

1 **Rapid radiations outweigh reticulations during the evolution of a 750-million-year-old**
2 **lineage of cyanobacteria**

3 Carlos J. Pardo-De la Hoz¹, Diane L. Haugland^{2,3}, Darcie Thauvette², Sydney Toni², Spencer
4 Goyette⁴, William White⁵, Ian D. Medeiros^{1,6}, Luc Cornet⁷, Petr Dvořák⁸, Diego Garfias-
5 Gallegos¹, Jolanta Miadlikowska¹, Nicolas Magain⁹, François Lutzoni^{1*}.

6 ¹Department of Biology, Duke University, Durham, NC 27708, USA.

7 ²Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, AB T6G 2E9,
8 Canada.

9 ³Department of Renewable Resources, Faculty of Agricultural, Life & Environmental Sciences,
10 University of Alberta, Edmonton, AB T6G 2H1, Canada.

11 ⁴Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

12 ⁵Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.

13 ⁶Department of Botany, National Museum of Natural History, Smithsonian Institution,
14 Washington, DC 20560, USA.

15 ⁷BCCM/ULC, InBios Research Center, University of Liege, Liege, Belgium.

16 ⁸Department of Botany, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc,
17 Czechia.

18 ⁹Evolution and Conservation Biology, InBioS Research Center, Université de Liège, Liège 4000,
19 Belgium.

20
21 *Correspondence: flutzoni@duke.edu

1 **Abstract**

2 Species are a fundamental unit of biodiversity. Yet, the existence of clear species boundaries
3 among bacteria has long been a subject of debate. Here, we studied species boundaries in the
4 context of the phylogenetic history of *Nostoc*, a widespread genus of photoautotrophic and
5 nitrogen-fixing cyanobacteria that includes many lineages that form symbiotic associations with
6 plants (e.g., cycads and bryophytes) and fungi (e.g., cyanolichens). We found that the evolution
7 of *Nostoc* was characterized by eight rapid radiations, many of which were associated with major
8 events in the evolution of plants. In addition, incomplete lineage sorting associated with these
9 rapid radiations outweighed reticulations during *Nostoc* evolution. We then show that the pattern
10 of diversification of *Nostoc* shapes the distribution of average nucleotide identities (ANIs) into a
11 complex mosaic, wherein some closely related clades are clearly isolated from each other by
12 gaps in genomic similarity, while others form a continuum where genomic species boundaries
13 are expected. Nevertheless, recently diverged *Nostoc* lineages often form cohesive clades that are
14 maintained by within-clade gene flow. Boundaries to homologous recombination between these
15 cohesive clades persist even when the potential for gene flow is high, i.e., when closely related
16 clades of *Nostoc* cooccur or are locally found in symbiotic associations with the same lichen-
17 forming fungal species. Our results demonstrate that rapid radiations are major contributors to
18 the complex speciation history of *Nostoc*. This underscores the need to consider evolutionary
19 information beyond thresholds of genomic similarity to delimit biologically meaningful units of
20 biodiversity for bacteria.

21 **Keywords:** ANI, average nucleotide identity, anomaly zone, bacterial species, cyanobacterium,
22 lichens, *Nostoc*, Peltigerales, species delimitation, symbiosis.

1 **Introduction**

2 Bacterial cells reproduce clonally but may exchange genetic material through horizontal
3 gene transfers (HGT; Thomas and Nielsen 2005). As a result, their genomes often contain a
4 mixture of loci inherited vertically and horizontally (Lawrence and Ochman 1998; Mostowy et
5 al. 2017). These chimeric genomes have fueled two long-standing debates: whether bacterial
6 evolution follows a bifurcating tree-like pattern (Doolittle 1999; Daubin 2002; Coleman et al.
7 2021), and whether bacterial species can be defined as distinct biological entities (Cohan 2002;
8 Doolittle 2012; Shapiro et al. 2016).

9 The frequency of HGT varies depending on the mechanism of DNA integration and the
10 relatedness of the donor and recipient genomes. Specifically, non-homologous recombination can
11 occur between distantly related genomes and typically involves accessory rather than core genes
12 (Frost et al. 2005; Oliveira et al. 2017). In contrast, homologous recombination (HR) is more
13 likely between closely related genomes and affects both accessory and core genes (Fraser et al.
14 2007; Everitt et al. 2014). There is growing evidence that HR in bacteria resembles gene flow in
15 sexually reproducing eukaryotes, such that decreasing frequencies of HR between diverging
16 genomes act as boundaries that fit the biological species concept (Bobay and Ochman 2017;
17 Cobo-Simón et al. 2023).

