Eprint already available on another site (E-prints, working papers and research blog)
Malliavin smoothness of the Rosenblatt process
Loosveldt, Laurent; Nachit, Yassine; Nourdin, Ivan et al.
2025
 

Files


Full Text
smoothness-rosenblatt.pdf
Author preprint (331.92 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Rosenblatt process; Malliavin calculus; nondegeneracy; Bouleau– Hirsch criterion; density of finite-dimensional distributions
Abstract :
[en] We investigate the smoothness of the densities of the finite-dimensional distributions of the Rosenblatt process. Within the Malliavin calculus framework, we prove that Rosenblatt random vectors are nondegenerate in the Malliavin sense. As a consequence, their densities belong to the Schwartz space of rapidly decreasing smooth functions. The proof relies on establishing the existence of all negative moments of the determinant of the Malliavin matrix, exploiting the specific structure of random variables in the second Wiener chaos. In addition, we derive exponential-type upper bounds for the partial derivatives of the densities of the finite-dimensional distributions of the Rosenblatt process.
Disciplines :
Mathematics
Author, co-author :
Loosveldt, Laurent  ;  Université de Liège - ULiège > Département de mathématique > Probabilités - Analyse stochastique
Nachit, Yassine
Nourdin, Ivan
Tudor, Ciprian
Language :
English
Title :
Malliavin smoothness of the Rosenblatt process
Publication date :
November 2025
Available on ORBi :
since 14 November 2025

Statistics


Number of views
23 (1 by ULiège)
Number of downloads
39 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi