning rate is 3×10−4, and the batch size is 32. The average
validation cost is monitored at every epoch, and only the model
with the lowest cost is retained, as a form of early stopping.

Transfer: For the pre-training stage, we learn the parameters
θpf by minimizing the loss function (2) for 200,000 iterations.
We use the same hyper-parameter choices for the neural
architecture and the Adam optimizer as for the Baseline.

The output features ypf are center-reduced using mean and
standard deviation over the training set. Model selection is



Fig. 2: Power flow simulation pre-taining: Scatter plots comparing actual values and predicted values with R2 scores on the
test set for various output features.

based on the R2 metric, a standard regression measure, to
assess whether a model optimized for PF simulation can ef-
fectively capture features relevant to the TVC task. After every
training epoch, the feature-averaged R2 score is computed over
the validation set and only the best performing model is kept.

For the transfer strategies Proxy Frozen and Proxy Fine-
Tuned, we employ the same hyper-parameters as the Baseline
for training.

B. Results

Though PF simulation is not the end goal of this study, we
showcase the results of the pre-trained model on the source
task to get a better picture of the overall transfer process. We
then proceed with the TVC results.

1) PF simulation task: As shown in Figure 2, the pre-
trained model demonstrates R2 scores over 0.995 for the
different categories of features on the source task of PF
simulation, showing how effectively it captured the underlying
physics of power grid behavior. The scatter plots show pre-
dicted and ground truth values for each output feature. The
points remain close to the diagonal line, which illustrates the
model’s accuracy.

2) TVC task: To assess the effectiveness of transfer learn-
ing, three distinct training strategies were evaluated: the Base-
line was compared against two proposed transfer learning
strategies: PF Frozen and PF Fine-Tuned.

a) Cost Evolution: Figure 3 illustrates the cost evolution
on the validation set during training for each strategy. The PF
Fine-Tuned strategy achieved the best final cost among all the
methods. It reached the Baseline final cost in roughly two-
thirds of the training steps, showing the advantage of smart

initialization to accelerate training. The PF Frozen, however,
ended up with the worst final cost. This could be due to the
inability of the frozen encoder and coupler to capture the
information required by the decoder to fully adapt to the TVC
task.

b) Constraint Violations: Table I outlines the resulting
operational constraint violations for each strategy. Violations
encompass both bus voltage violations (i.e. outside of the
[0.9, 1.1] p.u. range) and branch thermal limit violations. We
observe that PF Fine-Tuned obtained the least violations, only
3.8% against 4.6% for the Baseline, closing the gap with the
ACOPF solver (1.0%). On the other hand, the PF Frozen
failed to adapt to TVC, with over 24% situations violating
operational limits. This experiment outlines the advantage of
fine-tuning in terms of convergence speed and operational
constraint handling.

TABLE I: Mean percentage of operating conditions with con-
straint violations ± standard error for three learning strategies
on the test set, with ACOPF reference.

Operating conditions with violation.

Baseline (no transfer) 4.6± 0.1%

PF Frozen 24.1± 0.7%

PF Fine-Tuned 3.8± 0.1%

ACOPF solver 1.0± 0.0%

IV. CONCLUSION

This study highlights the potential of transfer learning as
a relevant tool for TVC of electric power systems, using PF
simulation as the source task. Two transfer strategies were



Fig. 3: Evolution of the best average cost reached on the val-
idation set during TVC training for three different strategies.
The line represents the mean over the 5 runs, and the shaded
area displays the minimum and maximum costs over the 5
runs. The PF Fine-Tuned training curve (blue) crosses the
Baseline best cost (dotted line) in two-thirds the training steps,
illustrating its faster convergence.

proposed and compared against the previous RL-based TVC
baseline. The first, PF Fine-Tuned, where pre-trained weights
are fine-tuned, improved over the baseline, reaching the same
performance in two-thirds of the training steps. Furthermore,
given the same training budget, it surpassed the baseline
performance in terms of operational constraint violation. The
second, PF Frozen, where pre-trained weights are frozen,
failed to achieve satisfactory performances.

Future research could investigate alternative source tasks
and more advanced transfer learning strategies to further en-
hance performance. Additionally, this study could be extended
to explore other optimization and control tasks of electric
power systems. Furthermore, future work could include the
application of this approach to larger test cases.
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[5] D. Beinert, C. Holzhüter, J. M. Thomas, and S. Vogt, “Power flow
forecasts at transmission grid nodes using graph neural networks,”
Energy and AI, vol. 14, p. 100262, 2023.

[6] Q.-H. Ngo, B. L. Nguyen, T. V. Vu, J. Zhang, and T. Ngo, “Physics-
informed graphical neural network for power system state estimation,”
Applied Energy, vol. 358, p. 122602, 2024.

[7] O. Kundacina, M. Cosovic, and D. Vukobratovic, “State estimation
in electric power systems leveraging graph neural networks,” Preprint
arXiv:2201.04056, 2022.
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