18 Barriers to HR have been estimated to emerge at various levels of genome sequence
19 identity, ranging from 90% to 98% ANI (Diop et al. 2022). This variation could be due to
20 differences in the length of the nearly identical DNA fragments required to initiate HR, which
21 varies across bacterial lineages (Shen and Huang 1986; Diop et al. 2022). These findings are in
22 agreement with the common use of the 95% ANI threshold to delimit bacterial species based on
23 genomic data (Konstantinidis and Tiedje 2005; Parks et al. 2020). In addition, a large-scale

1 survey of prokaryotic genomes revealed a putative gap in the distribution of ANIs that spans 83–
2 95% ANI, which has been interpreted as evidence of a universal species boundary (Jain et al.
3 2018; Rodriguez-R et al. 2021). However, the wide range of sequence identity levels associated
4 with barriers to HR suggests that ANI boundaries could be centered around different sequence
5 identities in different lineages. Therefore, we need to study the distribution of ANI gaps within a
6 phylogenetic framework to assess the adequacy of ANI thresholds for bacterial species
7 delimitation.

8 HR patterns can also drive a diversification process wherein species are cohesive
9 recombining populations that diverge as barriers to HR arise (Shapiro et al. 2016; Stanojković et
10 al. 2024). As part of this process, allele variation can be unlinked between loci due to
11 recombination, which can lead to conflicts between phylogenies of different genes (Sakoparnig
12 et al. 2021). One scenario where unlinked allele variation leads to conflicts among gene trees is
13 due to incomplete lineage sorting (ILS), where ancestral polymorphisms are preserved through
14 speciation events and the allele sorting differs from the primary history of population divergence
15 (Supplementary Fig. 1a; Degnan and Rosenberg 2009). Conflicts among gene trees can also
16 result from fragmented speciation, where genetic isolation is achieved asynchronously across the
17 genome, leading to gene flow barriers at some loci while others continue to recombine freely
18 (Supplementary Fig. 1b; Retchless and Lawrence 2010; Lawrence 2013). Conflicts due to ILS or
19 fragmented speciation are more likely to occur when the time intervals between speciation events
20 are short. For ILS, shorter intervals decrease the chance that any allele of the polymorphic loci
21 will fixate before subsequent divergence (Supplementary Fig. 1a; Maddison 1997). Similarly, in
22 fragmented speciation, shorter intervals decrease the probability that all loci will be isolated
23 before the next divergence (Supplementary Fig. 1b; Lawrence 2013). Therefore, rapid

1 radiations—characterized by successive speciation events occurring over a short timescale—can
2 be a major source of phylogenetic conflicts among loci in bacteria.

3 Rapid radiations are expected to generate distinct patterns of phylogenetic conflict
4 compared to reticulations where genetic information is exchanged between distant, well-
5 separated lineages (Supplementary Fig. 1). When ILS or fragmented speciation are the sources of
6 phylogenetic conflict, the frequency of conflicts should increase as speciation intervals become
7 shorter (Whitfield and Lockhart 2007; Lopes et al. 2021). Additionally, a greater proportion of
8 the conflicting relationships may be recovered with weak statistical support as speciation
9 intervals decrease due to fewer substitutions accumulating along short internal branches (Huang
10 and Knowles 2009; Roycroft et al. 2020). In some rapid radiations, the patterns of phylogenetic
11 conflict may fit the expectations of the anomaly zone: a region of tree parameter space where the
12 most likely gene tree is discordant with the species tree (Degnan and Rosenberg 2006;
13 Rosenberg 2013). Inferring species trees in the presence of anomaly zones resulting from rapid
14 radiations is one of the main challenges of modern phylogenetics, especially for maximum
15 likelihood inferences based on concatenated datasets (Kubatko and Degnan 2007; Mendes and
16 Hahn 2018; Cloutier et al. 2019; Chafin et al. 2021; Morales-Briones et al. 2021; Pardo-De la
17 Hoz et al. 2023). Nevertheless, rapid radiations have received little attention in phylogenetic
18 studies of bacteria, where phylogenetic discordance is often regarded as a synonym of reticulated
19 evolution (Murray et al. 2016; Martinez-Gutierrez and Aylward 2021).

20 In this study, we focus on *Nostoc*, a common and widespread genus of photoautotrophic
21 and nitrogen-fixing cyanobacteria in the order Nostocales (Komárek et al. 2014; Dvořák et al.
22 2020). *Nostoc* often forms symbioses with plants (e.g., cycads and some bryophytes) and lichen-
23 forming fungi (e.g., most cyanolichens of the order Peltigerales). In all these symbioses, *Nostoc*

1 transfers fixed nitrogen to the plant and fungal symbionts (Warshan et al. 2018; Darnajoux et al.
2 2019). Consequently, *Nostoc* is recognized as a model to study plant and lichen symbiotic
3 interactions, as well as biological nitrogen fixation (Magain et al. 2017; Warshan et al. 2018;
4 Darnajoux et al. 2019). However, the scope of many studies is currently limited by the lack of
5 meaningful and reliable units of biodiversity in this genus (Cornet et al. 2021). Here, we used
6 151 genomes and metagenome-assembled genomes (MAGs) to characterize genomic species
7 boundaries in *Nostoc* within a phylogenomic framework and delimit such units. We first inferred
8 a phylogenomic species tree with estimates of divergence times and quantified patterns of
9 phylogenetic conflict to explore the contribution of ILS vs reticulations to *Nostoc* evolution. This
10 enabled us to detect and date rapid radiations that occurred throughout the evolution of *Nostoc*
11 and to identify successive speciation events that fit the expectations of the anomaly zone. Then,
12 we surveyed the distribution of pairwise ANIs among *Nostoc* genomes to determine whether
13 there is a uniform gap across the phylogeny of *Nostoc* that spans the expected 83–95% ANI
14 range (Jain et al. 2018), which would be indicative of a homogeneous species boundary. We used
15 these results, along with estimates of recent gene flow, to propose a classification scheme for
16 *Nostoc* strains that integrates phylogenetic, genomic, and ecological information. Finally, we
17 genotyped a collection of 2,316 lichenized *Nostoc* strains from a systematic regional-scale
18 sampling to confirm that barriers to gene flow are maintained between closely related,
19 cooccurring, species-level clades of *Nostoc* that we delineated in this study.

20 **Results and discussion**

21 ***Rapid radiations and ILS were more prevalent than reticulations during Nostoc***
22 ***evolution***

1 Our first goal was to infer the evolutionary history of *Nostoc*. We used a dataset of 151
2 genomes, including 124 newly generated *Nostoc* MAGs from cyanolichens sampled globally
3 (Supplementary Data 1a). Of these new MAGs, 80 could not be assigned to a known species in
4 the Genome Taxonomy Database (Supplementary Data 1a; Parks et al. 2022), demonstrating that
5 the genomic diversity of *Nostoc* is highly underexplored.

6 We then inferred a species tree with divergence time estimates and quantified
7 phylogenetic conflicts by comparing the topology of each gene tree to the species tree (Fig. 1a
8 and Supplementary Fig. 2a). We found that the number of phylogenetic conflicts was associated
9 with the time elapsed between speciation events (Fig. 1b–c). More specifically, longer internodes
10 (i.e., more time between speciation events) were associated with a higher proportion of
11 congruent gene trees (Supplementary Fig. 3a). Conversely, shorter internodes (i.e., less time
12 between speciation events) were associated with a higher proportion of both weakly and strongly
13 supported conflicting gene trees (Fig. 1b–c). Importantly, the fraction of weakly supported
14 conflicts was consistently larger than the fraction of strongly supported conflicts for short
15 interval times (Fig. 1b–c). In addition, the proportion of congruent sites was also associated with
16 internode lengths (Supplementary Fig. 3c). These findings strongly suggest that most
17 phylogenetic conflicts resulted from rapid successive speciation events (Supplementary Fig. 1a–
18 b; Whitfield and Lockhart 2007; Huang and Knowles 2009; Lawrence 2013; Roycroft et al.
19 2020; Lopes et al. 2021).

20 We also detected nine clusters of short consecutive internodes where phylogenetic
21 conflicts fit the expectations of the anomaly zone (Fig. 1a). One of them (anomaly zone cluster 9;
22 Fig. 1a) involves internodes within a species-level clade (phylogroup V; Supplementary Fig. 2a).
23 The other eight correspond to interspecific divergences where node age estimates are largely

1 overlapping (anomaly zone clusters 1–8; Fig. 1a). This indicates that they are part of rapid
2 radiations and we will refer to them as such. All topological incongruences between coalescent
3 and concatenated trees are associated with internode clusters that fit the expectations of the
4 anomaly zone (Supplementary Fig. 2; Mendes and Hahn 2018; Cloutier et al. 2019). Moreover,
5 the conflicting relationships have strong support in both trees, but they are local rearrangements
6 of branches around internodes within an anomaly zone (Supplementary Fig. 2). These patterns
7 are hallmarks of ILS associated with rapid radiations (Cloutier et al. 2019; Leducq et al. 2022;
8 Pardo-De la Hoz et al. 2023).

