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Abstract 1 

Species are a fundamental unit of biodiversity. Yet, the existence of clear species boundaries 2 

among bacteria has long been a subject of debate. Here, we studied species boundaries in the 3 

context of the phylogenetic history of Nostoc, a widespread genus of photoautotrophic and 4 

nitrogen-fixing cyanobacteria that includes many lineages that form symbiotic associations with 5 

plants (e.g., cycads and bryophytes) and fungi (e.g., cyanolichens). We found that the evolution 6 

of Nostoc was characterized by eight rapid radiations, many of which were associated with major 7 

events in the evolution of plants. In addition, incomplete lineage sorting associated with these 8 

rapid radiations outweighed reticulations during Nostoc evolution. We then show that the pattern 9 

of diversification of Nostoc shapes the distribution of average nucleotide identities (ANIs) into a 10 

complex mosaic, wherein some closely related clades are clearly isolated from each other by 11 

gaps in genomic similarity, while others form a continuum where genomic species boundaries 12 

are expected. Nevertheless, recently diverged Nostoc lineages often form cohesive clades that are 13 

maintained by within-clade gene flow. Boundaries to homologous recombination between these 14 

cohesive clades persist even when the potential for gene flow is high, i.e., when closely related 15 

clades of Nostoc cooccur or are locally found in symbiotic associations with the same lichen-16 

forming fungal species. Our results demonstrate that rapid radiations are major contributors to 17 

the complex speciation history of Nostoc. This underscores the need to consider evolutionary 18 

information beyond thresholds of genomic similarity to delimit biologically meaningful units of 19 

biodiversity for bacteria. 20 

Keywords: ANI, average nucleotide identity, anomaly zone, bacterial species, cyanobacterium, 21 

lichens, Nostoc, Peltigerales, species delimitation, symbiosis.  22 
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Introduction 1 

Bacterial cells reproduce clonally but may exchange genetic material through horizontal 2 

gene transfers (HGT; Thomas and Nielsen 2005). As a result, their genomes often contain a 3 

mixture of loci inherited vertically and horizontally (Lawrence and Ochman 1998; Mostowy et 4 

al. 2017). These chimeric genomes have fueled two long-standing debates: whether bacterial 5 

evolution follows a bifurcating tree-like pattern (Doolittle 1999; Daubin 2002; Coleman et al. 6 

2021), and whether bacterial species can be defined as distinct biological entities (Cohan 2002; 7 

Doolittle 2012; Shapiro et al. 2016). 8 

The frequency of HGT varies depending on the mechanism of DNA integration and the 9 

relatedness of the donor and recipient genomes. Specifically, non-homologous recombination can 10 

occur between distantly related genomes and typically involves accessory rather than core genes 11 

(Frost et al. 2005; Oliveira et al. 2017). In contrast, homologous recombination (HR) is more 12 

likely between closely related genomes and affects both accessory and core genes (Fraser et al. 13 

2007; Everitt et al. 2014). There is growing evidence that HR in bacteria resembles gene flow in 14 

sexually reproducing eukaryotes, such that decreasing frequencies of HR between diverging 15 

genomes act as boundaries that fit the biological species concept (Bobay and Ochman 2017; 16 

Cobo-Simón et al. 2023). 17 

Barriers to HR have been estimated to emerge at various levels of genome sequence 18 

identity, ranging from 90% to 98% ANI (Diop et al. 2022). This variation could be due to 19 

differences in the length of the nearly identical DNA fragments required to initiate HR, which 20 

varies across bacterial lineages (Shen and Huang 1986; Diop et al. 2022). These findings are in 21 

agreement with the common use of the 95% ANI threshold to delimit bacterial species based on 22 

genomic data (Konstantinidis and Tiedje 2005; Parks et al. 2020). In addition, a large-scale 23 
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survey of prokaryotic genomes revealed a putative gap in the distribution of ANIs that spans 83–1 

95% ANI, which has been interpreted as evidence of a universal species boundary (Jain et al. 2 

2018; Rodriguez-R et al. 2021). However, the wide range of sequence identity levels associated 3 

with barriers to HR suggests that ANI boundaries could be centered around different sequence 4 

identities in different lineages. Therefore, we need to study the distribution of ANI gaps within a 5 

phylogenetic framework to assess the adequacy of ANI thresholds for bacterial species 6 

delimitation. 7 

HR patterns can also drive a diversification process wherein species are cohesive 8 

recombining populations that diverge as barriers to HR arise (Shapiro et al. 2016; Stanojković et 9 

al. 2024). As part of this process, allele variation can be unliked between loci due to 10 

recombination, which can lead to conflicts between phylogenies of different genes (Sakoparnig 11 

et al. 2021). One scenario where unlinked allele variation leads to conflicts among gene trees is 12 

due to incomplete lineage sorting (ILS), where ancestral polymorphisms are preserved through 13 

speciation events and the allele sorting differs from the primary history of population divergence 14 

(Supplementary Fig. 1a; Degnan and Rosenberg 2009). Conflicts among gene trees can also 15 

result from fragmented speciation, where genetic isolation is achieved asynchronously across the 16 

genome, leading to gene flow barriers at some loci while others continue to recombine freely 17 

(Supplementary Fig. 1b; Retchless and Lawrence 2010; Lawrence 2013). Conflicts due to ILS or 18 

fragmented speciation are more likely to occur when the time intervals between speciation events 19 

are short. For ILS, shorter intervals decrease the chance that any allele of the polymorphic loci 20 

will fixate before subsequent divergence (Supplementary Fig. 1a; Maddison 1997). Similarly, in 21 

fragmented speciation, shorter intervals decrease the probability that all loci will be isolated 22 

before the next divergence (Supplementary Fig. 1b; Lawrence 2013). Therefore, rapid 23 
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radiations—characterized by successive speciation events occurring over a short timescale—can 1 

be a major source of phylogenetic conflicts among loci in bacteria. 2 

 Rapid radiations are expected to generate distinct patterns of phylogenetic conflict 3 

compared to reticulations where genetic information is exchanged between distant, well-4 

separated lineages (Supplementary Fig. 1). When ILS or fragmented speciation are the sources of 5 

phylogenetic conflict, the frequency of conflicts should increase as speciation intervals become 6 

shorter (Whitfield and Lockhart 2007; Lopes et al. 2021). Additionally, a greater proportion of 7 

the conflicting relationships may be recovered with weak statistical support as speciation 8 

intervals decrease due to fewer substitutions accumulating along short internal branches (Huang 9 

and Knowles 2009; Roycroft et al. 2020). In some rapid radiations, the patterns of phylogenetic 10 

conflict may fit the expectations of the anomaly zone: a region of tree parameter space where the 11 

most likely gene tree is discordant with the species tree (Degnan and Rosenberg 2006; 12 

Rosenberg 2013). Inferring species trees in the presence of anomaly zones resulting from rapid 13 

radiations is one of the main challenges of modern phylogenetics, especially for maximum 14 

likelihood inferences based on concatenated datasets (Kubatko and Degnan 2007; Mendes and 15 

Hahn 2018; Cloutier et al. 2019; Chafin et al. 2021; Morales-Briones et al. 2021; Pardo-De la 16 

Hoz et al. 2023). Nevertheless, rapid radiations have received little attention in phylogenetic 17 

studies of bacteria, where phylogenetic discordance is often regarded as a synonym of reticulated 18 

evolution (Murray et al. 2016; Martinez-Gutierrez and Aylward 2021). 19 

In this study, we focus on Nostoc, a common and widespread genus of photoautotrophic 20 

and nitrogen-fixing cyanobacteria in the order Nostocales (Komárek et al. 2014; Dvořák et al. 21 

2020). Nostoc often forms symbioses with plants (e.g., cycads and some bryophytes) and lichen-22 

forming fungi (e.g., most cyanolichens of the order Peltigerales). In all these symbioses, Nostoc 23 
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transfers fixed nitrogen to the plant and fungal symbionts (Warshan et al. 2018; Darnajoux et al. 1 

2019). Consequently, Nostoc is recognized as a model to study plant and lichen symbiotic 2 

interactions, as well as biological nitrogen fixation (Magain et al. 2017; Warshan et al. 2018; 3 

Darnajoux et al. 2019). However, the scope of many studies is currently limited by the lack of 4 

meaningful and reliable units of biodiversity in this genus (Cornet et al. 2021). Here, we used 5 

