Nostoc; ANI; Peltigerales; anomaly zone; average nucleotide identity; bacterial species; cyanobacterium; lichens; species delimitation; symbiosis
Abstract :
[en] Species are a fundamental unit of biodiversity. Yet, the existence of clear species boundaries among bacteria has long been a subject of debate. Here, we studied species boundaries in the context of the phylogenetic history of Nostoc, a widespread genus of photoautotrophic and nitrogen-fixing cyanobacteria that includes many lineages that form symbiotic associations with plants (e.g., cycads and bryophytes) and fungi (e.g., cyanolichens). We found that the evolution of Nostoc was characterized by eight rapid radiations, many of which were associated with major events in the evolution of plants. In addition, incomplete lineage sorting associated with these rapid radiations outweighed reticulations during Nostoc evolution. We then show that the pattern of diversification of Nostoc shapes the distribution of average nucleotide identities (ANIs) into a complex mosaic, wherein some closely related clades are clearly isolated from each other by gaps in genomic similarity, while others form a continuum where genomic species boundaries are expected. Nevertheless, recently diverged Nostoc lineages often form cohesive clades that are maintained by within-clade gene flow. Boundaries to homologous recombination between these cohesive clades persist even when the potential for gene flow is high, i.e., when closely related clades of Nostoc cooccur or are locally found in symbiotic associations with the same lichen-forming fungal species. Our results demonstrate that rapid radiations are major contributors to the complex speciation history of Nostoc. This underscores the need to consider evolutionary information beyond thresholds of genomic similarity to delimit biologically meaningful units of biodiversity for bacteria.
Disciplines :
Microbiology
Author, co-author :
Pardo-De la Hoz, Carlos J ; Department of Biology, Duke University, Durham, NC 27708, USA
Haughland, Diane L; Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, AB T6G 2E9, Canada ; Department of Renewable Resources, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
Thauvette, Darcie; Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, AB T6G 2E9, Canada
Toni, Sydney; Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, AB T6G 2E9, Canada
Goyette, Spencer; Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
White, William; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
Medeiros, Ian D; Department of Biology, Duke University, Durham, NC 27708, USA ; Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
Allman ES, Baños H, Rhodes JA. NANUQ: a method for inferring species networks from gene trees under the coalescent model. Algorithms Mol Biol. 2019: 14: 1-25. 10.1186/s13015-019-0159-2.
Andreopoulos WB et al. Deeplasmid: deep learning accurately separates plasmids from bacterial chromosomes. Nucleic Acids Res. 2022: 50: E17. 10.1093/nar/gkab1115.
Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. A reverse ecology approach based on a biological definition of microbial populations. Cell. 2019: 178: 820-834.e14. 10.1016/j.cell.2019.06.033.
Armanhi JSL et al. Multiplex amplicon sequencing for microbe identification in community-based culture collections. Sci Rep. 2016: 6: 1-9. 10.1038/srep29543.
Bankevich A et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012: 19: 455-477. 10.1089/cmb.2012.0021.
Bekker A et al. Dating the rise of atmospheric oxygen. Nature. 2004: 427: 117-120. 10.1038/nature02260.
Belinchón R, Yahr R, Ellis CJ. Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography. 2015: 38: 762-768. 10.1111/ecog.01258.
Bell-Doyon P, Laroche J, Saltonstall K, Villarreal Aguilar JC. Specialized bacteriome uncovered in the coralloid roots of the epiphytic gymnosperm, Zamia pseudoparasitica. Environ DNA. 2020: 2: 418-428. 10.1002/edn3.66.
Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol. 2011: 60: 291-302. 10.1093/sysbio/syr010.
Bjorner M, Molloy EK, Dewey CN, Solís-Lemus C. Detectability of varied hybridization scenarios using genome-scale hybrid detection methods. 2023. Available from: http://arxiv.org/abs/2211.00712. Accessed 2024 Dec 4.
Bobay L-M, Ochman H. Biological species are universal across life's domains. Genome Biol Evol. 2017: 9: 491-501. 10.1093/gbe/evx026.