9 Phylogenetic conflicts may also result from reticulations that are best represented by a
10 network rather than a fully bifurcating tree (Huson 1998; Huson and Bryant 2006). We quantified
11 the proportion of quartets from 1,519 gene trees that fit either a tree-like model, where conflicts
12 are due to ILS, or a non-tree-like model, where conflicts are due to reticulations (Allman et al.
13 2019; Rhodes et al. 2021; Bjorner et al. 2023). We found that up to 73.8% of quartets in our
14 phylogenomic dataset fit a tree-like ILS model (Supplementary Table 1) compared to 26.2%
15 fitting a non-tree like reticulation model. This further supports that ILS is the main cause of
16 phylogenetic conflicts in *Nostoc*.

17 We then used the results of this model-fitting analysis to infer a phylogenetic split
18 network and found that several areas of complex reticulations correspond to relationships that
19 fall in the anomaly zone (Fig. 2). These reticulations involve close rather than distant relatives
20 and likely represent ongoing gene flow between rapidly diverging species during these
21 radiations. Our results demonstrate that fully bifurcating trees do not capture the complexity of
22 the speciation history in bacteria, especially for rapid radiations associated with anomaly zones
23 (Fig. 2; Doolittle 1999; Pardo-De la Hoz et al. 2023). Nevertheless, the network recovered all

1 major lineages delineated in the species tree (i.e., sections 2.1–2.4, sections 3.1–3.12, and
2 subclade 1/*Desmonostoc*; Figs. 1a and 2). Moreover, most of them are subtended by long edges
3 (Fig. 2), which indicates strong support for these relationships in the data (Allman et al. 2019).
4 Therefore, our integration of species tree and network inferences yielded a robust phylogenomic
5 framework while highlighting areas of complex speciation history linked to reticulations between
6 close relatives and ILS resulting from rapid radiations in *Nostoc*.

7 ***Nostoc* rapid radiations are associated with major events in plant evolution**

8 We found that the crown age of the clade that includes *Desmonostoc* and *Nostoc*, ca. 750
9 (913–599) Ma, was contemporaneous with the estimated minimum age for the origin of
10 terrestrial green algae (881–562 Ma) and terrestrial fungi (789–670 Ma; Fig. 1a; Lutzoni et al.
11 2018). This suggests that nitrogen fixation by terrestrial *Nostoc*-like cyanobacteria might have
12 facilitated the transition to land by photoautotrophic green algae and heterotrophic fungi at a time
13 when nitrogen and carbon were limited in terrestrial environments (Knack et al. 2015; Lenton
14 and Daines 2017). Nevertheless, most of the diversification of *Nostoc* (starting 590–423 Ma)
15 occurred after the origin of terrestrial embryophytes (530–430 Ma; Magallón et al. 2013; Lutzoni
16 et al. 2018; Warshan et al. 2018; Servais et al. 2019), including all eight rapid radiations we
17 detected (Fig. 1a). The association between land plant evolution and *Nostoc* diversification might
18 be related to both the establishment of symbiotic associations and the availability of new
19 terrestrial habitats with a diverse array of selective pressures (Lutzoni et al. 2018; Dahl and
20 Arens 2020). There is fossil evidence that non-vascular plants occasionally harbored intercellular
21 cyanobacterial symbionts ca. 400 Ma (Kidston and Lang 1921; Krings et al. 2009)—an
22 association reminiscent of the present-day symbioses between *Nostoc* and some hornworts and
23 liverworts (Villarreal and Renzaglia 2006; Warshan et al. 2018; Nelson et al. 2019). However,

1 the morphological features of the fossilized cyanobacteria suggest that they are closer relatives to
2 the order Oscillatoriales than to *Nostoc* (Kidston and Lang 1921; Krings et al. 2009). Early
3 *Nostoc* may have formed epiphytic rather than intercellular symbioses with early non-vascular
4 plants similar to the interaction between extant *Nostoc* and some mosses (Warshan et al. 2017;
5 Warshan et al. 2018; Carrell et al. 2022).

6 Five of the eight rapid radiations (anomaly zone clusters 4–8 in Fig. 1a) occurred during a
7 period (299–112 Ma) characterized by the origin and diversification of extant Pinaceae until the
8 early radiation of flowering plants (Fig. 1a; Magallón et al. 2013; Lutzoni et al. 2018). In an
9 early phylogenetic study of *Nostoc* using 16S rDNA sequences, Rikkinen et al. (2002) found two
10 major clades and labeled them by their signature lichen mycobiont genus: i) the *Peltigera*-type
11 clade, which included *Nostoc* of terrestrial cyanolichens, free-living *Nostoc* strains, and a
12 symbiotic *Nostoc* from the roots of a cycad; and ii) the *Nephroma*-type clade, which only
13 included *Nostoc* of epiphytic cyanolichens. The *Nephroma*-type clade corresponds to the lineage
14 in anomaly zone cluster 8 in Fig. 1a, which we also found to be comprised mostly of *Nostoc*
15 living in epiphytic cyanolichens growing on woody conifers and angiosperms. The cluster 8
16 radiation occurred contemporaneously with the origin and early radiation of flowering plants
17 (Fig. 1a). Contrary to a previous suggestion (Nelsen et al. 2020), our results support an early
18 origin of *Nostoc*, i.e., before the origin of ascolichens (Fig. 1a), and that the emergence of
19 environments dominated by flowering plants was contemporaneous with the rapid diversification
20 of most *Nostoc* that form associations with epiphytic cyanolichens.

21 The two *Nostoc* clades identified by Rikkinen et al. (2002) also prompted the popular
22 hypothesis that cyanolichen communities form guilds structured by substrate (i.e., the epiphytic
23 *Nephroma* guild and the terrestrial *Peltigera* guild) where *Nostoc* photobionts are shared within,

1 but not among, those guilds (Rikkinen 2003; Fedrowitz et al. 2012; Dal Grande et al. 2014;
2 Belinchón et al. 2015; Zúñiga et al. 2015; Zúñiga et al. 2017; Kaasalainen et al. 2021; Duran-
3 Nebreda and Valverde 2022). However, our results confirm that *Nostoc*-like cyanobacteria found
4 in lichens belong to at least three major lineages (subclade 1/*Desmonostoc*, and *Nostoc* subclades
5 2 and 3; Fig. 1a), all of which include strains with diverse lifestyles or associated with lichens
6 from multiple substrates (Fig. 1a). Therefore, the two-guild model does not capture the
7 evolutionary diversity of *Nostoc*, which implies that the mechanisms that underlie the interaction
8 dynamics of *Nostoc* in cyanolichens probably involve a more complex combination of eco-
9 evolutionary processes (Lu et al. 2018; Chagnon et al. 2019; Rolshausen et al. 2020; Pardo-De la
10 Hoz et al. 2022; Rodríguez-Arribas et al. 2023).

11 ***Nostoc* diversification patterns resulted in heterogeneous species boundaries**

12 Our next goal was to explore genomic species boundaries within the phylogenetic
13 framework of *Nostoc*. We calculated ANI between all pairs of *Nostoc* and *Desmonostoc* genomes
14 available to us and found that the distribution of ANIs is more complex than expected if species
15 boundaries (gaps) were homogeneously distributed among lineages of these sister genera (Fig. 3
16 and Supplementary Fig. 4). There is a gap centered around 86% ANI (Fig. 3 and Supplementary
17 Fig. 4) but this gap does not correspond to the expected universal species boundary spanning 83–
18 95% ANI (Jain et al. 2018). Instead, we observed a mosaic of genomic continuity mixed with
19 gaps spanning different ranges of ANI (Fig. 3). Importantly, the distribution of ANI values is
20 largely structured by the diversification pattern of *Nostoc*, such that clades subtended by longer
21 branches are separated from the rest by larger ANI gaps. For example, the *Nostoc* s. str. clade
22 (i.e, subclades 2 and 3) is separated from sister subclade 1/*Desmonostoc* by a long branch (Fig.
23 3). Accordingly, the ANIs on the left side of the first gap (< ~85% ANI) correspond to the

1 distances between *Nostoc* and subclade 1/*Desmonostoc*, whereas the ANIs on the right side of
2 the first gap (>~87% ANI) are mostly distances between genomes from subclades 2 and 3 (Fig.
3). The same is true for lineages within the *Nostoc* subclades, such as sections 3.5 and 3.6, which
4 are both subtended by long branches and display additional ANI gaps closer to the expected 95%
5 ANI boundary (Fig. 3). In contrast, *Nostoc* section 3.1 originated from a rapid radiation
6 characterized by multiple consecutive short internodes. In that case, the ANIs form a continuum
7 that spans roughly 88–95% ANI (Fig. 3).

8 Speciation has long been viewed as a continuum that is expected to generate
9 heterogeneous rather than universal species boundaries (Drès and Mallet 2002; Kollár et al.
10 2022; Stanojković et al. 2024). Our results indicate that *Nostoc* is no exception, and that variation
11 in diversification rates may underlie whether gaps in the distribution of ANIs are present or not.
12 This implies that the recognition of biologically meaningful units of diversity in bacteria must go
13 beyond genomic similarity thresholds and include a pluralistic approach that integrates multiple
14 sources of evolutionary and ecological information (Palmer et al. 2019; Dvořák et al. 2023).
15 Therefore, we propose a delimitation scheme for *Nostoc* that integrates those aspects.

16 We first delineated 16 sections within *Nostoc* subclades 2 and 3 (sections 2.1–2.4 and
17 3.1–3.12; Figs. 1–3) by considering the evolutionary isolation based on branch lengths, ANI
18 clustering, and ecology of the strains. We then used this framework to validate and refine *Nostoc*
19 phylogroups proposed in previous studies based on *rbcLX* sequences. We retrieved 1,098 public
20 sequences of *rbcLX* from free-living and symbiotic *Nostoc* from previous phylogenetic studies
21 (O'Brien et al. 2013; Magain et al. 2017; Chagnon et al. 2018; Magain et al. 2018; Miadlikowska
22 et al. 2018; Pardo-De la Hoz et al. 2018; Supplementary Data 1b). Then, we placed them in our
23 phylogenomic framework and sorted them by section to infer section-specific phylogenies. We

1 found that 32 of the 43 previously delimited *Nostoc* phylogroups are monophyletic
2 (Supplementary Fig. 5a–n). However, these clades were sometimes embedded within a set of less
3 structured but closely related strains that had been assigned to multiple phylogroups (e.g., section
4 3.1, Supplementary Fig. 5a). In those cases, we considered the entire set to be a species complex.
5 Species complexes are useful when boundaries are unclear, such as when radiations resulted in a
6 near-continuum of genomic diversity (e.g., section 3.1 in Fig. 3 and Supplementary Fig. 5a). We
7 provide guidelines for the classification of new *Nostoc* strains into our scheme using either
8 genomic or single-locus data in the GitHub repository for this study:
9 <https://github.com/cjpardodelahoz/nostoc>.

10 ***Nostoc* phylogroups remain distinct when cooccurring with closest relatives**

11 The *Nostoc* phylogroups reflect phylogenetic structure within the 16 sections we
12 delimited here at a global scale (Supplementary Fig. 5). However, in lineages with wide
13 geographic distribution, phylogenetic structure might be detected spuriously due to biased
14 sampling on distant ends of a genomic continuum (Chambers and Hillis 2020; Chambers et al.
15 2023), such as the ones we found in some *Nostoc* lineages (e.g., section 3.1 in Fig. 3 and
16 Supplementary Fig. 5a). Therefore, our final goal was to use a systematic spatial sampling to
17 determine whether the phylogroups we delimited were robust in cases with high potential for
18 gene flow with their closest relatives (i.e., frequent spatial cooccurrence and sharing of fungal
19 symbiotic partners).

20 We genotyped lichenized *Nostoc* strains associated with 2,316 cyanolichen specimens
21 collected systematically by the Alberta Biodiversity Monitoring Institute (ABMI) across 366
22 sites in the province of Alberta, Canada. We sequenced the *rbcLX* region and classified them
23 with the scheme we described above. We also clustered the *Nostoc* genomes using both 95% ANI

1 and rates of recent gene flow using PopCOGenT (Fig. 3; Arevalo et al. 2019). We found that
2 most of the strains from Alberta (1,996; Supplementary Data 1c and 1d) belong to section 2.4
3 (214), section 3.1 (1,183), section 3.5 (173) and section 3.6 (426). In all four sections, we found
4 that the phylogroups we identified were robust even when they cooccurred with closely related
5 *Nostoc* from the same section (Fig. 4a–b, Supplementary Fig. 6a–c). This suggests that factors
6 other than geographic isolation play an important role in preventing gene flow among these
7 OTUs (i.e., phylogroups or species complexes) and maintaining genetic differentiation (Cadillo-
8 Quiroz et al. 2012; Stanojković et al. 2024). Populations may be structured along fine-scale
9 heterogeneity that drives differential adaptations, as has been shown for Archaea and other
10 Bacteria (Shapiro et al. 2012; Chase et al. 2019; Wang et al. 2020)

11 Another potential driver of genetic isolation among *Nostoc* lineages is divergent selection
12 resulting from specialization on different symbiotic fungal partners. We genotyped the fungal
13 partners of the lichenized *Nostoc* strains from Alberta and instead found that, at the regional
14 scale, the OTUs from a given *Nostoc* section often share fungal symbiotic partners in a nested
15 manner (Fig. 4c, Supplementary Fig. 6a–c). Phylogroups III (section 2.4) and VIIId (section 3.5)
16 were exceptions to these trends because their interactions are with fungal partners that are rarely
17 or never found with other *Nostoc* OTUs from the same section (Supplementary Fig. 6b, c). This
18 reciprocal specificity could underlie the genetic divergence of these *Nostoc* phylogroups from the
19 other lineages in their sections.