151 genomes and metagenome-assembled genomes (MAGs) to characterize genomic species 6 

boundaries in Nostoc within a phylogenomic framework and delimit such units. We first inferred 7 

a phylogenomic species tree with estimates of divergence times and quantified patterns of 8 

phylogenetic conflict to explore the contribution of ILS vs reticulations to Nostoc evolution. This 9 

enabled us to detect and date rapid radiations that occurred throughout the evolution of Nostoc 10 

and to identify successive speciation events that fit the expectations of the anomaly zone. Then, 11 

we surveyed the distribution of pairwise ANIs among Nostoc genomes to determine whether 12 

there is a uniform gap across the phylogeny of Nostoc that spans the expected 83–95% ANI 13 

range (Jain et al. 2018), which would be indicative of a homogeneous species boundary. We used 14 

these results, along with estimates of recent gene flow, to propose a classification scheme for 15 

Nostoc strains that integrates phylogenetic, genomic, and ecological information. Finally, we 16 

genotyped a collection of 2,316 lichenized Nostoc strains from a systematic regional-scale 17 

sampling to confirm that barriers to gene flow are maintained between closely related, 18 

cooccurring, species-level clades of Nostoc that we delineated in this study. 19 

Results and discussion 20 

Rapid radiations and ILS were more prevalent than reticulations during Nostoc 21 

evolution 22 
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7 

  Our first goal was to infer the evolutionary history of Nostoc. We used a dataset of 151 1 

genomes, including 124 newly generated Nostoc MAGs from cyanolichens sampled globally 2 

(Supplementary Data 1a). Of these new MAGs, 80 could not be assigned to a known species in 3 

the Genome Taxonomy Database (Supplementary Data 1a; Parks et al. 2022), demonstrating that 4 

the genomic diversity of Nostoc is highly underexplored. 5 

We then inferred a species tree with divergence time estimates and quantified 6 

phylogenetic conflicts by comparing the topology of each gene tree to the species tree (Fig. 1a 7 

and Supplementary Fig. 2a). We found that the number of phylogenetic conflicts was associated 8 

with the time elapsed between speciation events (Fig. 1b–c). More specifically, longer internodes 9 

(i.e., more time between speciation events) were associated with a higher proportion of 10 

congruent gene trees (Supplementary Fig. 3a). Conversely, shorter internodes (i.e., less time 11 

between speciation events) were associated with a higher proportion of both weakly and strongly 12 

supported conflicting gene trees (Fig. 1b–c). Importantly, the fraction of weakly supported 13 

conflicts was consistently larger than the fraction of strongly supported conflicts for short 14 

interval times (Fig. 1b–c). In addition, the proportion of congruent sites was also associated with 15 

internode lengths (Supplementary Fig. 3c). These findings strongly suggest that most 16 

phylogenetic conflicts resulted from rapid successive speciation events (Supplementary Fig. 1a–17 

b; Whitfield and Lockhart 2007; Huang and Knowles 2009; Lawrence 2013; Roycroft et al. 18 

2020; Lopes et al. 2021). 19 

 We also detected nine clusters of short consecutive internodes where phylogenetic 20 

conflicts fit the expectations of the anomaly zone (Fig. 1a). One of them (anomaly zone cluster 9; 21 

Fig. 1a) involves internodes within a species-level clade (phylogroup V; Supplementary Fig. 2a). 22 

The other eight correspond to interspecific divergences where node age estimates are largely 23 
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overlapping (anomaly zone clusters 1–8; Fig. 1a). This indicates that they are part of rapid 1 

radiations and we will refer to them as such. All topological incongruences between coalescent 2 

and concatenated trees are associated with internode clusters that fit the expectations of the 3 

anomaly zone (Supplementary Fig. 2; Mendes and Hahn 2018; Cloutier et al. 2019). Moreover, 4 

the conflicting relationships have strong support in both trees, but they are local rearrangements 5 

of branches around internodes within an anomaly zone (Supplementary Fig. 2). These patterns 6 

are hallmarks of ILS associated with rapid radiations (Cloutier et al. 2019; Leducq et al. 2022; 7 

Pardo-De la Hoz et al. 2023). 8 

Phylogenetic conflicts may also result from reticulations that are best represented by a 9 

network rather than a fully bifurcating tree (Huson 1998; Huson and Bryant 2006). We quantified 10 

the proportion of quartets from 1,519 gene trees that fit either a tree-like model, where conflicts 11 

are due to ILS, or a non-tree-like model, where conflicts are due to reticulations (Allman et al. 12 

2019; Rhodes et al. 2021; Bjorner et al. 2023). We found that up to 73.8% of quartets in our 13 

phylogenomic dataset fit a tree-like ILS model (Supplementary Table 1) compared to 26.2% 14 

fitting a non-tree like reticulation model. This further supports that ILS is the main cause of 15 

phylogenetic conflicts in Nostoc. 16 

We then used the results of this model-fitting analysis to infer a phylogenetic split 17 

network and found that several areas of complex reticulations correspond to relationships that 18 

fall in the anomaly zone (Fig. 2). These reticulations involve close rather than distant relatives 19 

and likely represent ongoing gene flow between rapidly diverging species during these 20 

radiations. Our results demonstrate that fully bifurcating trees do not capture the complexity of 21 

the speciation history in bacteria, especially for rapid radiations associated with anomaly zones 22 

(Fig. 2; Doolittle 1999; Pardo-De la Hoz et al. 2023). Nevertheless, the network recovered all 23 
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major lineages delineated in the species tree (i.e., sections 2.1–2.4, sections 3.1–3.12, and 1 

subclade 1/Desmonostoc; Figs. 1a and 2). Moreover, most of them are subtended by long edges 2 

(Fig. 2), which indicates strong support for these relationships in the data (Allman et al. 2019).  3 

Therefore, our integration of species tree and network inferences yielded a robust phylogenomic 4 

framework while highlighting areas of complex speciation history linked to reticulations between 5 

close relatives and ILS resulting from rapid radiations in Nostoc. 6 

Nostoc rapid radiations are associated with major events in plant evolution 7 

We found that the crown age of the clade that includes Desmonostoc and Nostoc, ca. 750 8 

(913–599) Ma, was contemporaneous with the estimated minimum age for the origin of 9 

terrestrial green algae (881–562 Ma) and terrestrial fungi (789–670 Ma; Fig. 1a; Lutzoni et al. 10 

2018). This suggests that nitrogen fixation by terrestrial Nostoc-like cyanobacteria might have 11 

facilitated the transition to land by photoautotrophic green algae and heterotrophic fungi at a time 12 

when nitrogen and carbon were limited in terrestrial environments (Knack et al. 2015; Lenton 13 

and Daines 2017). Nevertheless, most of the diversification of Nostoc (starting 590–423 Ma) 14 

occurred after the origin of terrestrial embryophytes (530–430 Ma; Magallón et al. 2013; Lutzoni 15 

et al. 2018; Warshan et al. 2018; Servais et al. 2019), including all eight rapid radiations we 16 

detected (Fig. 1a). The association between land plant evolution and Nostoc diversification might 17 

be related to both the establishment of symbiotic associations and the availability of new 18 

terrestrial habitats with a diverse array of selective pressures (Lutzoni et al. 2018; Dahl and 19 

Arens 2020). There is fossil evidence that non-vascular plants occasionally harbored intercellular 20 

cyanobacterial symbionts ca. 400 Ma (Kidston and Lang 1921; Krings et al. 2009)—an 21 

association reminiscent of the present-day symbioses between Nostoc and some hornworts and 22 

liverworts (Villarreal and Renzaglia 2006; Warshan et al. 2018; Nelson et al. 2019). However, 23 
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10 

the morphological features of the fossilized cyanobacteria suggest that they are closer relatives to 1 

the order Oscillatoriales than to Nostoc (Kidston and Lang 1921; Krings et al. 2009). Early 2 

Nostoc may have formed epiphytic rather than intercellular symbioses with early non-vascular 3 

plants similar to the interaction between extant Nostoc and some mosses (Warshan et al. 2017; 4 

Warshan et al. 2018; Carrell et al. 2022).  5 

Five of the eight rapid radiations (anomaly zone clusters 4–8 in Fig. 1a) occurred during a 6 

period (299–112 Ma) characterized by the origin and diversification of extant Pinaceae until the 7 

early radiation of flowering plants (Fig. 1a; Magallón et al. 2013; Lutzoni et al. 2018). In an 8 

early phylogenetic study of Nostoc using 16S rDNA sequences, Rikkinen et al. (2002) found two 9 

major clades and labeled them by their signature lichen mycobiont genus: i) the Peltigera-type 10 

clade, which included Nostoc of terrestrial cyanolichens, free-living Nostoc strains, and a 11 

symbiotic Nostoc from the roots of a cycad; and ii) the Nephroma-type clade, which only 12 

included Nostoc of epiphytic cyanolichens. The Nephroma-type clade corresponds to the lineage 13 

in anomaly zone cluster 8 in Fig. 1a, which we also found to be comprised mostly of Nostoc 14 

living in epiphytic cyanolichens growing on woody conifers and angiosperms. The cluster 8 15 

radiation occurred contemporaneously with the origin and early radiation of flowering plants 16 

