[en] Post-translational modifications (PTMs) of microtubules (MTs) endow them with specific properties that are essential for key cellular functions, such as axonal transport. Polyglutamylation, a PTM that accumulates in long-lived MTs, has been linked to neurodegeneration in the cerebellum when in excess. While hyperglutamylation of MTs leads to neurodegeneration and disrupts the function of specific neuronal subtypes like Purkinje cells, cortical neurons, and hippocampal excitatory neurons, little is known about its impact on inhibitory interneurons and their functional integration into local networks. In this study, we generated a conditional knockout mouse model to deplete cytosolic carboxypeptidase 1 (Ccp1) in GABAergic neurons, a key MT deglutamylase expressed by hippocampal interneurons. Our findings reveal that the loss of Ccp1 has a profound effect on hippocampal parvalbumin (PV)-expressing interneurons, impairing their MT-dependent transport and reducing their perisomatic inhibition of pyramidal cells (PCs) in the CA2 region of the hippocampus.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Le Bail, Romain; Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
Lakaye, Bernard ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Janke, Carsten; Institut Curie, Université PSL, CNRS UMR3348, Orsay, France ; Université Paris-Saclay, CNRS UMR3348, Orsay, France
Magiera, Maria M; Institut Curie, Université PSL, CNRS UMR3348, Orsay, France ; Université Paris-Saclay, CNRS UMR3348, Orsay, France
Engel, Dominique ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Silva, Carla G; Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
Nguyen, Laurent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
Language :
English
Title :
Ccp1 depletion disrupts network integration of hippocampal parvalbumin interneurons.
FRM - Fondation pour la Recherche Médicale ERC - European Research Council ULiège - University of Liège F.R.S.-FNRS - Fonds de la Recherche Scientifique ANR - Agence Nationale de la Recherche FWB - Fédération Wallonie-Bruxelles
Funding text :
The work performed in the Nguyen laboratory is supported by ULi\u00E8ge (Cr\u00E9dit Classique, Cr\u00E9dit classique de la facult\u00E9 de m\u00E9decine), the F.R.S.-F.N.R.S. (PDR T.0185.20; EOS 0019118F-RG36), the WEL Research Institute (CR-2022A-12), the Fonds L\u00E9on Fredericq, the Fondation Simone et Pierre Clerdent, the Fondation M\u00E9dicale Reine Elisabeth, the ERANET Neuron (STEM-MCD and NeuroTalk), the Win2Wal (ChipOmics; #2010126), and the ERC-Synergy (UNFOLD). The Janke lab is supported by the French National Research Agency (ANR) awards ANR-20-CE13-0011 and the Fondation pour la Recherche M\u00E9dicale (FRM) grant MND202003011485.
Roll-Mecak, A., How cells exploit tubulin diversity to build functional cellular microtubule mosaics. Curr. Opin. Cell Biol. 56 (2019), 102–108, 10.1016/j.ceb.2018.10.009.
Janke, C., Magiera, M.M., The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 21 (2020), 307–326, 10.1038/s41580-020-0214-3.
van Dijk, J., Miro, J., Strub, J.M., Lacroix, B., van Dorsselaer, A., Edde, B., Janke, C., Polyglutamylation is a post-translational modification with a broad range of substrates. J. Biol. Chem. 283 (2008), 3915–3922, 10.1074/jbc.M705813200.
Rogowski, K., van Dijk, J., Magiera, M.M., Bosc, C., Deloulme, J.C., Bosson, A., Peris, L., Gold, N.D., Lacroix, B., Bosch Grau, M., et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143 (2010), 564–578, 10.1016/j.cell.2010.10.014.
Magiera, M.M., Bodakuntla, S., Ziak, J., Lacomme, S., Marques Sousa, P., Leboucher, S., Hausrat, T.J., Bosc, C., Andrieux, A., Kneussel, M., et al. Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J., 37, 2018, e100440, 10.15252/embj.2018100440.
Rogowski, K., van Dijk, J., Magiera, M.M., Bosc, C., Deloulme, J.C., Bosson, A., Peris, L., Gold, N.D., Lacroix, B., Bosch Grau, M., et al. A Family of Protein-Deglutamylating Enzymes Associated with Neurodegeneration. Cell 143 (2010), 564–578, 10.1016/j.cell.2010.10.014.
Bodakuntla, S., Schnitzler, A., Villablanca, C., Gonzalez-Billault, C., Bieche, I., Janke, C., Magiera, M.M., Tubulin polyglutamylation is a general traffic-control mechanism in hippocampal neurons. J. Cell Sci., 133, 2020, jcs241802, 10.1242/jcs.241802.
Gilmore-Hall, S., Kuo, J., Ward, J.M., Zahra, R., Morrison, R.S., Perkins, G., La Spada, A.R., CCP1 promotes mitochondrial fusion and motility to prevent Purkinje cell neuron loss in pcd mice. J. Cell Biol. 218 (2019), 206–219, 10.1083/jcb.201709028.
Bodakuntla, S., Yuan, X., Genova, M., Gadadhar, S., Leboucher, S., Birling, M.C., Klein, D., Martini, R., Janke, C., Magiera, M.M., Distinct roles of alpha- and beta-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration. EMBO J., 40, 2021, e108498, 10.15252/embj.2021108498.
Silva, C.G., Peyre, E., Adhikari, M.H., Tielens, S., Tanco, S., Van Damme, P., Magno, L., Krusy, N., Agirman, G., Magiera, M.M., et al. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell 172 (2018), 1063–1078.e19, 10.1016/j.cell.2018.01.031.
Butt, S.J.B., Fuccillo, M., Nery, S., Noctor, S., Kriegstein, A., Corbin, J.G., Fishell, G., The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48 (2005), 591–604, 10.1016/j.neuron.2005.09.034.
Tricoire, L., Pelkey, K.A., Erkkila, B.E., Jeffries, B.W., Yuan, X., McBain, C.J., A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J. Neurosci. 31 (2011), 10948–10970, 10.1523/JNEUROSCI.0323-11.2011.
Booker, S.A., Vida, I., Morphological diversity and connectivity of hippocampal interneurons. Cell Tissue Res. 373 (2018), 619–641, 10.1007/s00441-018-2882-2.
Stenman, J., Toresson, H., Campbell, K., Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23 (2003), 167–174, 10.1523/JNEUROSCI.23-01-00167.2003.
Berezniuk, I., Sironi, J., Callaway, M.B., Castro, L.M., Hirata, I.Y., Ferro, E.S., Fricker, L.D., CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24 (2010), 1813–1823, 10.1096/fj.09-147942.
Shang, Y., Li, B., Gorovsky, M.A., Tetrahymena thermophila contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. J. Cell Biol. 158 (2002), 1195–1206, 10.1083/jcb.200205101.
Evans, P.R., Parra-Bueno, P., Smirnov, M.S., Lustberg, D.J., Dudek, S.M., Hepler, J.R., Yasuda, R., RGS14 Restricts Plasticity in Hippocampal CA2 by Limiting Postsynaptic Calcium Signaling. eNeuro, 5, 2018, ENEURO.0353-17.2018, 10.1523/ENEURO.0353-17.2018.
Chaudhry, F.A., Reimer, R.J., Bellocchio, E.E., Danbolt, N.C., Osen, K.K., Edwards, R.H., Storm-Mathisen, J., The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J. Neurosci. 18 (1998), 9733–9750, 10.1523/JNEUROSCI.18-23-09733.1998.
Dobie, F.A., Craig, A.M., Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation. J. Neurosci. 31 (2011), 10481–10493, 10.1523/JNEUROSCI.6023-10.2011.
Pawelzik, H., Hughes, D.I., Thomson, A.M., Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443 (2002), 346–367, 10.1002/cne.10118.
Frerking, M., Borges, S., Wilson, M., Variation in GABA mini amplitude is the consequence of variation in transmitter concentration. Neuron 15 (1995), 885–895, 10.1016/0896-6273(95)90179-5.
Mercer, A., Trigg, H.L., Thomson, A.M., Characterization of neurons in the CA2 subfield of the adult rat hippocampus. J. Neurosci. 27 (2007), 7329–7338, 10.1523/JNEUROSCI.1829-07.2007.
Engel, D., Pahner, I., Schulze, K., Frahm, C., Jarry, H., Ahnert-Hilger, G., Draguhn, A., Plasticity of rat central inhibitory synapses through GABA metabolism. J. Physiol. 535 (2001), 473–482, 10.1111/j.1469-7793.2001.00473.x.
Soltesz, I., Smetters, D.K., Mody, I., Tonic inhibition originates from synapses close to the soma. Neuron 14 (1995), 1273–1283, 10.1016/0896-6273(95)90274-0.
Nevian, T., Larkum, M.E., Polsky, A., Schiller, J., Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat. Neurosci. 10 (2007), 206–214, 10.1038/nn1826.
Shao, L.R., Dudek, F.E., Changes in mIPSCs and sIPSCs after kainate treatment: evidence for loss of inhibitory input to dentate granule cells and possible compensatory responses. J. Neurophysiol. 94 (2005), 952–960, 10.1152/jn.01342.2004.