20 When different *Nostoc* OTUs associate with the same lichen-forming species at a
21 regional scale (e.g., sections 3.1 and 3.6; Fig. 4c and Supplementary Fig. 6a), genetic
22 differentiation between *Nostoc* populations can still emerge if they associate with different
23 lichen-forming fungal partners at local scales. In that case, partner sharing would be less frequent

1 between cooccurring *Nostoc* strains compared to *Nostoc* strains from different sites. Instead, we
2 found that partner sharing is equally or more frequent between pairs of cooccurring *Nostoc*
3 strains than between pairs of *Nostoc* strains from different sites in Alberta (Table 1,
4 Supplementary Data 1f–h). The difference is more pronounced for strain pairs that belong to the
5 same section (Table 1, Supplementary Data 1f–h), which is likely driven by frequent asexual
6 reproduction of lichen thalli, resulting in the vertical transmission of *Nostoc* at local scales. This
7 indicates that symbiotic specialization is probably not the main driver of genetic differentiation
8 in *Nostoc* symbionts of cyanolichens.

9 Overall, our findings show that OTU boundaries between *Nostoc* symbionts of
10 cyanolichens are robust even when there is a high potential for gene flow between close relatives
11 (i.e., frequent cooccurrence and found in association with the same *Peltigera* species).
12 Nevertheless, the processes underlying the maintenance of gene flow boundaries may differ in
13 non-lichenized *Nostoc* lineages. This is because the bacterial lifestyle can shape gene flow
14 dynamics and natural selection, leading to alternative divergence mechanisms (e.g.,
15 environmental vs. human gut populations of *Escherichia coli*; Luo et al. 2011). Our
16 phylogenomic framework should aid the discovery of these potential alternatives as more data
17 becomes available for *Nostoc* with different lifestyles.

18 Our results also show that relevant units of biodiversity may be finer than ANI-delimited
19 species. For example, *Nostoc* section 3.6 corresponds to one ANI cluster, but five different gene
20 flow clusters (Fig. 3). More specifically, sister *Nostoc* phylogroups V and XLII (section 3.6) are
21 part of the same ANI cluster (ANI-8), but they are in different gene flow clusters (PopCO-1 and
22 PopCO-85, bolded taxa in Supplementary Fig. 5e). Phylogroup V is broadly distributed across
23 multiple continents, whereas XLII has a circumboreal distribution (Supplementary Fig. 5e)

1 (Magain et al. 2018). Both *Nostoc* phylogroups share fungal partners, but phylogroup V has a
2 much broader partner range both globally (Supplementary Fig. 5e) and in Alberta (Fig. 4c).
3 These genetic, geographic, and symbiotic differences imply that these phylogroups are neither
4 evolutionary nor ecologically interchangeable, which is a fundamental property of biologically
5 meaningful units of biodiversity (Cohan 2019).

6 Our findings underscore the importance of assessing bacterial biodiversity in the context
7 of their evolutionary history. We showed that a fully bifurcating tree does not capture the
8 complexity of the evolutionary history of *Nostoc* (Fig. 2). However, most of the complexity
9 results from rapid radiations and ILS rather than reticulations between distantly related lineages
10 (Figs. 1–2, Supplementary Fig. 2, and Supplementary Table 1). Additionally, different
11 diversification patterns can result in both clearly distinct lineages separated by gaps in genomic
12 similarity as well as lineages with a continuum of genomic diversity (Fig. 3). Nevertheless,
13 recently diverged lineages (e.g., *Nostoc* phylogroups) that display genomic cohesion are common
14 even when they cooccur with close relatives and share symbiotic partners (Fig. 4, Supplementary
15 Fig. 6, Table 1, Supplementary Data 1f–h). These are more meaningful biodiversity units to track
16 when studying phenomena such as the maintenance of barriers to gene flow and the evolution of
17 symbiotic interactions in cyanobacteria.