(Fig. 1a). Contrary to a previous suggestion (Nelsen et al. 2020), our results support an early 17 

origin of Nostoc, i.e., before the origin of ascolichens (Fig. 1a), and that the emergence of 18 

environments dominated by flowering plants was contemporaneous with the rapid diversification 19 

of most Nostoc that form associations with epiphytic cyanolichens. 20 

The two Nostoc clades identified by Rikkinen et al. (2002) also prompted the popular 21 

hypothesis that cyanolichen communities form guilds structured by substrate (i.e., the epiphytic 22 

Nephroma guild and the terrestrial Peltigera guild) where Nostoc photobionts are shared within, 23 
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11 

but not among, those guilds (Rikkinen 2003; Fedrowitz et al. 2012; Dal Grande et al. 2014; 1 

Belinchón et al. 2015; Zúñiga et al. 2015; Zúñiga et al. 2017; Kaasalainen et al. 2021; Duran-2 

Nebreda and Valverde 2022). However, our results confirm that Nostoc-like cyanobacteria found 3 

in lichens belong to at least three major lineages (subclade 1/Desmonostoc, and Nostoc subclades 4 

2 and 3; Fig. 1a), all of which include strains with diverse lifestyles or associated with lichens 5 

from multiple substrates (Fig. 1a). Therefore, the two-guild model does not capture the 6 

evolutionary diversity of Nostoc, which implies that the mechanisms that underlie the interaction 7 

dynamics of Nostoc in cyanolichens probably involve a more complex combination of eco-8 

evolutionary processes (Lu et al. 2018; Chagnon et al. 2019; Rolshausen et al. 2020; Pardo‐De la 9 

Hoz et al. 2022; Rodríguez-Arribas et al. 2023). 10 

Nostoc diversification patterns resulted in heterogeneous species boundaries 11 

Our next goal was to explore genomic species boundaries within the phylogenetic 12 

framework of Nostoc. We calculated ANI between all pairs of Nostoc and Desmonostoc genomes 13 

available to us and found that the distribution of ANIs is more complex than expected if species 14 

boundaries (gaps) were homogenously distributed among lineages of these sister genera (Fig. 3 15 

and Supplementary Fig.4). There is a gap centered around 86% ANI (Fig. 3 and Supplementary 16 

Fig. 4) but this gap does not correspond to the expected universal species boundary spanning 83–17 

95% ANI (Jain et al. 2018). Instead, we observed a mosaic of genomic continuity mixed with 18 

gaps spanning different ranges of ANI (Fig. 3). Importantly, the distribution of ANI values is 19 

largely structured by the diversification pattern of Nostoc, such that clades subtended by longer 20 

branches are separated from the rest by larger ANI gaps. For example, the Nostoc s. str. clade 21 

(i.e, subclades 2 and 3) is separated from sister subclade 1/Desmonostoc by a long branch (Fig. 22 

3). Accordingly, the ANIs on the left side of the first gap (< ~85% ANI) correspond to the 23 
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12 

distances between Nostoc and subclade 1/Desmonostoc, whereas the ANIs on the right side of 1 

the first gap (> ~87% ANI) are mostly distances between genomes from subclades 2 and 3 (Fig. 2 

3). The same is true for lineages within the Nostoc subclades, such as sections 3.5 and 3.6, which 3 

are both subtended by long branches and display additional ANI gaps closer to the expected 95% 4 

ANI boundary (Fig. 3). In contrast, Nostoc section 3.1 originated from a rapid radiation 5 

characterized by multiple consecutive short internodes. In that case, the ANIs form a continuum 6 

that spans roughly 88–95% ANI (Fig. 3).  7 

Speciation has long been viewed as a continuum that is expected to generate 8 

heterogeneous rather than universal species boundaries (Drès and Mallet 2002; Kollár et al. 9 

2022; Stanojković et al. 2024). Our results indicate that Nostoc is no exception, and that variation 10 

in diversification rates may underlie whether gaps in the distribution of ANIs are present or not. 11 

This implies that the recognition of biologically meaningful units of diversity in bacteria must go 12 

beyond genomic similarity thresholds and include a pluralistic approach that integrates multiple 13 

sources of evolutionary and ecological information (Palmer et al. 2019; Dvořák et al. 2023). 14 

Therefore, we propose a delimitation scheme for Nostoc that integrates those aspects. 15 

We first delineated 16 sections within Nostoc subclades 2 and 3 (sections 2.1–2.4 and 16 

3.1–3.12; Figs. 1–3) by considering the evolutionary isolation based on branch lengths, ANI 17 

clustering, and ecology of the strains. We then used this framework to validate and refine Nostoc 18 

phylogroups proposed in previous studies based on rbcLX sequences. We retrieved 1,098 public 19 

sequences of rbcLX from free-living and symbiotic Nostoc from previous phylogenetic studies 20 

(O‘Brien et al. 2013; Magain et al. 2017; Chagnon et al. 2018; Magain et al. 2018; Miadlikowska 21 

et al. 2018; Pardo-De la Hoz et al. 2018; Supplementary Data 1b). Then, we placed them in our 22 

phylogenomic framework and sorted them by section to infer section-specific phylogenies. We 23 
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13 

found that 32 of the 43 previously delimited Nostoc phylogroups are monophyletic 1 

(Supplementary Fig. 5a–n). However, these clades were sometimes embedded within a set of less 2 

structured but closely related strains that had been assigned to multiple phylogroups (e.g., section 3 

3.1, Supplementary Fig. 5a). In those cases, we considered the entire set to be a species complex. 4 

Species complexes are useful when boundaries are unclear, such as when radiations resulted in a 5 

near-continuum of genomic diversity (e.g., section 3.1 in Fig. 3 and Supplementary Fig. 5a). We 6 

provide guidelines for the classification of new Nostoc strains into our scheme using either 7 

genomic or single-locus data in the GitHub repository for this study: 8 

https://github.com/cjpardodelahoz/nostoc. 9 

Nostoc phylogroups remain distinct when cooccurring with closest relatives 10 

 The Nostoc phylogroups reflect phylogenetic structure within the 16 sections we 11 

delimited here at a global scale (Supplementary Fig. 5). However, in lineages with wide 12 

geographic distribution, phylogenetic structure might be detected spuriously due to biased 13 

sampling on distant ends of a genomic continuum (Chambers and Hillis 2020; Chambers et al. 14 

2023), such as the ones we found in some Nostoc lineages (e.g., section 3.1 in Fig. 3 and 15 

Supplementary Fig. 5a). Therefore, our final goal was to use a systematic spatial sampling to 16 

determine whether the phylogroups we delimited were robust in cases with high potential for 17 

gene flow with their closest relatives (i.e., frequent spatial cooccurrence and sharing of fungal 18 

symbiotic partners). 19 

We genotyped lichenized Nostoc strains associated with 2,316 cyanolichen specimens 20 

collected systematically by the Alberta Biodiversity Monitoring Institute (ABMI) across 366 21 

sites in the province of Alberta, Canada. We sequenced the rbcLX region and classified them 22 

with the scheme we described above. We also clustered the Nostoc genomes using both 95% ANI 23 
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14 

and rates of recent gene flow using PopCOGenT (Fig. 3; Arevalo et al. 2019). We found that 1 

most of the strains from Alberta (1,996; Supplementary Data 1c and 1d) belong to section 2.4 2 

(214), section 3.1 (1,183), section 3.5 (173) and section 3.6 (426). In all four sections, we found 3 

that the phylogroups we identified were robust even when they cooccurred with closely related 4 

Nostoc from the same section (Fig. 4a–b, Supplementary Fig. 6a–c). This suggests that factors 5 

other than geographic isolation play an important role in preventing gene flow among these 6 

OTUs (i.e., phylogroups or species complexes) and maintaining genetic differentiation (Cadillo-7 

Quiroz et al. 2012; Stanojković et al. 2024). Populations may be structured along fine-scale 8 

heterogeneity that drives differential adaptations, as has been shown for Archaea and other 9 