Cadillo-Quiroz H et al. Patterns of gene flow define species of thermophilic Archaea. PLoS Biol. 2012: 10: e1001265. 10.1371/journal.pbio.1001265.
Cao H, Shimura Y, Masanobu K, Yin Y. Draft genome sequence of the toxic bloom-forming cyanobacterium Aphanizomenon flos-aquae NIES-81. Genome Announc. 2014: 2: e00044-14. 10.1128/genomeA.00044-14.
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. Trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009: 25: 1972-1973. 10.1093/bioinformatics/btp348.
Carbone I et al. T-BAS: tree-based alignment selector toolkit for phylogenetic-based placement, alignment downloads and metadata visualization: an example with the pezizomycotina tree of life. Bioinformatics. 2017: 33: 1160-1168. 10.1093/bioinformatics/btw808.
Carbone I et al. T-BAS Version 2.1: tree-based alignment selector toolkit for evolutionary placement of DNA sequences and viewing alignments and specimen metadata on curated and custom trees. Microbiol Resour Announc. 2019: 8: 1-5. 10.1128/MRA.00328-19.
Carrell AA et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. ISME J. 2022: 16: 1074-1085. 10.1038/s41396-021-01136-0.
Chafin TK et al. Taxonomic uncertainty and the anomaly zone: phylogenomics disentangle a rapid radiation to resolve contentious species (Gila robusta complex) in the Colorado river. Genome Biol Evol. 2021: 13: 1-19. 10.1093/gbe/evab200.
Chagnon P, Magain N, Miadlikowska J, Lutzoni F. Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus Peltigera. Oecologia. 2018: 187: 767-782. 10.1007/s00442-018-4159-6.
Chagnon P, Magain N, Miadlikowska J, Lutzoni F. Species diversification and phylogenetically constrained symbiont switching generated high modularity in the lichen genus Peltigera. J Ecol. 2019: 107: 1645-1661. 10.1111/1365-2745.13207.
Chambers EA, Hillis DM. The multispecies coalescent over-splits species in the case of geographically widespread taxa. Syst Biol. 2020: 69: 184-193. 10.1093/sysbio/syz042.
Chambers EA, Marshall TL, Hillis DM. The importance of contact zones for distinguishing interspecific from intraspecific geographic variation. Syst Biol. 2023: 72: 357-371. 10.1093/sysbio/syac056.
Chase AB et al. Maintenance of sympatric and allopatric populations in free-living terrestrial Bacteria. mBio. 2019: 10: 1-11. 10.1128/mBio.02361-19.
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2020: 36: 1925-1927. 10.1093/bioinformatics/btz848.
Chen Z et al. Genomic and transcriptomic insights into the habitat adaptation of the diazotrophic paddy-field cyanobacterium Nostoc sphaeroides. Environ Microbiol. 2021: 23: 5802-5822. 10.1111/1462-2920.15521.
Cloutier A et al. Whole-genome analyses resolve the phylogeny of flightless birds (palaeognathae) in the presence of an empirical anomaly zone. Syst Biol. 2019: 68: 937-955. 10.1093/sysbio/syz019.
Cobo-Simón M, Hart R, Ochman H. Escherichia Coli: what is and which are? Mol Biol Evol. 2023: 40: msac273. 10.1093/molbev/msac273.
Cohan FM. What are bacterial species? Annu Rev Microbiol. 2002: 56: 457-487. 10.1146/annurev.micro.56.012302.160634.
Cohan FM. Systematics: the cohesive nature of bacterial species taxa. Curr Biol. 2019: 29: R169-R172. 10.1016/j.cub.2019.01.033.
Coleman GA et al. A rooted phylogeny resolves early bacterial evolution. Science. 2021: 372: eabe0511. 10.1126/science.abe0511.
Cornet L, Magain N, Baurain D, Lutzoni F. Exploring syntenic conservation across genomes for phylogenetic studies of organisms subjected to horizontal gene transfers: a case study with Cyanobacteria and cyanolichens. Mol Phylogenet Evol. 2021: 162: 107100. 10.1016/j.ympev.2021.107100.
Dahl TW, Arens SKM. The impacts of land plant evolution on Earth's climate and oxygenation state - an interdisciplinary review. Chem Geol. 2020: 547: 119665. 10.1016/j.chemgeo.2020.119665.
Dal Grande F et al. Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol. 2014: 202: 455-470. 10.1111/nph.12678.
Danecek P et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021: 10: giab008. 10.1093/gigascience/giab008.
Darnajoux R et al. Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests. Proc Natl Acad Sci. 2019: 116: 24682-24688. 10.1073/pnas.1913314116.
Daubin V. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res. 2002: 12: 1080-1090. 10.1101/gr.187002.
Degnan JH, Rosenberg NA. Discordance of species trees with their most likely gene trees. PLoS Genet. 2006: 2: e68. 10.1371/journal.pgen.0020068.
Degnan JH, Rosenberg NA. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol. 2009: 24: 332-340. 10.1016/j.tree.2009.01.009.
Díaz-Escandón D et al. Genome-level analyses resolve an ancient lineage of symbiotic ascomycetes. Curr Biol. 2022: 32: 5209-5218.e5. 10.1016/j.cub.2022.11.014.
Diop A, Torrance EL, Stott CM, Bobay L-M. Gene flow and introgression are pervasive forces shaping the evolution of bacterial species. Genome Biol. 2022: 23: 1-19. 10.1186/s13059-022-02809-5.
Doolittle WF. Population genomics: how bacterial species form and why they don't exist. Curr Biol. 2012: 22: R451-R453. 10.1016/j.cub.2012.04.034.
dos Reis M, Yang Z. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol Biol Evol. 2011: 28: 2161-2172. 10.1093/molbev/msr045.
Drès M, Mallet J. Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond B Biol Sci. 2002: 357: 471-492. 10.1098/rstb.2002.1059.
Duran-Nebreda S, Valverde S. Composition, structure and robustness of lichen guilds. Sci Rep. 2023: 13: 3295. 10.1038/s41598-023-30357-w.
Dvořák P, Hašler P, Poulíčková A. New insights into the genomic evolution of cyanobacteria using herbarium exsiccatae. Eur J Phycol. 2020: 55: 30-38. 10.1080/09670262.2019.1638523.
Dvořák P, Jahodářová E, Stanojković A, Skoupý S, Casamatta DA. Population genomics meets the taxonomy of cyanobacteria. Algal Res. 2023: 72: 103128. 10.1016/j.algal.2023.103128.
Eren AM et al. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ. 2015: 3: e1319. 10.7717/peerj.1319.
Everitt RG et al. Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus. Nat Commun. 2014: 5: 3956. 10.1038/ncomms4956.
Farquhar J, Zerkle AL, Bekker A. Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res. 2011: 107: 11-36. 10.1007/s11120-010-9594-0.
Fedrowitz K, Kaasalainen U, Rikkinen J. Geographic mosaic of symbiont selectivity in a genus of epiphytic cyanolichens. Ecol Evol. 2012: 2: 2291-2303. 10.1002/ece3.343.
Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007: 315: 476-480. 10.1126/science.1127573.
Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005: 3: 722-732. 10.1038/nrmicro1235.
Gagunashvili AN, Andrésson ÓS. Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics. 2018: 19: 1-18. 10.1186/s12864-018-4743-5.
Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol. 1993: 2: 113-118. 10.1111/j.1365-294X.1993.tb00005.x.
Goris J et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007: 57: 81-91. 10.1099/ijs.0.64483-0.
Halsør M-JH et al. Draft genome sequence of the symbiotically competent cyanobacterium Nostoc sp. Strain KVJ20. Microbiol Resour Announc. 2019: 8: 14-16. 10.1128/MRA.01190-19.
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018: 35: 518-522. 10.1093/molbev/msx281.
Hrouzek P, Lukešová A, Mareš J, Ventura S. Description of the cyanobacterial genus Desmonostoc gen. nov. Including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea. 2013: 13: 201-213. 10.5507/fot.2013.016.
