Yu, Miao ; Theoretical Materials Physics, Université de Liège, Sart-Tilman, Belgium ; Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, China
Gomez Ortiz, Fernando ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Bastogne, Louis ; Université de Liège - ULiège > Quantum Materials (Q-MAT)
Zhao, Jinzhu ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, China ; Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, China
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Language :
English
Title :
Role of long-range dipolar interactions in the simulation of the properties of polar crystals using effective atomic potentials
[1] J. E. Jones and S. Chapman, On the determination of molecular fields. —II. From the equation of state of a gas, Proc. R. Soc. Lond. A 106, 463 (1924).
[2] F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31, 5262 (1985).
[3] J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37, 6991 (1988).
[4] A. Pedone, G. Malavasi, M. C. Menziani, A. N. Cormack, and U. Segre, A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses, J. Phys. Chem. B 110, 11780 (2006).
[5] T. Liang, Y. K. Shin, Y.-T. Cheng, D. E. Yilmaz, K. G. Vishnu, O. Verners, C. Zou, S. R. Phillpot, S. B. Sinnott, and A. C. van Duin, Reactive potentials for advanced atomistic simulations, Annu. Rev. Mater. Res. 43, 109 (2013).
[6] J. A. Harrison, J. D. Schall, S. Maskey, P. T. Mikulski, M. T. Knippenberg, and B. H. Morrow, Review of force fields and intermolecular potentials used in atomistic computational materials research, Appl. Phys. Rev. 5, 031104 (2018).
[7] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
[8] P. Hohenberg andW. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964).
[9] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
[10] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64, 1045 (1992).
[11] P. Ghosez and J. Junquera, Modeling of ferroelectric oxide perovskites: From first to second principles, Annu. Rev. Condens. Matter Phys. 13, 325 (2022).
[12] J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98, 146401 (2007).
[13] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R. Müller, Machine learning of accurate energyconserving molecular force fields, Sci. Adv. 3, e1603015 (2017).
[14] R. Jinnouchi, J. Lahnsteiner, F. Karsai, G. Kresse, and M. Bokdam, Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference, Phys. Rev. Lett. 122, 225701 (2019).
[15] S. Gorsse, W.-C. Lin, H. Murakami, G.-M. Rignanese, and A.-C. Yeh, Advancing refractory high entropy alloy development with AI-predictive models for high temperature oxidation resistance, Scr. Mater. 255, 116394 (2025).
[16] W. Zhong, D. Vanderbilt, and K. M. Rabe, Phase transitions in BaTiO3 from first principles, Phys. Rev. Lett. 73, 1861 (1994).
[17] K. M. Rabe and U. V. Waghmare, Localized basis for effective lattice Hamiltonians: Lattice Wannier functions, Phys. Rev. B 52, 13236 (1995).
[18] J. C. Wojdeł, P. Hermet, M. P. Ljungberg, P. Ghosez, and J. Íñiguez, First-principles model potentials for lattice-dynamical studies: General methodology and example of application to ferroic perovskite oxides, J. Phys.: Condens. Matter 25, 305401 (2013).
[19] C. Escorihuela-Sayalero, J. C. Wojdeł, and J. Íñiguez, Efficient systematic scheme to construct second-principles lattice dynamical models, Phys. Rev. B 95, 094115 (2017).
[20] P. García-Fernández, J. C. Wojdeł, J. Íñiguez, and J. Junquera, Second-principles method for materials simulations including electron and lattice degrees of freedom, Phys. Rev. B 93, 195137 (2016).
[21] X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-M. Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet et al., The ABINIT project: Impact, environment and recent developments, Comput. Phys. Commun. 248, 107042 (2020).
[23] M. Sepliarsky, S. R. Phillpot, D. Wolf, M. G. Stachiotti, and R. L. Migoni, Atomic-level simulation of ferroelectricity in perovskite solid solutions, Appl. Phys. Lett. 76, 3986 (2000).
[24] Y.-H. Shin, V. R. Cooper, I. Grinberg, and A. M. Rappe, Development of a bond-valence molecular-dynamics model for complex oxides, Phys. Rev. B 71, 054104 (2005).
[25] A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A 105, 9396 (2001).
[26] D. Akbarian, D. E. Yilmaz, Y. Cao, P. Ganesh, I. Dabo, J. Munro, R. Van Ginhoven, and A. C. T. van Duin, Understanding the influence of defects and surface chemistry on ferroelectric switching: A Reaxff investigation of BaTiO3, Phys. Chem. Chem. Phys. 21, 18240 (2019).
[27] K. P. Kelley, A. N.Morozovska, E. A. Eliseev, V. Sharma, D. E. Yilmaz, A. C. T. van Duin, P. Ganesh, A. Borisevich, S. Jesse, P. Maksymovych, N. Balke, S. V. Kalinin, and R. K. Vasudevan, Oxygen vacancy injection as a pathway to enhancing electromechanical response in ferroelectrics, Adv. Mater. 34, 2106426 (2022).
[28] A. Dhakane, T. Xie, D. E. Yilmaz, A. C. van Duin, B. G. Sumpter, and P. Ganesh, A graph dynamical neural network approach for decoding dynamical states in ferroelectrics, Carbon Trends 11, 100264 (2023).
[29] J. Wu, J. Yang, Y.-J. Liu, D. Zhang, Y. Yang, Y. Zhang, L. Zhang, and S. Liu, Universal interatomic potential for perovskite oxides, Phys. Rev. B 108, L180104 (2023).