Bacteria (Shapiro et al. 2012; Chase et al. 2019; Wang et al. 2020) 10 

 Another potential driver of genetic isolation among Nostoc lineages is divergent selection 11 

resulting from specialization on different symbiotic fungal partners. We genotyped the fungal 12 

partners of the lichenized Nostoc strains from Alberta and instead found that, at the regional 13 

scale, the OTUs from a given Nostoc section often share fungal symbiotic partners in a nested 14 

manner (Fig. 4c, Supplementary Fig. 6a–c). Phylogroups III (section 2.4) and VIId (section 3.5) 15 

were exceptions to these trends because their interactions are with fungal partners that are rarely 16 

or never found with other Nostoc OTUs from the same section (Supplementary Fig. 6b, c). This 17 

reciprocal specificity could underlie the genetic divergence of these Nostoc phylogroups from the 18 

other lineages in their sections.  19 

When different Nostoc OTUs associate with the same lichen-forming species at a 20 

regional scale (e.g., sections 3.1 and 3.6; Fig. 4c and Supplementary Fig. 6a), genetic 21 

differentiation between Nostoc populations can still emerge if they associate with different 22 

lichen-forming fungal partners at local scales. In that case, partner sharing would be less frequent 23 
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between cooccurring Nostoc strains compared to Nostoc strains from different sites. Instead, we 1 

found that partner sharing is equally or more frequent between pairs of cooccurring Nostoc 2 

strains than between pairs of Nostoc strains from different sites in Alberta (Table 1, 3 

Supplementary Data 1f–h). The difference is more pronounced for strain pairs that belong to the 4 

same section (Table 1, Supplementary Data 1f–h), which is likely driven by frequent asexual 5 

reproduction of lichen thalli, resulting in the vertical transmission of Nostoc at local scales. This 6 

indicates that symbiotic specialization is probably not the main driver of genetic differentiation 7 

in Nostoc symbionts of cyanolichens. 8 

Overall, our findings show that OTU boundaries between Nostoc symbionts of 9 

cyanolichens are robust even when there is a high potential for gene flow between close relatives 10 

(i.e., frequent cooccurrence and found in association with the same Peltigera species). 11 

Nevertheless, the processes underlying the maintenance of gene flow boundaries may differ in 12 

non-lichenized Nostoc lineages. This is because the bacterial lifestyle can shape gene flow 13 

dynamics and natural selection, leading to alternative divergence mechanisms (e.g., 14 

environmental vs. human gut populations of Escherichia coli; Luo et al. 2011). Our 15 

phylogenomic framework should aid the discovery of these potential alternatives as more data 16 

becomes available for Nostoc with different lifestyles. 17 

Our results also show that relevant units of biodiversity may be finer than ANI-delimited 18 

species. For example, Nostoc section 3.6 corresponds to one ANI cluster, but five different gene 19 

flow clusters (Fig. 3).  More specifically, sister Nostoc phylogroups V and XLII (section 3.6) are 20 

part of the same ANI cluster (ANI-8), but they are in different gene flow clusters (PopCO-1 and 21 

PopCO-85, bolded taxa in Supplementary Fig. 5e). Phylogroup V is broadly distributed across 22 

multiple continents, whereas XLII has a circumboreal distribution (Supplementary Fig. 5e) 23 
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(Magain et al. 2018). Both Nostoc phylogroups share fungal partners, but phylogroup V has a 1 

much broader partner range both globally (Supplementary Fig. 5e) and in Alberta (Fig. 4c). 2 

These genetic, geographic, and symbiotic differences imply that these phylogroups are neither 3 

evolutionary nor ecologically interchangeable, which is a fundamental property of biologically 4 

meaningful units of biodiversity (Cohan 2019). 5 

Our findings underscore the importance of assessing bacterial biodiversity in the context 6 

of their evolutionary history. We showed that a fully bifurcating tree does not capture the 7 

complexity of the evolutionary history of Nostoc (Fig. 2). However, most of the complexity 8 

results from rapid radiations and ILS rather than reticulations between distantly related lineages 9 

(Figs. 1–2, Supplementary Fig. 2, and Supplementary Table 1). Additionally, different 10 

diversification patterns can result in both clearly distinct lineages separated by gaps in genomic 11 

similarity as well as lineages with a continuum of genomic diversity (Fig. 3). Nevertheless, 12 

recently diverged lineages (e.g., Nostoc phylogroups) that display genomic cohesion are common 13 

even when they cooccur with close relatives and share symbiotic partners (Fig. 4, Supplementary 14 

Fig. 6, Table 1, Supplementary Data 1f–h). These are more meaningful biodiversity units to track 15 

when studying phenomena such as the maintenance of barriers to gene flow and the evolution of 16 

symbiotic interactions in cyanobacteria.  17 
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 Methods 1 

Sampling and sequencing of Nostoc genomes 2 

We used a total of 151 genomes that represent three major lineages of Nostoc-like 3 

cyanobacteria (Magain et al. 2017; Magain et al. 2018). This included 24 publicly available 4 

genome assemblies (Warshan et al. 2017; Zhu et al. 2017; Gagunashvili and Andrésson 2018; 5 

Warshan et al. 2018; Halsør et al. 2019; Shang et al. 2019; Bell‐Doyon et al. 2020; Chen et al. 6 

2021) and 124 newly generated MAGs of Nostoc strains associated with 17 genera of 7 

cyanolichen-forming fungi (Supplementary Data 1a). We also included the genomes of 8 

Anabaena cylindrica PCC 7122 (Shih et al. 2013), Aphanizomenon flos-aquae NIES 81 (Cao et 9 

al. 2014), and Cylindrospermum stagnale PCC 7417 (Shih et al. 2013) to use as outgroup taxa 10 

for the phylogenetic analyses (Supplementary Data 1a). One of the public genomes classified as 11 

Nostoc in NCBI (Nostoc sp. B 2019; Supplementary Data 1a) is classified as Komarekiella sp. in 12 

the Genome Taxonomy Database. 13 

For the newly generated MAGs, we extracted metagenomic DNA from the lobe tips of 14 

healthy and clean lichen thalli using a 2% SDS lysis followed by phenol:chloroform separation, 15 

isopropanol precipitation, and ethanol cleanup (full protocol in Appendix S1). Then, 16 

metagenomic libraries (150 bp paired end) were prepared with the KAPA HyperPrep kit (Roche 17 

Sequencing Solutions, Pleasanton, CA, USA) following manufacturer‘s instructions and 18 

sequenced on three Illumina NovaSeq 6000 S Prime flow cells. Library preparation and 19 

sequencing were conducted by the Duke Sequencing and Genomic Technologies core facility. 20 

Metagenomic assembly, binning, and curation 21 

We first examined read quality and adapter content using FastQC v0.11.17. Then, we 22 

trimmed low quality bases (PHRED < Q20) and adapters using Trimmomatic v0.39. We only 23 
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used paired reads that were > 75 bp after trimming for subsequent analyses. We assembled the 1 

trimmed reads using SPAdes v3.14.1(Bankevich et al. 2012; Nurk et al. 2017) with the --meta 2 

option and with kmer lengths 55, 75, and 95. To quantify the depth of coverage of the assembled 3 

contigs for binning, we mapped the SPAdes-corrected reads to the metagenomic assembly using 4 

Bowtie v.2.3.5.1 (Langmead and Salzberg 2012) and samtools v1.9 (Danecek et al. 2021), and 5 

then extracted a summary of the depth of coverage per contig using the 6 

jgi_summarize_bam_contig_depths script from MetaBAT2 (Kang et al. 2019). The assembled 7 

contigs and their depths were used as input for initial binning with MetaBAT2. 8 

To identify the cyanobacterial bins obtained from each metagenomic library, we used the 9 

lineage-specific workflow from CheckM v1.1.7 (Parks et al. 2015). CheckM places the genome 10 

bins onto a bacterial reference genome tree and selects lineage-specific markers to calculate 11 

genome quality metrics. We used the output of CheckM to identify the genome bins that 12 

belonged to Cyanobacteria. We obtained a single cyanobacterial genome bin from 118 of our 13 

metagenomic libraries. In five of our metagenomic libraries (P2083, P2170, P10246, P10247, 14 

and P12560), we found more than one cyanobacterial genome bin. We then conducted a 15 

preliminary phylogenetic analysis to determine which of the cyanobacterial genome bins 16 

belonged to Nostoc. For this, we used 37 publicly available genomes from Nostoc 17 

(Supplementary Data 1a) that were included in a recent study on Nostocales phylogenomics 18 

(Pardo-De la Hoz et al. 2023) as a reference. For the reference genomes and all cyanobacterial 19 

genomes from the metagenomic libraries, we ran BUSCO v4.1.3 (Simão et al. 2015) using the 20 

―cyanobacteria_odb10‖ as the reference database (Kriventseva et al. 2019). This database 21 

consists of 773 single-copy orthologs conserved across Cyanobacteria. We aligned the nucleotide 22 

sequences of the 773 BUSCO markers using MAFFT v7.475 (Katoh and Standley 2013) and 23 
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PAL2NAL v14 (Suyama et al. 2006) as described in the section below. We trimmed all sites with 1 

gaps and generated a concatenated alignment that we used to infer a maximum likelihood tree in 2 

IQ-Tree v1.6.12 (Nguyen et al. 2015) with a GTR+G model and 1000 UFBoot2 replicates. With 3 

the resulting tree, we identified genome bins from four libraries (P2083, P2170, P10247 and 4 

P12560) that fell outside of Nostoc and excluded them from all subsequent analyses. All of those 5 

four libraries contained an additional cyanobacterial bin that fell within Nostoc and we used 6 

those for subsequent analyses. 7 

We refined the Nostoc genome bins with information from the assembly graph produced 8 

by SPAdes to achieve the highest quality MAGs. First, we used Graphbin2 (Mallawaarachchi et 9 

al. 2020), a binning refinement program that applies a label propagation algorithm to improve the 10 

binning results from other tools. Then, we used Bandage (Wick et al. 2015) to visualize the 11 

metagenomic assembly graphs and labeled the contigs (graph edges) that were included in the 12 

Nostoc genome bins by both MetBAT2 and Graphbin2. This allowed us to remove contaminant, 13 

chimeric, and duplicated contigs, as well as include Nostoc contigs that were not binned by 14 

MetaBAT2 because they were either too small (< 2500 bp) or had aberrant coverage (e.g., 15 

repetitive and mobile genetic elements, and rRNA genes). The refinement was partly possible 16 

because the Nostoc genome was typically an isolated component in the metagenome assembly 17 

graphs, and the Nostoc contigs had very high depth of coverage (median 175×; Supplementary 18 

Data 1a) compared to the rest of the metagenome. The manual refinement was done using the 19 

anvi-refine interactive interface from Anvio v7.1 (Eren et al. 2015). We obtained 124 Nostoc 20 

MAGs with 98% median BUSCO completeness (using the nostocales_odb10 database; 21 

Supplementary Data 1a), all of which included a full copy of the 16S rRNA gene.  22 
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We then used Anvio v7.1 (Eren et al. 2015) to search for single-nucleotide variants 1 

(SNVs) in the Nostoc MAGs to detect potential strain heterogeneity. We found that the median 2 

number of SNVs per MAG was 5,394 (max: 105,836; Supplementary Fig. 7a). This represents 3 

less than 0.1% of the average MAG size (~7.4 million bps, Supplementary Data 1a). Moreover, 4 

the median number of SNVs per genome that fell within one of the 1,517 BUSCO markers we 5 

used for phylogenetic analyses was 214 (max: 36,834; Supplementary Fig. 7 b), or less than 6 

0.02% of the length of the concatenated alignment of those markers (i.e., 1,547,142 sites, 7 

642,002 of which are parsimony-informative). We also found that, for most MAGs, the median 8 

proportion of reads that differ from the consensus base was less than 0.1 (Supplementary Fig. 8e; 9 

see Supplementary Fig. 8a–j for a summary of the full distributions). The same was true for 10 

SNVs within BUSCO markers (Supplementary Fig. 8f). Importantly, the proportion of reads that 11 

differ from the consensus base does not scale with the total number of SNVs in the genome 12 

(Supplementary Fig. 7c) or within BUSCO markers (Supplementary Fig. 7d). This means that 13 

the departure from the consensus base remained low even for the few MAGs with a relatively 14 

high number of SNVs (Supplementary Fig. 7c–d). 15 

Overall, the SNV analyses indicate that significant allele variation is both rare (< 0.1% of 16 

MAG size on average; Supplementary Fig. S7a–b) and highly skewed toward the consensus 17 

(average fraction of deviating alleles is < 0.1 per SNV for most MAGs; Supplementary Fig. 8e–18 

f). This variation is consistent with the notion that cyanolichen thalli contain a dominant strain of 19 

Nostoc along with a low abundance of closely related strains of the same species-level clade (i.e., 20 

within 99.9% ANI on average).  21 

We also classified the contigs from the Nostoc MAGs into chromosome and plasmid 22 

origin using PlasX (Yu et al. 2024) and Deeplasmid (Andreopoulos et al. 2022). We combined 23 
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the classification outputs from both tools to obtain a consensus. PlasX has higher accuracy and 1 

scalability than Deeplasmid (Yu et al. 2024). Therefore, if a contig was classified as plasmid only 2 

by Deeplasmid, we only considered it if the contig depth deviated by > 20× from the median 3 

coverage of the chromosome contigs as classified by PlasX. 4 

Phylogenetic inference 5 

 We first aligned the amino acid sequences of the 1,899 genes from the nostocales_odb10 6 

database used by BUSCO using MAFFT v7.475 (Katoh and Standley 2013) with the --globalpair 7 

algorithm with 1000 refinement iterations. We then obtained nucleotide alignments by back-8 

translating the amino acid alignments using PAL2NAL v14 (Suyama et al. 2006) and the 9 

unaligned nucleotide sequences as input. Ambiguously aligned regions were removed by 10 

trimming all sites with gaps using trimAl v1.2rev59 (Capella-Gutierrez et al. 2009). We only 11 

kept the alignments of the 1,517 genes that had > 200 variable sites and > 136 taxa (i.e., > 90%). 12 

In addition, we extracted the 16S rRNA gene and the trnL intron sequence from the genomes and 13 

aligned them with MAFFT as described above. These two markers will provide a link between 14 

our phylogenomic framework and many previous studies that characterized the molecular 15 

diversity of Nostoc using 16S or trnL sequences (Rajaniemi et al. 2005; Kaasalainen et al. 2015; 16 

Strunecký et al. 2023). A tutorial with examples of these links is available in the GitHub 17 

repository for this study: https://github.com/cjpardodelahoz/nostoc. 18 

 To infer gene trees, we first partitioned the coding nucleotide alignments into 1st, 2nd, and 19 

3rd codon position and searched for the best partition scheme and substitution models using 20 

ModelFinder (Kalyaanamoorthy et al. 2017) and PartitionFinder2 (Lanfear et al. 2016) as 21 

implemented in IQ-Tree v1.6.12 (-m MFP+MERGE option; Nguyen et al. 2015). Then, we 22 

searched for maximum likelihood gene trees in IQ-Tree with 1000 UFBoot2 (Hoang et al. 2018) 23 
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replicates. We used the resulting gene trees to infer a species tree with weighted-ASTRAL, 1 

which uses branch support values (i.e., UFBoot2) to generate weighting schemes for the quartet-2 

based species tree inference to account for uncertainty in gene tree estimation (Zhang and 3 

Mirarab 2022). We also inferred a maximum likelihood tree with a concatenated alignment of the 4 

nucleotide sequences of the 1,517 BUSCO genes, the 16S rRNA gene, and the trnL intron. The 5 

substitution model selection and tree search were done using the same parameters as we did for 6 

the gene trees above. Overall, our phylogenetic analyses resulted in 1,519 single- locus trees, one 7 

weighted-ASTRAL species tree (Fig. 1a and Supplementary Fig. 2a), and one maximum 8 

likelihood concatenated species tree (Supplementary Fig. 2b). 9 

Quantification of phylogenetic conflict 10 

 To quantify phylogenetic conflicts, we compared each of the 1,519 single- locus trees to 11 

the weighted-ASTRAL species tree. We used DiscoVista (Sayyari et al. 2018) to calculate the 12 

proportion of gene trees that strongly support, strongly reject, weakly support, and weakly reject 13 

each of the bipartitions in the weighted-ASTRAL tree. We used 95% UFBoot2 as the threshold 14 

to evaluate strong support. When a gene tree had missing taxa, the corresponding missing taxa 15 

were removed from the weighted-ASTRAL tree before evaluating conflict. Then, we used 16 

custom R functions and the R package ggtree v3.6.2 (Yu et al. 2017) to plot the results of the 17 

conflict analyses as pie charts on the weighted-ASTRAL tree. In addition, we compared the 18 

topologies of the weighted-ASTRAL and the concatenated tree to identify highly supported 19 

conflicts (Supplementary Fig. 2) using the Phylo.io interactive web server (Robinson et al. 20 

2016). 21 

 We tested whether there was a relationship between time elapsed between speciation 22 

events (i.e., branch lengths in absolute time units) and the percentage of gene trees that strongly 23 
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support, strongly reject, weakly support, and weakly reject each bipartition in the ASTRAL tree. 1 

We fitted four linear models between each of the percentage variables and the logarithm of 2 

branch lengths, e.g., percent with strong support ~ log(branch length). Each model included 148 3 

data points corresponding to the 148 internal branches of the ASTRAL tree. We used the lm() 4 

function in the stats package in R v4.2.2 (R Core Team 2013). The lm() function fits a linear 5 

model and tests the null hypothesis that the slope of the linear equation is equal to 0. We assessed 6 

significance with ⍺=0.01. 7 

 We also tested whether there was a relationship between the time elapsed between 8 

speciation events and the percentage of parsimony-informative sites that support each bipartition 9 

(i.e., site concordance factors [sCFs]) in the ASTRAL tree. To estimate sCFs, we first obtained 10 

maximum likelihood estimates of branch lengths in substitutions per site for the ASTRAL 11 

topology with the concatenated alignment of 1,519 loci described above. Then, we used the 12 

resulting tree and branch lengths, as well as the concatenated alignment, to estimate sCFs. Both 13 

analyses were performed in IQ-Tree (Mo et al. 2023). We fitted a linear model of the form sCF ~ 14 

log(branch length) as described above. 15 

 To ensure that the patterns of phylogenetic conflict we observed are independent of the 16 

trace levels of strain heterogeneity we observed in the Nostoc MAGs, we also repeated the 17 

phylogenetic inferences and the quantification of phylogenetic conflicts after filtering genes with 18 

SNVs. For each MAG, we identified BUSCO genes with at least one SNV where the non-19 

consensus allele had a frequency > 0.1 and removed those sequences from the single-locus 20 

alignments. We also removed six outlier taxa that had SNVs in more than 20% of their BUSCO 21 

genes. This filtered dataset contained 3.27% missing data compared to 0.97% missing data in the 22 

original dataset. The analyses based on the filtered dataset recapitulated all patterns from the 23 
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original dataset (Supplementary Fig. 9a–d). We recovered a species tree topology identical to the 1 

tree in Fig. 1a (excluding the six outlier taxa) and with the same anomaly zone clusters. In 2 

addition, we found again that the proportion of both weakly and strongly supported phylogenetic 3 

conflicts, as well as the proportion of discordant sites, is associated with the time elapsed 4 

between speciation events (Supplementary Fig. 9a–d). This demonstrates that phylogenetic 5 

conflicts are not the result of strain heterogeneity or chimeric assemblies. 6 

Detection of internodes in the anomaly zone 7 

 Equation 4 in (Degnan and Rosenberg 2006) can be used to calculate the value of a(x), 8 

which is the boundary of the anomaly zone for a branch of length x that has a descendant branch 9 

of length y. If y < a(x), then x and y are in the anomaly zone. To detect branches that fall in the 10 

anomaly zone in the Nostoc phylogeny, we calculated a(x) for each branch length x in the 11 

weighted-ASTRAL species tree and then compared a(x) to the length y of each descendant 12 

internal branch in coalescent units. 13 

 Detection of reticulations and ILS using species network inference 14 

 We used the R package MSCquartets v1.1.2 (Rhodes et al. 2021) to test the fit of the 15 

multispecies coalescent model (MSC) to the distribution of quartet topologies from the 1,519 16 

gene trees that we inferred. For each quartet, MSCquartets tests the null hypotheses that the 17 

quartet count concordance factors (qcCF) arose from a species quartet tree of unspecified 18 

topology (―T3‖) under the MSC, which implies that the observed gene tree conflicts are due to 19 

ILS. The alternative hypothesis is that the quartet is not tree-like, which may be evidence for 20 

reticulations or the result of noise from gene tree error. Some of the reticulations inferred by 21 

MSCquartets may be equivalent to sustained gene flow between diverging lineages as in the 22 

fragmented speciation model (Supplementary Fig. 1b). This is difficult to ascertain with 23 
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coalescent models because they assume that speciation is instantaneous (Retchless and Lawrence 1 

2010). We then used the results of these tests to infer a species network splits graph under the 2 

Network MSC with the NANUQ algorithm (Allman et al. 2019). We set β = 0.1 and α = 1e-6. As 3 

recommended by Allman et al. (2019), we chose a small α given the high proportion of weakly 4 

supported conflicts in our dataset (Fig. 1a, c), which indicates a high prevalence of noise from 5 

gene tree error. However, we also report the results of the quartet tests with α = 1e-2, 1e-3, and 6 

1e-5 (Supplementary Table 1). We visualized the splits graph using SplitsTree v4.19.2 (Huson 7 

1998). 8 

Divergence time estimation 9 

 There are no fossils that can be reliably assigned to Nostoc. Therefore, to infer divergence 10 

times for Nostoc, we first dated a phylogeny of the order Nostocales using fossils and geological 11 

calibrations. Then, we used several of the estimated age distributions within Nostocales as 12 

secondary calibrations to infer divergence times within Nostoc. For the Nostocales analysis, we 13 

used the 55 cyanobacterial taxa included in subset 0 of Pardo-De la Hoz et al. (2023; 14 

Supplementary Data 2a). We also included the genome of Nostoc sp. cyanobiont of Peltigera 15 

malacea JL33 (Supplementary Data 2a) so the split between Nostoc subclades 2 and 3 would be 16 

represented in the dated tree (Cornet et al. 2021; Pardo-De la Hoz et al. 2023). We inferred 17 

divergence times with MCMCTree, which allows Bayesian estimation of divergence times for a 18 

fixed topology and large phylogenomic alignments (Yang 2007; dos Reis and Yang 2011). We 19 

used the same topology as in Pardo-De la Hoz et al (2023; Supplementary Data 2a) and a 20 

concatenated amino acid alignment of the 1,648 BUSCO genes used in that study. To date the 21 

tree, we used two calibrations: i) a maximum age for the root set to 2,700 Ma with default right 22 

tail probability pR = 0.025, which is based on geological evidence for the early origin of 23 
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oxygenic photosynthesis (Farquhar et al. 2011; Uyeda et al. 2016); and ii) a calibration for the 1 

crown age of Nostocales with a minimum age set to 1,600 Ma based on fossil evidence of 2 

akinete-like structures which have a single origin in Nostocales, and a maximum age set to 2,320 3 

Ma, which is the lower bound for the rise in atmospheric oxygen and must have predated the 4 

evolution of heterocysts (Bekker et al. 2004; Tomitani et al. 2006). We used LG+G4 as the 5 

substitution model, an uncorrelated relaxed clock model with default priors, and a birth (λ)-death 6 

(μ) prior on node ages with λ = μ = 1 and sampling fraction ρ = 0.1. We sampled from both the 7 

prior and posterior distribution of divergence times using three MCMC chains with 100,000,000 8 

generations, sampling every 1000th generation, and discarded the first 20,000,000 generations as 9 

burnin. We assessed convergence by comparing the mean posterior node ages inferred with each 10 

of the three chains and checking that the effective sample size was > 200.  11 

 For the divergence time estimation within Nostoc, we used MCMCTree with the topology 12 

of the weighted-ASTRAL tree and a concatenated alignment of the nucleotide sequences of the 13 

1,519 loci dataset. We dated the tree with six secondary calibrations (i.e., 95% highest posterior 14 

density intervals) obtained from the dated Nostocales tree: i) the root age was set between 1,160 15 

and 1,840 Ma; ii) the age of the outgroup clade, which was set between 990 and 1,620 Ma; iii) 16 

the age of the most recent common ancestor of cf. Komarekiella sp. (Nostoc sp. B 2019) and 17 

subclades 1–3 was set between 710 and 1,410 Ma; iv) the crown age of the clade that includes 18 

subclades 1–3 was set between 440 and 950 Ma; v) the crown age of subclade 1/Desmonostoc 19 

was set between 150 and 460 Ma; and vi) the age of the most recent common ancestor of Nostoc 20 

(i.e., subclades 2 and 3) was set between 180 and 590 Ma. All secondary calibration priors had a 21 

uniform distribution with soft bounds and tail probabilities pR = pL = 0.025, which allowed 22 

estimated ages to be outside the calibration range with a total probability density of 0.05. We 23 
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used HKY+G5 as the substitution model, and the same clock and tree priors as for the 1 

Nostocales analysis. We sampled from both the prior and posterior distribution of divergence 2 

times using three MCMC chains with 14,000,000 generations, sampling every 1,000th 3 

generation, and discarded the first 4,000,000 generations as burnin. Convergence was assessed 4 

the same way as for the Nostocales analysis. The dated Nostoc tree with age estimates in newick 5 

format can be found in Supplementary Data 2b. 6 

Genome clustering 7 

 We used FastANI v1.31 (Jain et al. 2018) to calculate the average nucleotide identity 8 

(ANI) and alignment fraction between every pair of Nostoc genomes in our sampling. We then 9 

used a custom R script to group the genomes into clusters with a threshold of 95% ANI (Goris et 10 

al. 2007; Jain et al. 2018; Olm et al. 2020). We also used PopCOGenT (Arevalo et al. 2019) to 11 

delimit clusters of genomes based on estimates of recent gene flow. Finally, we classified our 12 

genomes using the Genome Taxonomy Database Toolkit v.2.3.2 (Chaumeil et al. 2020) with the 13 

–skip_ani_screen flag. For both analyses, we only used the chromosome contigs from each 14 

MAG. 15 

Sequencing of cyanolichens in Alberta 16 

 We used 2,316 cyanolichen specimens collected in 366 sites of 1 ha each by the Alberta 17 

Biodiversity Monitoring Institute (ABMI, www.abmi.ca; Supplementary Data 1c and d). The 18 

ABMI systematically surveys biodiversity in sites located in a 20-km grid across the province of 19 

Alberta, Canada. We genotyped the Nostoc photobionts and main fungal symbionts of the 20 

cyanolichen specimens using amplicon sequencing on PacBio SMRT Cells (Armanhi et al. 2016; 21 

Nelson et al. 2021). To do this, we extracted metagenomic DNA using the same protocol as for 22 

the generation of Nostoc MAGs (Appendix S1). Then, we amplified the rbcLX region of the 23 
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Nostoc photobionts using primers CW and CX (Rudi et al. 1998), and the nrITS-partial LSU 1 

region from the fungal partners using primers ITS1F and LR3 (Vilgalys and Hester 1990; Gardes 2 

and Bruns 1993). We added tags at the 5‘ end of these primers (5‘-3 

CTGGAGCACGAGGACACTGA-3‘ to forward primers and 5‘-4 

GCTGTCAACGATACGCTACG-3‘ to reverse primers) that allowed the attachment of sample-5 

specific barcodes to the rbcLX and nrITS-partial LSU amplicons in a second PCR reaction. We 6 

used 384 barcodes (Supplementary Data 3) and used the same barcode sequence on both ends of 7 

each amplicon. Barcoded amplicons were pooled in sets of 384 samples and size selection was 8 

performed to remove fragments < 700 bp using Mag-Bind TotalPure NGS (Omega Bio-tek) 9 

magnetic beads. The libraries were prepared and sequenced at the Duke Sequencing and 10 

Genomic Technologies core, with each pool sequenced in a separate PacBio SMRT Cell. We 11 

used PURC (Rothfels et al. 2017) to demultiplex the PacBio Circular Consensus Sequences and 12 

only kept sequences with > 20× read depth.  13 

Classification of Nostoc rbcLX sequences 14 

We assembled a dataset that included i) the full rbcL and rbcX sequences from the 151 15 

reference taxa in our phylogenomic analyses (Supplementary Data 1a); ii) the 2,316 rbcLX 16 

sequences from the ABMI cyanolichen specimens (Supplementary Data 1a); and iii) 1,098 public 17 

rbcLX sequences that had been included in previous phylogenetic analyses of Nostoc that 18 

identified multiple phylogroups within the genus (Supplementary Data 1b; O‘Brien et al. 2013; 19 

Magain et al. 2017; Chagnon et al. 2018; Magain et al. 2018; Miadlikowska et al. 2018; Pardo-20 

De la Hoz et al. 2018). This last set consists mostly of Nostoc sequences from cyanolichens 21 

collected worldwide, but it also includes sequences from free-living and plant-symbiotic strains 22 

(Supplementary Data 1b). Initially, we retrieved all sequences included in the analyses of those 23 
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previous studies and later removed 291 sequences which only spanned the rbcX region or were 1 

missing most of the 3‘ end of the rbcL gene. We then aligned all 3,274 sequences using MAFFT 2 

with the --retree 1 and --maxiterate 0 flags and manually refined and excluded ambiguous 3 

regions and the spacer in Mesquite v3.70 (http://www.mesquiteproject.org/). We used this 4 

alignment to place the ABMI (ii) and public (iii) rbcLX sequences on the phylogenomic tree of 5 

Nostoc using the Evolutionary Placement Algorithm implemented in RAxML v8.2.12 (Berger et 6 

al. 2011; Stamatakis 2014) and the weighted-ASTRAL Nostoc tree (Fig. 1 and Supplementary 7 

Fig. 2a) as the reference topology. The EPA placed 98% (3058) of the queries within one of the 8 

sections and subclades delimited in Figs. 1–3. We used the placements to sort the reference and 9 

query rbcLX sequences into 16 sets, one for each of the 16 sections in Nostoc subclades 2 and 3. 10 

Those sets of sequences were then aligned with MAFFT and refined manually in Mesquite. 11 

Sorting the sequences by section allowed the inclusion of the spacer region in the subsequent 12 

phylogenetic analyses of all alignments. We then inferred maximum likelihood trees from each 13 

alignment using IQ-Tree with 1000 UFBoot2 replicates. 14 

We used the resulting trees to test the delimitations of 43 phylogroups that had been 15 

defined in previous phylogenetic studies of Nostoc based solely on rbcLX (O‘Brien et al. 2013; 16 

Magain et al. 2017; Magain et al. 2018). For this, we removed the ABMI taxa from the trees and 17 

only examined the relationships among the public rbcLX sequences and the rbcLX sequences 18 

from the genomes included in the phylogenomic analyses (Supplementary Fig. 5a–n). This 19 

allowed us to determine the cases where the sequences previously assigned to a phylogroup were 20 

recovered as monophyletic and how these clades relate to the clusters delimited with genomic 21 

data (Fig. 3). We propose the recognition of 43 Nostoc phylogroups within Nostoc subclades 2 22 

and 3 (32 delimited previously and 11 defined here; Supplementary Table 2; Supplementary Data 23 
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1b; Supplementary Fig. 5a–n) that can be identified using genomic or rbcLX sequence data. 1 

Twenty-one of these phylogroups correspond to a single gene-flow cluster identified with 2 

PopCOGenT (Supplementary Fig. 5a–b, d–j, and n). In two cases, we merged a pair of sister 3 

clades that had been delimited as two phylogroups into one because they corresponded to the 4 

same gene-flow unit inferred by PopCOGenT (phylogroups XVI and XVIII, and phylogroups 5 

XIII and XLIII; Supplementary Fig. 5i). However, several of these phylogroups were recovered 6 

as clades nested within a set of less structured but closely related strains (e.g., section 3.1; 7 

Supplementary Fig. 5a). This is probably the result of rapid diversification leaving behind a near-8 

continuum of diversity as we observed at broader phylogenetic scales in Nostoc (Fig. 3) and as 9 

evidenced by the presence of multiple internodes that fall in the anomaly zone within the 10 

sections (Fig. 3). Therefore, we consider these larger clades as species complexes. Altogether, 11 

our approach allowed us to classify the public rbcLX sequences into phylogroups and/or species 12 

complexes, sections, and subclades (Supplementary Data 1b). Finally, we used these 13 

delimitations to classify the ABMI sequences according to their position in the section trees 14 

relative to the public sequences. Altogether, 1,705 ABMI sequences were classified to 15 

phylogroup level; 2,307 were classified at least to section and species complex; and only 7 16 

sequences have an uncertain position within the Nostoc tree (Supplementary Data 1c). These 17 

incertae sedis strains should be targets for future genome sequencing because they probably 18 

represent additional sections or subclades. 19 

Classification of mycobionts from Alberta cyanolichens 20 

We examined all cyanolichen specimens and assigned preliminary identifications to the 21 

lichen-forming fungus (mycobiont) based on morphological traits (Supplementary Data 1c). Of 22 

the 2,316 cyanolichen specimens we used, 2,060 were from the lichen-forming fungal genus 23 
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Peltigera. For those specimens, we assigned molecular species identifications by placing the 1 

nrITS and partial LSU sequences into the Peltigera phylogeny available on the T-BAS platform 2 

(https://guide-tbas.cifr.ncsu.edu/tbas) using the EPA algorithm (Carbone et al. 2017; Carbone et 3 

al. 2019). We also performed BLASTn searches of the nrITS sequences against a custom 4 

database that included all Peltigera sequences from previous studies on the phylogeny, 5 

systematics, and species delimitation within this genus (O‘Brien et al. 2013; Miadlikowska et al. 6 

2014; Magain et al. 2017; Chagnon et al. 2018; Magain et al. 2018; Miadlikowska et al. 2018; 7 

Pardo-De la Hoz et al. 2018). For the remaining cyanolichen specimens from other genera, we 8 

assigned molecular identifications at the genus or species level based on BLAST searches of the 9 

nrITS sequences against the NCBI nucleotide database. Overall, we assigned molecular 10 

identifications to the lichen-forming fungus for 2,146 cyanolichen specimens (Supplementary 11 

Data 1c).  12 
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Data availability 1 

 All sequence data were deposited in GenBank under BioProject accession 2 

PRJNA1066398. Amplicon sequence data is available under GenBank accessions 3 

KIFN01000001–KIFN01002316 (rbcLX), KIFO01000001–KIFO01002145 (nrITS), and 4 

KIFP01000001–KIFO01001677 (partial nrLSU). Metagenomic reads are available from the 5 

Sequence Read Archive under accessions SRR28386200–SRR28386311. Nostoc genome 6 

assemblies' accession numbers are listed in Supplementary Data S1a.  All the outputs from 7 

computational analyses and processing pipelines were deposited in the Dryad Digital Repository 8 

DOI: 10.5061/dryad.dv41ns25x. Phylogenomic and rbcLX trees and alignments of Nostoc are 9 

available on the T-BAS (https://guide-tbas.cifr.ncsu.edu/tbas) platform for download and 10 

placement of unknown Nostoc sequences. A tutorial for placement of unknown queries can be 11 

found in the GitHub repository for this study: 12 

https://github.com/cjpardodelahoz/nostoc/blob/main/tbas_tutorial/README.md. All code used 13 

to analyze the data in the present study can be found in the GitHub repository for this study: 14 

https://github.com/cjpardodelahoz/nostoc. 15 
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Table 1. Summary of fungal partner sharing between cooccurring and non-cooccurring pairs of 2 

cyanolichen specimens with Nostoc OTUs from section 3.6 in Alberta, Canada (Fig. 4a). 3 

Nostoc 

O TUs 

Total 

specimen 

pairs 

Cooccurring 

specimen  

pairs 

Non-cooccurring 

specimen pairs 

Cooccurring 

specimen pairs 

sharing fungal 

partner 

Non-cooccurring 

specimen pairs 

sharing fungal 

partner 

% of 

cooccurring 

specimen 

pairs sharing 

fungal 

partner 

% of non-

cooccurring 

specimen pairs 

sharing fungal 

partner 

V and 

XLII 

18078 107 17971 26 1561 24.29 8.68 

3.6a and 

XLII 

4554 24 4530 2 430 8.33 9.49 

3.6a and 

V 

17292 169 17123 50 4207 29.58 24.56 

XLII and 

XLII 

2346 35 2311 9 367 25.71 15.88 

V and V 34191 499 33692 120 6251 24.04 18.55 

3.6a and 

3.6a 

2145 31 2114 18 718 58.06 33.96 

  4 
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Figure legends 1 

Figure 1. Nostoc phylogenetic history is characterized by multiple rapid radiations associated 2 

with plant evolution. a Phylogenomic tree of Nostoc with estimates of divergence times 3 

including 151 taxa (Supplementary Data 1a). The topology was inferred with weighted-ASTRAL 4 

(Zhang and Mirarab 2022) using 1,519 gene trees. The gray node bars show the 95% highest 5 

posterior density of divergence times estimated with MCMCTree (dos Reis and Yang 2011). Pie 6 

charts show the proportion of the 1519 gene trees that recovered each node with strong support, 7 

strong conflict, weak support, or weak conflict, or that were not scored due to missing data. We 8 

used 95% UFboot as the support threshold to assess conflicts. The delimitation of subclades 1–3 9 

is partially based on Otalora et al. (Otálora et al. 2010), but both of our phylogenomic analyses 10 

(see Supplementary Fig. 2) recovered a different topology compared to their study, which was 11 

based solely on rbcLX. We also found that the 16S sequence of the type species of the genus 12 

Demonostoc falls within subclade 1. Desmonostoc was segregated from Nostoc and the two 13 

genera are sister (Hrouzek et al. 2013), thus, subclade 1 likely corresponds to Desmonostoc. The 14 

lineage labeled ―cf. Komarekiella sp.‖ corresponds to strain Nostoc sp. B 2019, which is 15 

classified as Nostoc in GenBank but probably represents the closely related genus Komarekiella 16 

(Scotta Hentschke et al. 2017) according to GTDB. Terricolous cyanolichens include those 17 

growing directly on soil, mosses, and rocks. The vertical color strips, concave-up red arcs, and 18 

dashed arrows indicate estimated major evolutionary events for plants (green strips) and fungi 19 

(peach strips; Lutzoni et al. 2018). Concave-down red arcs indicate the estimated age of major 20 

events during Nostoc evolution. The early radiation of angiosperms includes the crown age of 21 

angiosperms until the crown age of Pentapetalae (Magallón et al. 2013). The maximum age for 22 

the origin of ascolichens corresponds to the stem age of the clade that includes Arthoniomycetes, 23 
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Dothideomycetes, Eurotiomycetes, Lecanoromycetes, and Lichinomycetes (Díaz-Escandón et al. 1 

2022). Numbered black arcs indicate anomaly zone clusters. b and c show the relationship 2 

between topological conflicts and time between speciation events. Each dot corresponds to an 3 

internal branch from the Nostoc species tree (a). The values on the X axis indicate the median 4 

branch length in millions of years, and the Y values are the percentage of gene trees that strongly 5 

(b) or weakly (c) reject each given internode. The dashed lines represent the predicted values 6 

from the linear model we fitted to the log-transformed data. 7 

 8 

Figure 2. Reticulations are common between closely-related lineages of Nostoc during rapid 9 

diversification associated with anomaly zones. Phylogenetic split network inferred with NANUQ 10 

(Allman et al. 2019). Parallel edges are associated with the same split of taxa. The edge lengths 11 

represent split weights, which are proportional to the fraction of quartets supporting a given split. 12 

Numbered black arcs indicate areas of the network that correspond to the nine anomaly zone 13 

clusters shown in Figure 1a. 14 

 15 

Figure 3. Nostoc diversification patterns resulted in heterogenous species boundaries. The dot 16 

plot shows the distribution of ANI values between all pairs of Nostoc and Desmonostoc 17 

genomes. Each row of dots shows the ANI values between a single Nostoc or Desmonostoc 18 

genome (at the tip of the corresponding terminal branch) and all the other Nostoc or 19 

Desmonostoc genomes included in this phylogeny. The vertical gray shade (spanning 83–95% 20 

ANI) shows the range that the ANI gap is expected to span (Jain et al. 2018). The vertical dashed 21 

line shows the 95% ANI threshold typically used for bacterial species delimitation 22 

(Konstantinidis and Tiedje 2005; Parks et al. 2020). The tree and branch lengths are the same as 23 
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in Fig. 1a, but without the outgroup taxa and cf. Komarekiella sp. The numbers with decimal 1 

point to the right of the tree correspond to the sixteen sections (highlighted with two different 2 

shades of gray) that we delimited within subclades 2 and 3. The two columns with color blocks 3 

show the genome clusters inferred using 95% ANI and PopCOGenT; blue indicates clusters 4 

supported by both methods, lilac indicates discordant clusters. 5 

 6 

Figure 4. Nostoc lineage boundaries are maintained despite cooccurrence and shared fungal 7 

symbiotic partners (Peltigera). This example is from Nostoc section 3.6 (Figs. 1–3) from 8 

cyanolichens collected in Alberta, Canada. We considered each labeled clade as one OTU (i.e., 9 

phylogroups V and XLII, and spp. complex 3.6a) for a total of three OTUs. a Maximum 10 

likelihood tree of 426 Nostoc rbcLX sequences. The color of the circles at the branch tips 11 

indicates the number of cooccurring Nostoc OTUs from section 3.6 at the specific sites where 12 

each specimen was collected. Numbers above branches are UFBoot2 support values. Branch 13 

lengths represent the expected number of nucleotide substitutions per site. b Relief map of 14 

Alberta showing the distribution of 152 sites where the lichenized Nostoc were collected. c 15 

Interaction matrix between Nostoc and Peltigera lichen-forming fungal partners. Each cell in the 16 

matrix shows the frequency of the respective combination of Nostoc OTU and its fungal partner 17 

Peltigera in Alberta.  18 
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Figure 1 2 
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Figure 2 2 
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Figure 3 2 
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