Ikegami, K., Heier, R.L., Taruishi, M., Takagi, H., Mukai, M., Shimma, S., Taira, S., Hatanaka, K., Morone, N., Yao, I., et al. Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc. Natl. Acad. Sci. USA 104 (2007), 3213–3218, 10.1073/pnas.0611547104.
Lopes, A.T., Hausrat, T.J., Heisler, F.F., Gromova, K.V., Lombino, F.L., Fischer, T., Ruschkies, L., Breiden, P., Thies, E., Hermans-Borgmeyer, I., et al. Spastin depletion increases tubulin polyglutamylation and impairs kinesin-mediated neuronal transport, leading to working and associative memory deficits. PLoS Biol., 18, 2020, e3000820, 10.1371/journal.pbio.3000820.
Millecamps, S., Julien, J.P., Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14 (2013), 161–176, 10.1038/nrn3380.
Piskorowski, R.A., Chevaleyre, V., Hippocampal area CA2: interneuron disfunction during pathological states. Front. Neural Circ., 17, 2023, 1181032, 10.3389/fncir.2023.1181032.
Bateup, H.S., Johnson, C.A., Denefrio, C.L., Saulnier, J.L., Kornacker, K., Sabatini, B.L., Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78 (2013), 510–522, 10.1016/j.neuron.2013.03.017.
Gibson, J.R., Bartley, A.F., Hays, S.A., Huber, K.M., Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J. Neurophysiol. 100 (2008), 2615–2626, 10.1152/jn.90752.2008.
Banerjee, A., Rikhye, R.V., Breton-Provencher, V., Tang, X., Li, C., Li, K., Runyan, C.A., Fu, Z., Jaenisch, R., Sur, M., Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. Proc. Natl. Acad. Sci. USA 113 (2016), E7287–E7296, 10.1073/pnas.1615330113.
Hitti, F.L., Siegelbaum, S.A., The hippocampal CA2 region is essential for social memory. Nature 508 (2014), 88–92, 10.1038/nature13028.
Bischofberger, J., Engel, D., Frotscher, M., Jonas, P., Timing and efficacy of transmitter release at mossy fiber synapses in the hippocampal network. Pflügers Archiv 453 (2006), 361–372, 10.1007/s00424-006-0093-2.
Piskorowski, R.A., Chevaleyre, V., Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus. J. Neurosci. 33 (2013), 14567–14578, 10.1523/JNEUROSCI.0649-13.2013.
Shashi, V., Magiera, M.M., Klein, D., Zaki, M., Schoch, K., Rudnik-Schöneborn, S., Norman, A., Lopes Abath Neto, O., Dusl, M., Yuan, X., et al. Loss of tubulin deglutamylase CCP1 causes infantile-onset neurodegeneration. EMBO J., 37, 2018, e100540, 10.15252/embj.2018100540.
Zala, D., Hinckelmann, M.V., Yu, H., Lyra da Cunha, M.M., Liot, G., Cordelières, F.P., Marco, S., Saudou, F., Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152 (2013), 479–491, 10.1016/j.cell.2012.12.029.
Guzman, S.J., Schlögl, A., Schmidt-Hieber, C., Stimfit: quantifying electrophysiological data with Python. Front. Neuroinf., 8, 2014, 16, 10.3389/fninf.2014.00016.
Schneider Gasser, E.M., Straub, C.J., Panzanelli, P., Weinmann, O., Sassoè-Pognetto, M., Fritschy, J.M., Immunofluorescence in brain sections: simultaneous detection of presynaptic and postsynaptic proteins in identified neurons. Nat. Protoc. 1 (2006), 1887–1897, 10.1038/nprot.2006.265.
Falzone, T.L., Stokin, G.B., Imaging amyloid precursor protein in vivo: an axonal transport assay. Methods Mol. Biol. 846 (2012), 295–303, 10.1007/978-1-61779-536-7_25.
Bischofberger, J., Engel, D., Li, L., Geiger, J.R.P., Jonas, P., Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1 (2006), 2075–2081, 10.1038/nprot.2006.312.
Engel, D., Jonas, P., Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45 (2005), 405–417, 10.1016/j.neuron.2004.12.048.
Fernandez-Lamo, I., Gomez-Dominguez, D., Sanchez-Aguilera, A., Oliva, A., Morales, A.V., Valero, M., Cid, E., Berenyi, A., Menendez de la Prida, L., Proximodistal Organization of the CA2 Hippocampal Area. Cell Rep. 26 (2019), 1734–1746.e6, 10.1016/j.celrep.2019.01.060.