Huang H, Knowles LL. What is the danger of the anomaly zone for empirical phylogenetics? Syst Biol. 2009: 58: 527-536. 10.1093/sysbio/syp047.
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006: 23: 254-267. 10.1093/molbev/msj030.
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018: 9: 5114. 10.1038/s41467-018-07641-9.
Kaasalainen U, Olsson S, Rikkinen J. Evolution of the tRNAleu (UAA) intron and congruence of genetic markers in lichen-symbiotic Nostoc. PLoS One. 2015: 10: e0131223. 10.1371/journal.pone.0131223.
Kaasalainen U, Tuovinen V, Mwachala G, Pellikka P, Rikkinen J. Complex interaction networks among cyanolichens of a tropical biodiversity hotspot. Front Microbiol. 2021: 12: 1-12. 10.3389/fmicb.2021.672333.
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017: 14: 587-589. 10.1038/nmeth.4285.
Kang DD et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019: 7: e7359. 10.7717/peerj.7359.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013: 30: 772-780. 10.1093/molbev/mst010.
Kidston R, Lang WH. On old red sandstone plants showing structure, from the rhynie chert bed, aberdeenshire. Part V. The thallophyta occurring in the peat-bed; the succession of the plants throughout a vertical cection of the bed, and the conditions of accumulation and preservation of the deposit. Trans R Soc Edinb. 1921: 52: 855-902. 10.1017/S0080456800016045.
Knack JJ et al. Microbiomes of streptophyte algae and bryophytes suggest that a functional suite of microbiota fostered plant colonization of land. Int J Plant Sci. 2015: 176: 405-420. 10.1086/681161.
Kollár J, Poulíčková A, Dvořák P. On the relativity of species, or the probabilistic solution to the species problem. Mol Ecol. 2022: 31: 411-418. 10.1111/mec.16218.
Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014: 86: 295-335.
Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci. 2005: 102: 2567-2572. 10.1073/pnas.0409727102.
Krings M et al. Endophytic cyanobacteria in a 400-million-yr-old land plant: a scenario for the origin of a symbiosis? Rev Palaeobot Palynol. 2009: 153: 62-69. 10.1016/j.revpalbo.2008.06.006.
Kriventseva EV et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019: 47: D807-D811. 10.1093/nar/gky1053.
Kubatko LS, Degnan JH. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol. 2007: 56: 17-24. 10.1080/10635150601146041.
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2016: 34: msw260. 10.1093/molbev/msw260.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012: 9: 357-359. 10.1038/nmeth.1923.
Lawrence JG. Gradual speciation: further entangling the tree of life. In: Gophna U, editors. Lateral gene transfer in evolution. Springer; 2013. p. 243-262.
Lawrence JG, Ochman H. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci. 1998: 95: 9413-9417. 10.1073/pnas.95.16.9413.
Leducq JB et al. Comprehensive phylogenomics of Methylobacterium reveals four evolutionary distinct groups and underappreciated phyllosphere diversity. Genome Biol Evol. 2022: 14: 1-20. 10.1093/gbe/evac123.
Lenton TM, Daines SJ. Matworld - the biogeochemical effects of early life on land. New Phytol. 2017: 215: 531-537. 10.1111/nph.14338.
Lopes F et al. Phylogenomic discordance in the eared seals is best explained by incomplete lineage sorting following explosive radiation in the southern hemisphere. Syst Biol. 2021: 70: 786-802. 10.1093/sysbio/syaa099.
Lu J et al. Bioclimatic factors at an intrabiome scale are more limiting than cyanobiont availability for the lichen-forming genus Peltigera. Am J Bot. 2018: 105: 1198-1211. 10.1002/ajb2.1119.
Luo C et al. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci. 2011: 108: 7200-7205. 10.1073/pnas.1015622108.
Lutzoni F et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun. 2018: 9: 5451. 10.1038/s41467-018-07849-9.
Maddison WP. Gene trees in species trees. Syst Biol. 1997: 46: 523-536. 10.1093/sysbio/46.3.523.
Magain N, Miadlikowska J, Goffinet B, Sérusiaux E, Lutzoni F. Macroevolution of specificity in cyanolichens of the genus Peltigera Section Polydactylon (Lecanoromycetes, Ascomycota). Syst Biol. 2017: 66: 74-99. 10.1093/sysbio/syw065.
Magain N et al. Species delimitation at a global scale reveals high species richness with complex biogeography and patterns of symbiont association in Peltigera section Peltigera (lichenized Ascomycota: Lecanoromycetes). Taxon. 2018: 67: 836-870. 10.12705/675.3.
Magallón S, Hilu KW, Quandt D. Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot. 2013: 100: 556-573. 10.3732/ajb.1200416.
Mallawaarachchi V, Wickramarachchi A, Lin Y. GraphBin: refined binning of metagenomic contigs using assembly graphs. Bioinformatics. 2020: 36: 3307-3313. 10.1093/bioinformatics/btaa180.
Martinez-Gutierrez CA, Aylward FO. Phylogenetic signal, congruence, and uncertainty across Bacteria and Archaea. Mol Biol Evol. 2021: 38: 5514-5527. 10.1093/molbev/msab254.
Mendes FK, Hahn MW. Why concatenation fails near the anomaly zone. Syst Biol. 2018: 67: 158-169. 10.1093/sysbio/syx063.
Miadlikowska J et al. Species in section Peltidea (aphthosa group) of the genus Peltigera remain cryptic after molecular phylogenetic revision. Plant Fungal Syst. 2018: 63: 45-64. 10.2478/pfs-2018-0007.
Miadlikowska J et al. Phylogenetic placement, species delimitation, and cyanobiont identity of endangered aquatic Peltigera species (lichen-forming Ascomycota, Lecanoromycetes). Am J Bot. 2014: 101: 1141-1156. 10.3732/ajb.1400267.
Mo YK, Lanfear R, Hahn MW, Minh BQ. Updated site concordance factors minimize effects of homoplasy and taxon sampling. Bioinformatics. 2023: 39: btac741. 10.1093/bioinformatics/btac741.
Morales-Briones DF et al. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. Syst Biol. 2021: 70: 219-235. 10.1093/sysbio/syaa066.
Mostowy R et al. Efficient inference of recent and ancestral recombination within bacterial populations. Mol Biol Evol. 2017: 34: 1167-1182. 10.1093/molbev/msx066.
Murray GGR, Weinert LA, Rhule EL, Welch JJ. The phylogeny of Rickettsia using different evolutionary signatures: how tree-like is bacterial evolution? Syst Biol. 2016: 65: 265-279. 10.1093/sysbio/syv084.
Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH. The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens. Proc Natl Acad Sci. 2020. 117: 21495-21503. 10.1073/pnas.2001913117.
Nelson JM et al. Complete genomes of symbiotic cyanobacteria clarify the evolution of vanadium-nitrogenase. Genome Biol Evol. 2019: 11: 1959-1964. 10.1093/gbe/evz137.
Nelson JM, Hauser DA, Li F. The diversity and community structure of symbiotic cyanobacteria in hornworts inferred from long-read amplicon sequencing. Am J Bot. 2021: 108: 1731-1744. 10.1002/ajb2.1729.
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015: 32: 268-274. 10.1093/molbev/msu300.
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017: 27: 824-834. 10.1101/gr.213959.116.
O'Brien HE, Miadlikowska J, Lutzoni F. Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol. 2013: 198: 557-566. 10.1111/nph.12165.
Oliveira PH, Touchon M, Cury J, Rocha EPC. The chromosomal organization of horizontal gene transfer in bacteria. Nat Commun. 2017: 8: 25-28. 10.1038/s41467-017-00808-w.
Olm MR et al. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems. 2020: 5: e00731-19. 10.1128/msystems.00731-19.
Otálora MAG et al. Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Mol Phylogenet Evol. 2010: 56: 1089-1095. 10.1016/j.ympev.2010.05.013.
Palmer M, Venter SN, Coetzee MPA, Steenkamp ET. Prokaryotic species are sui generis evolutionary units. Syst Appl Microbiol. 2019: 42: 145-158. 10.1016/j.syapm.2018.10.002.
