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We study charge and heat transport from first principles in the topological Weyl semimetal TaAs. Electron-
phonon coupling matrix elements are calculated using density-functional perturbation theory and used to derive
the thermoelectric transport coefficients, including the electrical conductivity, Seebeck coefficient, electronic
thermal conductivity, and the Peltier coefficient. We compare the self-energy and momentum-relaxation-time
approximations to the iterative solution of the Boltzmann transport equation, finding that they give similar results
for TaAs provided the chemical potential is treated accurately. We derive a second equation in the iterative
method to solve for transport under thermal gradients. Interestingly, the Onsager reciprocity between S and IT
is no longer imposed, allowing us to treat systems that break time-reversal symmetry, in particular, magnetic
materials. We compare our results with available experimental data for TaAs: the agreement is excellent for o,
while o, is overestimated, probably caused by differences in experimental carrier concentrations. The Seebeck
coefficient is of the same order of magnitude in theory and in experiments, and we find that its low-7 behavior

also strongly depends on the doping level.
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I. INTRODUCTION

A. Context and motivations

Transport in topologically nontrivial materials is an im-
portant development of recent condensed-matter physics, and
one of the main methods able to probe the fundamental and
delicate nature of these systems. Weyl semimetals (WSM) are
crystalline topological materials in which the electrons near
the Fermi level behave as massless chiral fermions (known
as Weyl fermions). The complex electronic structure of WSM
restricts their phase space, and leads to the protection of cer-
tain carrier states from scattering, and, as a consequence, high
mobility. Specific signatures of topology can appear in the
thermoelectric response, such as the chiral anomaly in WSM,
which results in a strong positive magnetoconductance that
can be detected experimentally [1]. Beyond the fundamental
characterization of topology, the exceptional and/or exotic
transport properties of WSM are of great interest for indus-
trial applications, and more specifically for thermoelectric
functionality. The latter is now widely used in electronic and
spintronic devices, in autonomous sensors, and for waste-heat
scavenging.

In this work, we focus on the prototypical WSM, tantalum
arsenide, the first experimentally proven Weyl semimetal [2].
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A few previous works [1,3,4] have characterized the (mag-
neto) thermoelectric properties of TaAs experimentally. Sev-
eral theoretical studies of the electron and electron-phonon
interactions in TaAs also exist in the literature, in particu-
lar those by Garcia [5], Coulter [6], and Peng [7]. Garcia
and Coulter characterize the electron-phonon coupling in de-
tail and the optoelectronic response, but not transport. Peng
et al. calculate the transport coefficients, but they solve the
Boltzmann transport equation (BTE) using the constant relax-
ation time approximation (cRTA), which is known to fail in
metals [8], and cannot capture the subtleties of low-energy
scattering around the Fermi level.

In this study, we characterize the thermoelectric transport
properties of TaAs in a fully first-principles way to account
for chemical bonding, detailed band dispersion, and scat-
tering effects. We determine the equilibrium geometry and
ground-state electronic structure, and compute the electron-
phonon coupling (EPC) matrix elements in order to obtain
the transport coefficients by solving the BTE. We use the
ABINIT software suite [9], performing density functional
theory (DFT) [10,11], density functional perturbation the-
ory (DFPT) [12,13], EPC, and transport calculations. Our
results for the conductivity in-plane closely match the experi-
mental values, while the results for the Seebeck coefficients
overestimate the measurements of Ref. [3]. Both show a
strong dependency on the doping present in the samples.

©2025 American Physical Society
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FIG. 1. Electronic band structure of TaAs within GGA-PBE, tak-
ing into account spin-orbit coupling. The two types of Weyl points
are visible near ¥ and X,. Inset adapted from Ref. [19].

Additionally, we present our calculated electronic thermal
conductivities, which are challenging to compare with the
experimental values, as the latter are estimated indirectly.
We also discuss the reciprocity of the off-diagonal Onsager
coefficients in the BTE by comparing the Seebeck and Peltier
coefficients. Finally, we show that the Wiedemann-Franz rela-
tion can be broken strongly for Weyl semimetals such as TaAs,
in a temperature range from around 150 K to 350 K.

B. Structure and computational methods

TaAs crystallizes in a four-atom primitive cell with a
tetragonal structure (I41md, space group #109) and a nonmag-
netic electronic configuration. The calculations are performed
with fully relativistic norm-conserving GGA-PBE [14] pseu-
dopotentials [15,16] including spin-orbit coupling, an energy
cutoff of 50 Ha, a 16 x 16 x 16 I'-centered k-point grid,
and a 8 x 8 x 8 g-point grid for phonons. Our lattice con-
stants (a = 3.465, ¢ = 11.743 A) are in good agreement with
previous theoretical results (a = 3.467, ¢ = 11.755 A), but
slightly overestimate experimental values (@ = 3.437,c =
11.656 A) [17], as expected when using GGA. We used a
Gaussian smearing for the electronic occupation levels, and
a temperature of smearing equal to 2.721 meV. Moreover, de-
spite the anisotropy of the lattice constants, we usedn X n x n
grids, thus over-converging along the ¢ direction.

