Allemand, Guillaume ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; European Theoretical Spectroscopy Facility
Giantomassi, Matteo ; Université Catholique de Louvain ; European Theoretical Spectroscopic Facility (ETSF)
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; European Theoretical Spectroscopy Facility ; Utrecht University
Language :
English
Title :
First-principles calculations of transport coefficients in the Weyl semimetal TaAs
[1] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang et al., Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X 5, 031023 (2015).
[2] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen et al., Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5, 031013 (2015).
[3] J. Xiang, S. Hu, M. Lv, J. Zhang, H. Zhao, G. Chen, W. Li, Z. Chen, and P. Sun, Anisotropic thermal and electrical transport of Weyl semimetal TaAs, J. Phys.: Condens. Matter 29, 485501 (2017).
[4] X. Xu, Y. Liu, G. Seyfarth, A. Pourret, W. Ma, H. Zhou, G. Wang, Z. Qu, and S. Jia, Thermoelectric transport and phonon drag in Weyl semimetal monochalcogenides, Phys. Rev. B 104, 115164 (2021).
[5] C. A. C. Garcia, J. Coulter, and P. Narang, Optoelectronic response of the type-I Weyl semimetals TaAs and NbAs from first principles, Phys. Rev. Res. 2, 013073 (2020).
[6] J. Coulter, G. B. Osterhoudt, C. A. C. Garcia, Y. Wang, V. M. Plisson, B. Shen, N. Ni, K. S. Burch, and P. Narang, Uncovering electron-phonon scattering and phonon dynamics in type-I Weyl semimetals, Phys. Rev. B 100, 220301(R) (2019).
[7] B. Peng, H. Zhang, H. Shao, H. Lu, D. W. Zhang, and H. Zhu, High thermoelectric performance of Weyl semimetal TaAs, Nano Energy 30, 225 (2016).
[8] B. Xu, M. Di Gennaro, and M. J. Verstraete, Thermoelectric properties of elemental metals from first-principles electronphonon coupling, Phys. Rev. B 102, 155128 (2020).
[9] X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-M. Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet et al., The ABINIT project: Impact, environment and recent developments, Comput. Phys. Commun. 248, 107042 (2020).
[10] P. Hohenberg andW. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964).
[11] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
[12] X. Gonze, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm, Phys. Rev. B 55, 10337 (1997).
[13] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, 515 (2001).
[14] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
[15] D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B 88, 085117 (2013).
[16] M. van Setten, M. Giantomassi, E. Bousquet, M. Verstraete, D. Hamann, X. Gonze, and G.-M. Rignanese, The PSEUDODOJO: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun. 226, 39 (2018).
[17] D. Chang, Y. Liu, F. Rao, F. Wang, Q. Sun, and Y. Jia, Phonon and thermal expansion properties inWeyl semimetals NX (M= Nb, Ta; X = P, As): Ab initio studies, Phys. Chem. Chem. Phys. 18, 14503 (2016).
[18] C.-C. Lee, S.-Y. Xu, S.-M. Huang, D. S. Sanchez, I. Belopolski, G. Chang, G. Bian, N. Alidoust, H. Zheng, M. Neupane et al., Fermi surface interconnectivity and topology in weyl fermion semimetals TaAs, TaP, NbAs, and NbP, Phys. Rev. B 92, 235104 (2015).
[19] W. Setyawan and S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Comput. Mater. Sci. 49, 299 (2010).
[20] F. Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89, 015003 (2017).
[21] G. Brunin, H. P. C. Miranda, M. Giantomassi, M. Royo, M. Stengel, M. J. Verstraete, X. Gonze, G.-M. Rignanese, and G. Hautier, Phonon-limited electron mobility in Si, GaAs, and GaP with exact treatment of dynamical quadrupoles, Phys. Rev. B 102, 094308 (2020).
[22] R. Claes, G. Brunin, M. Giantomassi, G.-M. Rignanese, and G. Hautier, Assessing the quality of relaxation-time approximations with fully automated computations of phonon-limited mobilities, Phys. Rev. B 106, 094302 (2022).
[23] S. Poncé, W. Li, S. Reichardt, and F. Giustino, First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials, Rep. Prog. Phys. 83, 036501 (2020).
[24] K. Behnia, Fundamentals of Thermoelectricity (Oxford University Press, Oxford, 2015).
[25] W. Li, Electrical transport limited by electron-phonon coupling from Boltzmann transport equation: An ab initio study of Si, Al, and MoS2, Phys. Rev. B 92, 075405 (2015).
[26] M. Fiorentini and N. Bonini, Thermoelectric coefficients of n-doped silicon from first principles via the solution of the Boltzmann transport equation, Phys. Rev. B 94, 085204 (2016).
[27] A. Eiguren and C. Ambrosch-Draxl, Wannier interpolation scheme for phonon-induced potentials: Application to bulk MgB2, W, and the (1 × 1) H-covered W(110) surface, Phys. Rev. B 78, 045124 (2008).
[28] D. G. Shankland, Fourier transformation by smooth interpolation, Int. J. Quantum Chem. 5, 497 (1971).
[29] D. Koelling and J. Wood, On the interpolation of eigenvalues and a resultant integration scheme, J. Comput. Phys. 67, 253 (1986).
[30] G. K. Madsen and D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175, 67 (2006).
[31] G. K. H. Madsen, J. Carrete, and M. J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semiclassical transport coefficients, Comput. Phys. Commun. 231, 140 (2018).
[32] M. Kawamura, Y. Gohda, and S. Tsuneyuki, Improved tetrahedron method for the Brillouin-zone integration applicable to response functions, Phys. Rev. B 89, 094515 (2014).
[33] Z. Liu, S. B. Mishra, J.-M. Lihm, S. Poncé, and E. R. Margine, companion paper, Phonon-limited carrier transport in the Weyl semimetal TaAs, Phys. Rev. B 112, 104311 (2025).