Pardo-De la Hoz CJ et al. Contrasting symbiotic patterns in two closely related lineages of trimembered lichens of the genus Peltigera. Front Microbiol. 2018: 9: 1-14. 10.3389/fmicb.2018.02770.
Pardo-De la Hoz CJ et al. Ancient rapid radiation explains most conflicts among gene trees and well-supported phylogenomic trees of nostocalean cyanobacteria. Syst Biol. 2023: 72: 694-712. 10.1093/sysbio/syad008.
Pardo-De la Hoz CJ et al. Phylogenetic structure of specialization: a new approach that integrates partner availability and phylogenetic diversity to quantify biotic specialization in ecological networks. Ecol Evol. 2022: 12: 6. 10.1002/ece3.8649.
Parks DH et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020: 38: 1079-1086. 10.1038/s41587-020-0501-8.
Parks DH et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022: 50: D785-D794. 10.1093/nar/gkab776.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015: 25: 1043-1055. 10.1101/gr.186072.114.
R Core Team. 2013. R: a language and environment for statistical computing.
Rajaniemi P et al. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostacales, cyanobacteria). Int J Syst Evol Microbiol. 2005: 55: 11-26. 10.1099/ijs.0.63276-0.
Retchless AC, Lawrence JG. Phylogenetic incongruence arising from fragmented speciation in enteric bacteria. Proc Natl Acad Sci. 2010: 107: 11453-11458. 10.1073/pnas.1001291107.
Rhodes JA, Baños H, Mitchell JD, Allman ES. MSCquartets 1.0: quartet methods for species trees and networks under the multispecies coalescent model in R. Bioinformatics. 2021: 37: 1766-1768. 10.1093/bioinformatics/btaa868.
Rikkinen J. Ecological and evolutionary role of photobiont-mediated guilds in lichens. Symbiosis. 2003: 34: 99-110.
Rikkinen J, Oksanen I, Lohtander K. Lichen guilds share related cyanobacterial symbionts. Science. 2002: 297: 357. 10.1126/science.1072961.
Robinson O, Dylus D, Dessimoz C. Phylo.io: interactive viewing and comparison of large phylogenetic trees on the web. Mol Biol Evol. 2016: 33: 2163-2166. 10.1093/molbev/msw080.
Rodríguez-Arribas C et al. Specialization patterns in symbiotic associations: a community perspective over spatial scales. Ecol Evol. 2023: 13: e10296. 10.1002/ece3.10296.
Rodriguez-R LM, Jain C, Conrad RE, Aluru S, Konstantinidis KT. Reply to: "Re-evaluating the evidence for a universal genetic boundary among microbial species." Nat Commun. 2021: 12: 4060. 10.1038/s41467-021-24129-1.
Rolshausen G et al. Expanding the mutualistic niche: parallel symbiont turnover along climatic gradients. Proc R Soc Lond B Biol Sci. 2020: 287: 20192311. 10.1098/rspb.2019.2311.
Rosenberg NA. Discordance of species trees with their most likely gene trees: a unifying principle. Mol Biol Evol. 2013: 30: 2709-2713. 10.1093/molbev/mst160.
Rothfels CJ, Pryer KM, Li F. Next-generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing. New Phytol. 2017: 213: 413-429. 10.1111/nph.14111.
Roycroft EJ, Moussalli A, Rowe KC. Phylogenomics uncovers confidence and conflict in the rapid radiation of australo-papuan rodents. Syst Biol. 2020: 69: 431-444. 10.1093/sysbio/syz044.
Rudi K, Skulberg OM, Jakobsen KS. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol. 1998: 180: 3453-3461. 10.1128/JB.180.13.3453-3461.1998.
Sakoparnig T, Field C, van Nimwegen E. Whole genome phylogenies reflect the distributions of recombination rates for many bacterial species. eLife. 2021: 10: e65366. 10.7554/eLife.65366.
Sayyari E, Whitfield JB, Mirarab S. DiscoVista: interpretable visualizations of gene tree discordance. Mol Phylogenet Evol. 2018: 122: 110-115. 10.1016/j.ympev.2018.01.019.
Scotta Hentschke G et al. Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic rainforest and kauai, Hawaii. Fottea. 2017: 17: 178-190. 10.5507/fot.2017.002.
Servais T et al. Revisiting the great ordovician diversification of land plants: recent data and perspectives. Palaeogeogr Palaeoclimatol Palaeoecol. 2019: 534: 109280. 10.1016/j.palaeo.2019.109280.
Shang JL et al. Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats. Environ Microbiol. 2019: 21: 845-863. 10.1111/1462-2920.14521.
Shapiro BJ et al. Population genomics of early events in the ecological differentiation of Bacteria. Science. 2012: 336: 48-51. 10.1126/science.1218198.
Shapiro BJ, Leducq J-B, Mallet J. What is speciation? PLoS Genet. 2016: 12: e1005860. 10.1371/journal.pgen.1005860.
Shen P, Huang HV. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986: 112: 441-457. 10.1093/genetics/112.3.441.
Shih PM et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci. 2013: 110: 1053-1058. 10.1073/pnas.1217107110.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014: 30: 1312-1313. 10.1093/bioinformatics/btu033.
Stanojković A, Skoupý S, Johannesson H, Dvořák P. The global speciation continuum of the cyanobacterium Microcoleus. Nat Commun. 2024: 15: 2122. 10.1038/s41467-024-46459-6.
Strunecký O, Ivanova AP, Mareš J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J Phycol. 2023: 59: 12-51. 10.1111/jpy.13304.
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006: 34: W609-W612. 10.1093/nar/gkl315.
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005: 3: 711-721. 10.1038/nrmicro1234.
Tomitani A, Knoll AH, Cavanaugh CM, Ohno T. The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci. 2006: 103: 5442-5447. 10.1073/pnas.0600999103.
Uyeda JC, Harmon LJ, Blank CE. A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geologic time. PLoS One. 2016: 11: e0162539. 10.1371/journal.pone.0162539.
Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990: 172: 4238-4246. 10.1128/jb.172.8.4238-4246.1990.
Villarreal Aguilar JC, Renzaglia KS. Structure and development of Nostoc strands in Leiosporoceros dussii (Anthocerotophyta): a novel symbiosis in land plants. Am J Bot. 2006: 93: 693-705. 10.3732/ajb.93.5.693.
Wang X et al. Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME J. 2020: 14: 3106-3119. 10.1038/s41396-020-00743-7.
Warshan D et al. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. ISME J. 2017: 11: 2821-2833. 10.1038/ismej.2017.134.
Warshan D et al. Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol Biol Evol. 2018: 35: 1160-1175. 10.1093/molbev/msy029.
Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015: 31: 3350-3352. 10.1093/bioinformatics/btv383.
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007: 24: 1586-1591. 10.1093/molbev/msm088.
Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017: 8: 28-36. 10.1111/2041-210X.12628.
Yu MK, Fogarty EC, Eren AM. Diverse plasmid systems and their ecology across human gut metagenomes revealed by PlasX and MobMess. Nat Microbiol. 2024: 9: 830-847. 10.1038/s41564-024-01610-3.
Zhang C, Mirarab S. Weighting by gene tree uncertainty improves accuracy of quartet-based species trees. Mol Biol Evol. 2022: 39: msac215. 10.1093/molbev/msac215.
Zhu T, Hou S, Lu X, Hess WR. Draft genome sequences of nine cyanobacterial strains from diverse habitats. Genome Announc. 2017: 5: 824-834. 10.1128/genomeA.01676-16.
Zúñiga C, Leiva D, Carú M, Orlando J. Substrates of Peltigera lichens as a potential source of cyanobionts. Microb Ecol. 2017: 74: 561-569. 10.1007/s00248-017-0969-z.
Zúñiga C et al. Phylogenetic diversity of Peltigera cyanolichens and their photobionts in southern Chile and Antarctica. Microbes Environ. 2015: 30: 172-179. 10.1264/jsme2.ME14156.