II. ELECTRON AND PHONON BAND STRUCTURES

The electronic band structure, calculated along a high-
symmetry k-path, is shown in Fig. 1. The valence and
conduction bands cross in the vicinity of the Fermi level
(set to 0 eV) at band crossings known as Weyl nodes. Two
inequivalent nodes are contained in the band structure, and
TaAs exhibits 24 Weyl nodes in total. The shape of the band
structure is characteristic of Weyl semimetals with direct band
gaps throughout the Brillouin zone, except at specific points
dubbed W1 and W2. Our band dispersion is in good agree-
ment with previous first-principles calculations [18].

The phonon dispersion is shown in Fig. 2. There is no gap
between acoustic and optical modes, but there are two main
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FIG. 2. Phonon dispersion curve of TaAs. The green color corre-
sponds to the contribution of As atoms and blue to the contribution
of heavier Ta atoms.

manifolds. Indeed, heavier Ta atoms contribute mainly at low
frequencies (in blue) and As atoms contribute at high frequen-
cies (in green). Our results agree well with experimental and
theoretical data reported in [17]. Our phonon frequencies at I'
are 0.00, 14.6, 20.2, 27.6, 29.9, 30.0, 31.2 meV.

III. THERMOELECTRIC TRANSPORT CALCULATIONS

In order to obtain the transport coefficients of TaAs, we
compute the EPC matrix elements and solve the linearized
Boltzmann transport equation. The results presented in this
article are obtained either using the relaxation time approx-
imation (RTA) solutions to the BTE, i.e., self-energy RTA
(SERTA) and momentum RTA (MRTA), or using the itera-
tive Boltzmann transport equation (IBTE) [20]. The methods
implemented within the EPH module of ABINIT allow us to
calculate the basic electronic transport coefficients: the elec-
trical conductivity o or resistivity (o), the Seebeck coefficient
(S), the electronic thermal conductivity (k") and the Peltier
coefficient (IT). For a detailed description of the EPH code
and RTA implementation, see Refs. [21,22] and for a review
of the different approaches to solving the BTE, see Ref. [23].
In this section, we summarize the SERTA/MRTA methods,
and present an extension of the IBTE formalism that we
have implemented in a development version of ABINIT 10.3.
Atomic Hartree units are used throughout the paper. We note,
in particular, that linewidths (inverse lifetimes) require a 1/7
prefactor, which is simply 1 in atomic units.

A. Boltzmann transport equation

The Boltzmann equation is a semi-classical theory in
which the system is assumed to have well-defined quasipar-
ticle excitations (with crystalline momentum k, band index n
and group velocity v,x) of energy e,x with negligible imag-
inary part, meaning the spectral function in the Bloch band
picture is strongly peaked around the quasiparticle energy.
The fundamental aim of the theory is the determination of the
out-of-equilibrium statistical distribution function f,(r, k),
usually when a steady state is reached. The time-independent
Boltzmann transport equation (BTE) for the steady state is
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expressed as

L
or ™7 9k
where the first term is diffusive and enters into play if the
external fields have a spatial dependence, while the second
term is the so-called drift contribution, under a generic force
F.In Eq. (1), Z,x[ f] is the scattering integral, a functional of
f that represents the net number of particles entering/leaving
the infinitesimal phase space region around (r, k) owing to
scattering processes. Once the out-of-equilibrium distribution
function f is known, one can compute the electric current
density,

- F+Lulf1=0, ey

= =2y Vi, )

as well as the heat current density jQ,

0 L — 3
°=an %(snk [V foker 3)

where the factor y accounts for spin degeneracy (y =2 in
spin unpolarized systems and y = 1 for spin polarized sys-
tems or spinor wavefunctions when spin-orbit coupling is
taken into account), €2 is the volume of the unit cell, Ny the
number of K-points in the Brillouin zone (BZ), w is the chem-
ical potential, and e = |e| the absolute value of the electronic
charge (41 in atomic units).

The complexity of Eq. (1) stems from the mathematical
structure of the scattering functional. To overcome this diffi-
culty, one often uses the BTE for a steady state in the linear
regime, for a weak electric field E and thermal gradient VT,
and eventually an additional magnetic field B, producing F =
—e(E 4 v, x B). Since the external fields are weak, one can
assume that the solution of the BTE can be expressed as a
small correction to the equilibrium Fermi-Dirac occupation
function according to

Fok = (e, 1, T) + 8 (T, ), )

where the unknown 4§ f,x term is linear in the external fields
and (e, i, T) is the local equilibrium distribution. Note
that only the 8 f, terms contribute to j¢ and j¢ since f° is an
even function of k while v,y is an odd function. The scattering
integral is then linearized as follows:

Ll f1~ Tl fO1 + Lok f0, 8£1 = Lkl f°, 81, (5)

where we used Zk[ f 01 = 0, since f 0 is a solution of the BTE
at zero external fields. After some algebra, one obtains the
linearized version of the BTE,

0 —
U ool L) 0]

08,k e or T or
8(ank B a(sfnk 0
nk * : = ‘Cn ,Of1, 6
+ Vik or + T oK k[f7. 871, (6)

where ffk is the Lorentz force —ev, x B. This linearized
expression represents the starting point of both the RTA and
IBTE formalisms that are discussed in more detail in the next
sections.

At this point, it is important to highlight that, in the
framework of linear response theory within nonequilibrium

thermodynamics, the steady-state current densities and the
driving fields are related to each other via Onsager’s relations
(written with our own notations, see [24] for more details)

. &
IV _ (Lu®B) Lp®B)Y [ _
(jQ> N (LZI(B) ) VT @)

L (B) ’

where £ = E + V. u/e is the electrochemical potential (we
only consider the E contribution in our calculations below),
the matrix elements L;;(B) are called Onsager coefficients
and are transport tensors that depend on the external magnetic
field B. These tensors inherit the symmetry properties of the
underlying crystal lattice, meaning certain components may
vanish or become equivalent due to symmetry constraints, sig-
nificantly simplifying the analysis in high-symmetry systems.
The explicit dependence on B in Eq. (7) emphasizes that an
external magnetic field can modify both electrical and thermal
conductivities. According to Onsager’s reciprocity principle,
which arises from the time-reversal symmetry of microscopic
dynamics, the transport coefficients satisfy the following
relationship:

Li2(B) = Lo (—B). ®)

In the absence of time reversal symmetry breaking (B = 0),
this reduces to the symmetric form

Li; =Ly 9

In the following sections, we will review the various method-
ologies commonly employed to solve the linearized BTE and
assess the extent to which Onsager’s reciprocal relation is
preserved in each approach: TaAs is a nonmagnetic material,
so we should systematically find L, = Ly;.

B. Relaxation-time approximation

Within the relaxation-time approximation (RTA), the scat-
tering integral £,k in Eq. (6) is replaced by the rather simple
expression

Lalf'. 851 = —2%, (10)
Tnk

From a physical perspective, we are assuming that once the
external fields are switched off, the f,x occupation function
relaxes to the equilibrium ,?k following an exponential decay
with a (single, averaged) time constant t,x, and the f;x relaxes
as though all other occupations were at equilibrium. This
presumes that the occupations of different states nk do not
influence each other, though this is never strictly correct. From
a mathematical perspective, the RTA drastically simplifies the
initial problem, since we have replaced the linearized scat-
tering integral with a much simpler expression that depends
only on the relaxation time t,. The linearized BTE within the
RTA [Eq. (6)] is expressed as (we assume B = 0, and spatially
constant E and VT such that the spatial gradient of § f is 0),

afo (enk — ) oT
Sfobe = — Tkt | —es — SR ZHIE
Sk Tkagnka [ e T or (11)

By using this result, one can express the current densities
[Egs. (3) and (2)] in terms of the external fields and finally
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derive the expression of the Onsager transport tensors, using
Eq. (7),

dk af°
L = —yeZZ/ 2 ) dey vk ® Viks (12)

dk af°
L =Ly = VBZ/ on ) af Tk (Enk —

HWIVik @ Vik,
(13)

dk 9f° )

Ly =-— Tk (Enk — Yy v (14

» = )’Z/ on ) e Tuk (Enk — )" Vik @ Vik. (14)

The integral is performed over the k-points in the BZ region
Qpz and v, is the velocity operator computed with DFPT,

aSnk
dk

In should be noted that, in the RTA, the Onsager reciprocal
relation L, = Ly, is automatically fulfilled.

In the cRTA, 7, is assumed to be a constant, inde-
pendent of crystalline momentum and band index. This is
clearly a rather crude approximation, especially for metals.
In a more physically accurate approach, the relaxation time
should depend on the microscopic state of the electron and
the temperature. In the so-called self-energy relaxation-time
approximation (SERTA), one employs Fermi’s golden rule to
compute the scattering rate because of the interaction with
phonons up to first order in the displacement. This leads to
the following expression:

=i Z/ —|gmnu<k QP

X [(ngy + fuk+q)8(Enk — Emktq T Ogv)
+ (nqv +1- fmk+q)8(5nk - qu)]y (16)

where g, (K, q) is the electron-phonon coupling matrix el-
ement, ng, the phonon distribution, and wgq, the phonon
frequency. The use of the SERTA acronym is related to the fact
that Eq. (16) corresponds to twice the value of the imaginary
part of the Fan-Migdal self-energy evaluated at the Kohn-
Sham eigenvalue [20]. This result is derived in a more rigorous
way in Appendix A. See also [20,21,23] for further details.
The SERTA ignores most backscattering processes. In the
MRTA, these are partially accounted for by expressing the
transport lifetime as

__2 Z/

X [(nqv + fmk+q)8(5nk — Emk+q T a)qv)
+ (nqv +1 - a)qv)]- (17)

oH
Vik = = (nk| % -Ink). (15)

— & mk+q

Vuk * Vimk
o, (g (k. @) ( -~ —*“)

|Vnk|2

- fmk+q)8(8nk — Emk+q

C. Iterative BTE

In this section, we review the iterative BTE solution, which
is more accurate and goes beyond RTA by explicitly including
the in and out e-ph scattering in the formalism (for more
details, see [22,23,25]).

Let us start by rewriting the linearized BTE [Eq. (6)] for
B = 0, assuming a constant (weak) electric field, a constant

temperature gradient, and restricting ourselves to first-order
derivatives

L. 811
(18)

The right-hand side (RHS) [compared to Eq. (6)] has a first
term equivalent to the RTA formalism, with 79, given by the
Fan-Migdal diagram, plus a second term explicitly taking into
account the linearized e-ph scattering integral. The derivation
of this scattering integral can be found in [23] and is summa-
rized with our notation in the Appendix.

We also express the first-order correction to the distribution
function [Eq. (4)] as a first perturbatlon linear in E (& f, k) and
a second linear in VT (8 1)

ank =94

where ka and ka are tensors giving the first derivatives of
the distribution function f,x with respectto VT and E, respec-
tively (as derived in the relaxation time context by Fiorentini
and Bonini [26]). F7, is obtained by solving the IBTE at zero
E-field, whereas F““n is obtained at zero temperature gradient
(VT = 0). The IBTE equations are then solved using an iter-
ative scheme, and read

WAT) _ 8fw
asnk T or 0

0 —
8f Yk |:—e5 _ (Enk

nk

+8f”k=ka E+FL -VT/T, (19)

0
Pl = egt o+ ’"“2” 3 g (k, @)
q mqv
< [(1+ nqy = £3)87 + (nqu + f) 8 Fo,
(20)
and
T (i+1) _ 3f0
FL0 = o v e — ) + 2 Z|gm,w<k @l
8£nk q o
x [(1+ngy = fu) 8" + (nqy + f1x)8” ]F;lﬁ(Qq

2

where Ng is the number of g-points in the BZ and §* =
8(&nk — Emk+q £ a)qv). Equation (20) is solved with the initial
guess Fg O —¢ kvnk while Eq. (21) is solved with the initial
guess FT R (S""e_“ JFE . The latter is a full solution for the
redundant F7 in the RTA case which does not have the second
term in the RHS of Eq. (18). The Ansatz for F” is not exact in
the full IBTE, as there is a mismatch of the bands m and » in
the scattering operator.

D. Transport coefficients within IBTE

In order to calculate the transport coefficients in the IBTE
formalism, we make use of the Onsager relations [Eq. (7)],

g VT

J =Ly ‘E—le'T, (22)
\

j=Ly -E—Lx- - = —k VT, (23)

and we compare them to the current density expressions
within the IBTE obtained by inserting Eq. (19) in Egs. (2)

125122-4



FIRST-PRINCIPLES CALCULATIONS OF TRANSPORT ...

PHYSICAL REVIEW B 112, 125122 (2025)

and (3). As above, fO(eux, u, T) from Eq. (4) does not con-
tribute to the density currents,

y ye e , VT
=——— > vu(F E+F, - — ) (4
! ssznkV“<”k o T) 4)
vT
'Q:LE — Fé& . E+FL . — ). 25
J QNk — (Sﬂk M)Vnk< nk + nk T ( )

Therefore, we can derive the expression of the Onsager coef-
ficients within IBTE,

Ly, -—Q—Nkank@F (26)
L= g §vnk ® F, @7
Ly = —— Z(snk 1)V @ Foy (28)
Ly=—-—— Z(snk 1V ® Fiy (29)

The outer product is needed to preserve the dependency of
F¢ and F7 on the direction of the applied fields (E or VT'), so
each L;; is a tensor of rank two. We note that now the Onsager
reciprocity is not imposed mathematically by the formalism
itself. For time-reversal symmetric cases (like TaAs below)
the (mathematical) breaking of Onsager reciprocity tests the
numerical convergence and IBTE resolution scheme. In cases
without time-reversal symmetry, we can now evaluate both §
and IT explicitly.