[30] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics, Phys. Rev. Lett. 120, 143001 (2018).
[31] V. Botu and R. Ramprasad, Learning scheme to predict atomic forces and accelerate materials simulations, Phys. Rev. B 92, 094306 (2015).
[32] S. Klawohn, J. P. Darby, J. R. Kermode, G. Csányi, M. A. Caro, and A. P. Bartók, Gaussian approximation potentials: Theory, software implementation and application examples, J. Chem. Phys. 159, 174108 (2023).
[33] A. Singraber, J. Behler, and C. Dellago, Library-based LAMMPS implementation of high-dimensional neural network potentials, J. Chem. Theory Comput. 15, 1827 (2019).
[34] Y. Shaidu, F. Pellegrini, E. Küçükbenli, R. Lot, and S. de Gironcoli, Incorporating long-range electrostatics in neural network potentials via variational charge equilibration from shortsighted ingredients, npj Comput. Mater. 10, 47 (2024).
[35] L. Zhang, H. Wang, M. C. Muniz, A. Z. Panagiotopoulos, R. Car, and W. E, A deep potential model with long-range electrostatic interactions, J. Chem. Phys. 156, 124107 (2022).
[36] A. Gao and R. C. Remsing, Self-consistent determination of long-range electrostatics in neural network potentials, Nat. Commun. 13, 1572 (2022).
[37] L. Monacelli and N. Marzari, Electrostatic interactions in atomistic and machine-learned potentials for polar materials, arXiv:2412.01642.
[38] W. Cochran, Crystal stability and the theory of ferroelectricity, Adv. Phys. 9, 387 (1960).
[39] P. Ghosez, X. Gonze, and J.-P. Michenaud, Coulomb interaction and ferroelectric instability of BaTiO3, Europhys. Lett. 33, 713 (1996).
[40] L. Gigli, M. Veit, M. Kotiuga, G. Pizzi, N. Marzari, and M. Ceriotti, Thermodynamics and dielectric response of BaTiO3 by data-driven modeling, npj Comput. Mater. 8, 209 (2022).
[41] F. Gómez-Ortiz, L. Bastogne, S. Anand, M. Yu, X. He, and P. Ghosez, Switchable Skyrmion–Antiskyrmion tubes in rhombohedral BaTiO3 and related materials, Phys. Rev. B 111, L180104 (2025).
[42] M. Yu, S. Anand, J. Zhang, A. Sasani, L. Bastogne, F. Gómez-Ortiz, H. Xu, and G. Philippe, Second-Principles Model of BaTiO3 used on Role of long-range dipolar interactions in the simulation of the properties of polar crystals using effective atomic potentials (2025), doi: 10.58119/ULG/KD4XC6.
[43] X. Gonze and C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55, 10355 (1997).
[44] R. Fletcher, Practical Methods of Optimization (John Wiley & Sons, New York, 2000).
[45] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195, 216 (1987).
[46] M. Betancourt, A conceptual introduction to Hamiltonian Monte Carlo, arXiv:1701.02434.
[47] X. G. Ph. Ghosez and J. P. Michenaud, Ab initio phonon dispersion curves and interatomic force constants of barium titanate, Ferroelectrics 206, 205 (1998).
[48] X.-L. Chen, J.-Z. Zhao, and P. Ghosez, Lattice dynamical properties and interatomic force constants of transition metal oxide perovskite superlattices, Phys. Rev. B 110, 245302 (2024).
[49] W. Zhong, R. D. King-Smith, and D. Vanderbilt, Giant LO-TO splittings in perovskite ferroelectrics, Phys. Rev. Lett. 72, 3618 (1994).
[50] X. G. Ph. Ghosez and J.-P. Michenaud, Lattice dynamics and ferroelectric instability of barium titanate, Ferroelectrics 194, 39 (1997).
[51] P. Ghosez, E. Cockayne, U. V. Waghmare, and K. M. Rabe, Lattice dynamics of BaTiO3, PbTiO3, and PbZrO3: A comparative first-principles study, Phys. Rev. B 60, 836 (1999).
[52] L. Gigli, A. Goscinski, M. Ceriotti, and G. A. Tribello, Modeling the ferroelectric phase transition in barium titanate with DFT accuracy and converged sampling, Phys. Rev. B 110, 024101 (2024).
[53] C. Zhang and X. Chen, FerroAI: A deep learning model for predicting phase diagrams of ferroelectric materials, npj Comput. Mater. 11, 282 (2025).
[54] H.-C. Thong, X. Y.Wang, J. Han, L. Zhang, B. Li, K.Wang, and B. Xu, Machine learning interatomic potential for molecular dynamics simulation of the ferroelectric KNbO3 perovskite, Phys. Rev. B 107, 014101 (2023).
[55] N. Feng, H.-C. Thong, K.Wang, K. Bi, and B. Xu, Atomic-scale polarization switching driven by terahertz light in ferroelectric KNbO3, Phys. Rev. B 111, 024305 (2025).
[56] A. Togo, L. Chaput, T. Tadano, and I. Tanaka, Implementation strategies in phonopy and phono3py, J. Phys.: Condens. Matter 35, 353001 (2023).
[57] H. Zhang, H.-C. Thong, L. Bastogne, C. Gui, X. He, and P. Ghosez, Finite-temperature properties of the antiferroelectric perovskite PbZrO3 from a deep-learning interatomic potential, Phys. Rev. B 110, 054109 (2024).