Finally, by considering the definitions of the transport ten-
sors (see [24]) and by replacing the Onsager coefficients in
Egs. (22) and (23) with their expressions in Egs. (26)—(29),
we are now able to express the electrical conductivity (o),
the Seebeck coefficient (S), the electrical resistivity (p), the
electronic thermal conductivity «¢, and the Peltier coefficient
(IT) within the IBTE formalism.

IV. RESULTS AND DISCUSSIONS

A. Numerical parameters for EPC

In order to calculate the transport coefficients, one needs
the EPC matrix elements g,,,,(K, q) on a fine grid of wave-
vectors, both in k- and q-space. To do so, we use the
interpolation method for the first-order change of the KS
potential, as described in [9,21,27] that allows us to reach
g-meshes that are much denser than those used in the initial
DFPT calculation. For the description of the electronic states,
we explicitly compute the KS wavefunctions within an energy
window around the Fermi level, as these are the states that
contribute to the transport coefficients. The procedure is de-
scribed in [21,22], and is briefly summarized in what follows.

In the first step, we employ the star-function interpolation
method by Shankland-Koelling-Wood [28-31]. This method
takes as input a set of eigenvalues from the irreducible wedge
of the BZ and a single parameter defining the basis set, al-
lowing us to predict whether wavevectors of a much denser
k-mesh fall within the energy window without having to
solve the KS eigenvalue problem exactly. Next, we compute
the KS wavefunctions non-self-consistently for the relevant

k-points. These wavefunctions are finally used to compute the
EPC matrix elements and transport properties. Specifically,
we consider an energy window of 0.25 eV around the Fermi
level, an interpolated fine grid of 64 x 64 x 64 g-points for
the scattering potentials and the same (filtered) k-point grid
for the wavefunctions. A tutorial for the Abinit software de-
tails the practical calculation workflow with restricted energy
ranges. The electron phonon integrals over the Brillouin zone
are performed using the tetrahedron method [32], and the
self-energies are calculated using normal Bose-Einstein and
Fermi-Dirac distribution functions. The Fermi surface filter-
ing retains only 3178 k-points and four bands in our case. The
conductivity values at room temperature differ by 5% along
the x direction and 20% along the z axis, for two successive
fine grids (56 x 56 x 56 and 64 x 64 x 64).

B. Electrical conductivity

The electrical conductivity quantifies a material’s ability to
conduct electrical current. In the absence of a temperature gra-
dient, considering Ohm’s law j° = o E microscopically and
replacing Eq. (26) in Eq. (22), one is able to express the
electrical conductivity tensor as

o=Li=—2o > v ®F, (30)
and by definition, the resistivity tensor is simply p = ¢~.

The calculated electrical conductivities for TaAs along the
x and z directions are shown in Fig. 3. We present conduc-
tivity values calculated following the three methods described
above (SERTA, MRTA, and IBTE), and find that, for TaAs,
the different formalisms are quite close in both the x and z
directions. This holds true for the other transport coefficients
as well.

We compare to available experimental values reported by
Xiang et al. [3] and Huang et al. [1]. Our results are in
good agreement with both sets of experimental data for the
conductivities along the x direction. Those along the z direc-
tion are larger than the experimental values, especially at low
temperature. The explanation given in [3] for their measured
anisotropy in o is linked to the difference in effective mass
and Fermi velocity between the x and z directions at the W2
point. These are automatically included in our calculations,
but are not sufficient to produce such a strong anisotropy.

The Hall coefficient measurements of Ref. [3] also find a
strongly anisotropic picture, with a low-T Hall coefficient of
1.5 cm?/C for current along the z axis and —0.25 cm?/C for
the x axis. At room temperature, the z value converges to 0.15
and the x Hall coefficient to 0.03 cm?/C. We note that the
equivalence of Ry in Ohm to a doping carrier concentration
presumes the parabolic band approximation, which is particu-
larly inappropriate in WSM.

To test this effect, we perform Hall coefficient calculations
using the BoltzTrap2 code [31], and compare our results with
Ref. [3]. BoltzTrap2 includes the effects of electron band dis-
persion, but employs the cRTA approximation with no lifetime
variation between electron states.

For current along the x axis, we find Ry values of
0.01 cm?/C at 300 K, similar to the experiment. However, for
current along the z axis, we obtain 0.02 cm? /C, similar to x,
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FIG. 3. Temperature dependence of the xx and zz components of

the electrical conductivity, calculated using RTA and IBTE methods.
Experimental data come from [1] and [3].

but an order of magnitude smaller than Xiang et al. [3]. In our
calculations, TaAs is quite isotropic both in o and Ry. The
difference with the experiment may result from the type and
extent of the natural doping, or the details of the band structure
within GGA DFT. We discuss the consequences of doping
within the rigid band approximation in the next subsection and
in Appendix B.

C. Seebeck coefficient

The Seebeck coefficient relates a temperature difference
to the resulting thermoelectric voltage, or, equivalently, the
temperature gradient VT to the electric field E, measured in
open circuit conditions (j¢ = 0), through S=E ® %. From
Eq. (22),

e vT
J =L11'E—L12'T=0, 3D
which yields the Seebeck coefficient following its definition:
S=EQ® ! —l(L )y 'L (32)
= vy ~ 7 12

80
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FIG. 4. Temperature dependence of the xx and zz components of

the Seebeck coefficient, calculated using RTA and IBTE methods.
Experimental data come from [3].

! ( ye
= — Zvnk ® FZ;k ) (33)
r QNk nk

where we made use of Eqs. (30) and (27). The results for the
Seebeck calculations are reported in Fig. 4, again, along x and
z directions. Our values are of the same order of magnitude as
the experimental ones coming from [3], but the agreement is
less quantitative than for o, in particular for the x direction:
our Seebeck coefficient becomes negative for temperatures
below ~200K. To test the relation between S and carrier
concentration, we performed calculations considering p-type
doping (see Appendix B) and find that the value of Sy, be-
comes positive at low temperature, suggesting a strong effect
of the natural doping. As shown in [7], S is indeed strongly
dependent on the chemical potential value and is positive for

p-type doping.

D. Electronic thermal conductivity

The thermal conductivity of a material is a measure of
its ability to conduct heat through the transport of carriers
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(Wm~1K-1)
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FIG. 5. Temperature dependence of the xx and zz components of
the electronic thermal conductivities, calculated using RTA and IBTE
methods. Experimental data come from [3].

or through phonons. By considering Eq. (23), imposing j* =
0, isolating E in Eq. (22) and replacing it in the definition
of k°, one obtains the carrier contribution to the thermal
conductivity,

vT vT

el —1
—k* VT =L, (L Lpo— —Lyp—, 34
K 21(L11)" 'Ly T 2 (34)
L 1
el 22 -1
= — — —Ly (L L 35
K T T 21(L11)” L2 (35)
Ly
= — —Ly -S. 36
T 21 (36)

Finally, by replacing L;; and L;, by their expressions
[Egs. (28) and (29)], the electronic thermal conductivity
within the IBTE formalism is expressed as

1 Y
el T
= <_Q_Nk Enk (Enk — UIVik ® F,,k>

- <QLM( Z(Snk - M)Vnk ® ka> -S. (37)

nk

301 —— MRTA

—e— SERTA
—e— |IBTE
IBTEMN =TS

100 150 200 250 300 350 400 450
Temperature (K)

7.5 —— MRTA

—— SERTA
—— |IBTE
IBTEM =TS

100 150 200 250 300 350 400 450
Temperature (K)
FIG. 6. Temperature dependence of the xx and zz components of
the Peltier coefficient, calculated using RTA and IBTE methods. We

compare also the results obtained using Eq. (38) or using [T = 7'S in
IBTE.

The results are shown in Fig. 5. Our x values are within
30% of the experimental results of Xiang er al. [3], which
is significant compared to the agreement in o. The com-
parison with experimental results, however, should be taken
with a grain of salt because Ref. [3] estimates k! using the
Wiedemann-Franz relation, based on the measured values of
Pxx- We verify this explicitly in the following by comparing
Lorenz numbers. The differences between the experimental
and theoretical Seebeck coefficients, especially along z, will
also carryover since S appears explicitly in the expression for
k! [Eq. (37)].

E. Peltier coefficient

The Peltier coefficient characterizes the amount of heat
current transferred when an electric current is applied (as
distinct from Joule heating). We derive its expression in the
IBTE framework, imposing VT = 0,

H:EZLZ"E_LZZ'V Ly

T
7 _ L
i Lyu-E-Lp-Y Ly

(38)
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TABLE I. Relative Lorenz number for x direction, within RTA and IBTE methods, compared to experiment [3].

Li/Lo 100 K 150 K 200 K 250 K 300K 350K 400 K 450 K
SERTA 1.178 1.575 1.697 1.603 1.440 1.288 1.166 1.063
MRTA 1.174 1.571 1.689 1.595 1.284 1.276 1.153 1.055
IBTE 1.174 1.600 1.718 1.620 1.448 1.288 1.157 1.0593

Note that, in most of the thermoelectric literature, one imposes
N=7TS(= IL‘—:?). This expression is valid only if time-reversal
symmetry is present (i.e., if there is no applied magnetic field
and if the material is nonmagnetic). If Eq. (9) is verified (as
it is the case in the RTA formalism), then the equivalence is
imposed.

In Fig. 6, we report the calculated Peltier coefficient, and
compare the IBTE values obtained either using the full for-
mula [Eq. (38)] or using IT = T'S. In our case, I, respects
Onsager reciprocity quite well, but I, shows finite deviation
from 7'S,,. The differences must originate in a slight algorith-
mic asymmetry when calculating L, and L;; explicitly. We
note that the difference between the RTA and IBTE methods
is also larger, showing S and IT transport coefficients have a
stronger sensitivity to the numerical scheme.

F. Lorenz number

As anticipated above, we calculate the Lorenz number L
(not to be confused with the Onsager coefficients), which is
the proportionality constant coming from the Wiedemann-
Franz (WF) relation. L reflects the ratio of the electronic
thermal conductivity ¢ to the electrical conductivity o. In
a simple metal, L is just proportional to the temperature T,
with

K

L= . 39

T (39)

The reference Sommerfeld value is Ly=2.445 x

1078 VZK=2, In Tables I and II, we show the relative
Lorenz number along both directions, and compare the
different BTE results. As one can see, our results for L,
are quite far (up to 70%) from the reference Sommerfeld
value Ly, especially between 150 and 350 K, whereas the
L., results are closer to Ly, but lower by up to 15%. In a
topological Weyl semimetal, such as TaAs, the WF “law” can
be broken given the nonparabolic and topological electronic
structure. We recall that Ref. [3] presumes the validity of the
WEF relation approximating L/Ly = 1. Part of the anisotropy
they observe corresponds to the opposite trends in L for the x
and z directions.

V. CONCLUSIONS

We present a full first-principles study of the Weyl
semimetal TaAs. Establishing its electronic structure and
phonon dynamics, we evaluate the EPC and characterize the
thermoelectric transport in this material by calculating the
transport coefficients using two approaches for solving the
BTE: the RTA and the IBTE method. We present some details
of the theoretical development, emphasizing the derivation
of a double IBTE technique in electrical and thermal gradi-
ents, respectively. We show that our conductivity calculations
are close to the experimental values, whereas the results for
the Seebeck coefficients are of the same order of magni-
tude. We estimate the effect of doping within the rigid band
approximation, to compare with the natural doping of ex-
perimental samples. In addition, we present our calculated
electronic thermal conductivities. We discuss the reciprocity
of the off-diagonal Onsager coefficient in the IBTE by com-
paring results for the Seebeck and Peltier coefficients. In our
double BTE formalism, L, and L, are calculated separately,
enabling us to treat systems without time-reversal symmetry.
Comparing I1,, and T'S,,, we find a small breaking of On-
sager reciprocity for a time-symmetric system, suggesting a
limitation of the standard IBTE formulations, which will be
addressed in future work. Finally, we calculate the Lorenz
number and show that the Wiedemann-Franz relation is not
verified for Weyl semimetals such as TaAs.

Note added in proof. Recently, we became aware of a
related work by Liu and coworkers, which also examines the
conductivity of TaAs, but using a different software stack. The
work is published concurrently in this issue [33].
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APPENDIX A: SCATTERING OPERATOR

The scattering integral Z[f] includes all possible mi-
croscopic scattering events due to electron-phonon and
electron-electron interaction, scattering with ionized impu-
rities, defects, etc. The most commonly used form for the
(one-particle) scattering integral is

=Y [ 2

- fnk (1 - fmk/) Wnk,mk’a

where W,k i 1s the probability per unit time for a transition
between the initial state |nk) and the final state |mk’), and the
occupation factors f account for the exclusion principle. By
definition, the Fermi-Dirac equilibrium distribution

1
1+ exp (S2£)
is a solution of the BTE in the absence of external fields, we
thus have

(1 - fnk) ka’,nk

(AD)

Oe) = (A2)

Zxlf°1=0.

In our case, we restrict the discussion to the EPC interaction.
This inelastic term gives the most important contribution at
room temperature, and introduces a significant temperature
dependence in the transport properties due to the Bose-
Einstein phonon population. The Hamiltonian

(A3)

A

D ek, Q) C(aqy +a ) (Ad)

1

He»ph =

VNp o

mny

describes the coupling to first order in the atomic displace-
ments, with N, the number of unit cells in the Born-von
Kérmép superc.ell. 6::]( and 6”k. (&flv and agq,) are fermionic
(bosonic) creation and destruction operators, and g, (K, q)
the e-ph coupling matrix elements [20]. The transition proba-
bility is obtained from the previous Hamiltonian using Fermi’s
golden rule. The final result reads

kph[f] Z | gmmv (K, Q)| [6(enk — Emk+q — qu)P7

q mqv

+ 5(8nk — Emk+q + Wqy )P+]’ (AS)

where the absorption and emission factors P depend on f and
the phonon occupation ng, according to

= _fnk(l - fmk+q)nqv + (1 - fnk)f;nkJrq(nqv + 1)
(A6)
and
Pm=—fux(1— fmk+q)(”qv +D+ - ﬁlk)fmk+qnqu~

(A7)
The full BTE for the steady state is a nonlinear integrodif-
ferential equation. In practice, one is usually interested in the
linear response of the system, so it is customary to replace the
scattering integral with its linearized version, considering and
using Eq. (A3). It is easy to show that the first order variation
of the P factors is given by

SPT = 8fmk+q(1 + Ngy — fnk) 5fnk(fmk+q + ”qv) (A8)

P = 3fmk+q(f:?k + "qV) - Sf”k(l +ngy — fr2k+q)' (A9)

The linearized e-ph scattering integral thus reads

o,
Sk meWn

nk q mqv
x [(14 ngy — fi3)8"
+ (nqv + f)8 18 futcrq

TPf0, 8f1 =

8 n e-
= 2y e o) (A10)
Tnk
where r,?k is given by
1
F=—ZMMWW
nk q mqv
x [(nqv + f,2k+q)5+ + (1 +ngy — fﬁmq)‘s_]
=2Im =5 (0 = &) (A11)

and is related to the imaginary part of the e-ph self-
energy [20]. T represents the lifetime of a charged excitation
due to e-ph scattering, and is not necessarily equal to the
transport lifetime. Note that we have introduced the following
shorthand notations:

87 = 8(emk — Enkq + Ogv); (A12)

87 = 8(euk — Emkiq — Oav). (A13)

The derivation is quite lengthy and is not reported here, but
more details can be found in [23]. There are, however, some
points that are worth mentioning. First of all, the scattering is
inelastic since we are dealing with a time-dependent pertur-
bation. The factors ng, (absorption) and 1 + ng, (spontaneous
plus stimulated emission) are typical of interaction terms as
in Eq. (A4) since the Hamiltonian can only connect two
states in which the number of phonons differs by one. Finally,
we should note that ng, is, in principle, the out of equilib-
rium phonon distribution obtained by solving an analogous
Boltzmann equation for phonons in the presence of phonon-
phonon scattering (anharmonic terms) and e-ph interaction.
This means that f and n are the solution of two coupled
Boltzmann equations [26]. In many applications, however,
we can, to good approximation, assume that phonons are in
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thermodynamic equilibrium and ng, is replaced by the Bose-
Einstein distribution,
0 1
n(w)=—/——. (Al14)
exp (%) — 1

APPENDIX B: EVALUATION OF THE CONDUCTIVITY
AND SEEBECK COEFFICIENT WITH
SIMULATED DOPING

In this Appendix, we present the results gathered for
the electrical conductivity and the Seebeck coefficient under

- —e— MRTA
—e— SERTA
—e— |BTE

61 —s— Xiang et al.

Huang et al.

100 150 200 250 300 350 400 450
Temperature (K)

—e— MRTA
—e— SERTA
IBTE

—s— Xiang et al.

u O N ©

0, (x10° Q"1 m~1)
N

100 150 200 250 300 350 400 450
Temperature (K)

FIG. 7. Temperature dependence of the xx and zz components of
the electrical conductivity, calculated using RTA and IBTE methods,
considering a simulated doping within the rigid band approximation
of +1 x 10" electronic charges per cm® (p-type doping). Experi-
mental data come from [1] and [3].

80 1
60 -
. 404
¥
S~
2 201
& o
MRTA
20 —e— SERTA
—— IBTE
_401 —=— Xiang et al.

100 150 200 250 300 350 400 450
Temperature (K)
FIG. 8. Temperature dependence of the x component of the See-
beck coefficient, using RTA and IBTE and considering a rigid band

doping of +1 x 10" carriers per cm® (p-type). Experimental data
from [3].

simulated doping within the rigid band approximation, which
consists in raising or lowering the chemical potential without
modifying the previously established band structure.

As can be seen in Fig. 7, under p-type doping of 41 x
10" carriers per cm?®, the electrical conductivity becomes
anisotropic, but in the opposite direction to Ref. [3].

We also calculate the Seebeck coefficient under p-type
doping. At 4+10' carriers per cm?, S, is still negative (Fig. 8),

80
¥ 60
>
2
x
&4
" 401 —— MRTA
—— SERTA
20+ —— IBTE
—=— Xiang et al.

100 150 200 250 300 350 400 450
Temperature (K)

FIG. 9. Temperature dependence of the x component of the See-

beck coefficient, using RTA and IBTE and considering a rigid band

doping of +5 x 10" carriers per cm® (p-type). Experimental data
from [3].
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but less so. While, at +5 x 10! carriers per cm?® (Fig. 9), the
Seebeck coefficient along the xx direction is totally positive,
as also found in Ref. [7] within the cRTA.

Rigid band doping is not sufficient to explain simultane-
ously the temperature variations of both S and o, suggesting
there may be n and p codoping.
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