1 **Methods**

2 ***Sampling and sequencing of Nostoc genomes***

3 We used a total of 151 genomes that represent three major lineages of *Nostoc*-like
4 cyanobacteria (Magain et al. 2017; Magain et al. 2018). This included 24 publicly available
5 genome assemblies (Warshan et al. 2017; Zhu et al. 2017; Gagunashvili and Andrésson 2018;
6 Warshan et al. 2018; Halsør et al. 2019; Shang et al. 2019; Bell-Doyon et al. 2020; Chen et al.
7 2021) and 124 newly generated MAGs of *Nostoc* strains associated with 17 genera of
8 cyanolichen-forming fungi (Supplementary Data 1a). We also included the genomes of
9 *Anabaena cylindrica* PCC 7122 (Shih et al. 2013), *Aphanizomenon flos-aquae* NIES 81 (Cao et
10 al. 2014), and *Cylindrospermum stagnale* PCC 7417 (Shih et al. 2013) to use as outgroup taxa
11 for the phylogenetic analyses (Supplementary Data 1a). One of the public genomes classified as
12 *Nostoc* in NCBI (*Nostoc* sp. B 2019; Supplementary Data 1a) is classified as *Komarekiella* sp. in
13 the Genome Taxonomy Database.

14 For the newly generated MAGs, we extracted metagenomic DNA from the lobe tips of
15 healthy and clean lichen thalli using a 2% SDS lysis followed by phenolchloroform separation,
16 isopropanol precipitation, and ethanol cleanup (full protocol in Appendix S1). Then,
17 metagenomic libraries (150 bp paired end) were prepared with the KAPA HyperPrep kit (Roche
18 Sequencing Solutions, Pleasanton, CA, USA) following manufacturer's instructions and
19 sequenced on three Illumina NovaSeq 6000 S Prime flow cells. Library preparation and
20 sequencing were conducted by the Duke Sequencing and Genomic Technologies core facility.

21 ***Metagenomic assembly, binning, and curation***

22 We first examined read quality and adapter content using FastQC v0.11.17. Then, we
23 trimmed low quality bases (PHRED < Q20) and adapters using Trimmomatic v0.39. We only

1 used paired reads that were > 75 bp after trimming for subsequent analyses. We assembled the
2 trimmed reads using SPAdes v3.14.1(Bankevich et al. 2012; Nurk et al. 2017) with the --meta
3 option and with kmer lengths 55, 75, and 95. To quantify the depth of coverage of the assembled
4 contigs for binning, we mapped the SPAdes-corrected reads to the metagenomic assembly using
5 Bowtie v.2.3.5.1 (Langmead and Salzberg 2012) and samtools v1.9 (Danecek et al. 2021), and
6 then extracted a summary of the depth of coverage per contig using the
7 `jgi_summarize_bam_contig_depths` script from MetaBAT2 (Kang et al. 2019). The assembled
8 contigs and their depths were used as input for initial binning with MetaBAT2.

9 To identify the cyanobacterial bins obtained from each metagenomic library, we used the
10 lineage-specific workflow from CheckM v1.1.7 (Parks et al. 2015). CheckM places the genome
11 bins onto a bacterial reference genome tree and selects lineage-specific markers to calculate
12 genome quality metrics. We used the output of CheckM to identify the genome bins that
13 belonged to Cyanobacteria. We obtained a single cyanobacterial genome bin from 118 of our
14 metagenomic libraries. In five of our metagenomic libraries (P2083, P2170, P10246, P10247,
15 and P12560), we found more than one cyanobacterial genome bin. We then conducted a
16 preliminary phylogenetic analysis to determine which of the cyanobacterial genome bins
17 belonged to *Nostoc*. For this, we used 37 publicly available genomes from *Nostoc*
18 (Supplementary Data 1a) that were included in a recent study on Nostocales phylogenomics
19 (Pardo-De la Hoz et al. 2023) as a reference. For the reference genomes and all cyanobacterial
20 genomes from the metagenomic libraries, we ran BUSCO v4.1.3 (Simão et al. 2015) using the
21 “cyanobacteria_odb10” as the reference database (Kriventseva et al. 2019). This database
22 consists of 773 single-copy orthologs conserved across Cyanobacteria. We aligned the nucleotide
23 sequences of the 773 BUSCO markers using MAFFT v7.475 (Katoh and Standley 2013) and

1 PAL2NAL v14 (Suyama et al. 2006) as described in the section below. We trimmed all sites with
2 gaps and generated a concatenated alignment that we used to infer a maximum likelihood tree in
3 IQ-Tree v1.6.12 (Nguyen et al. 2015) with a GTR+G model and 1000 UFBoot2 replicates. With
4 the resulting tree, we identified genome bins from four libraries (P2083, P2170, P10247 and
5 P12560) that fell outside of *Nostoc* and excluded them from all subsequent analyses. All of those
6 four libraries contained an additional cyanobacterial bin that fell within *Nostoc* and we used
7 those for subsequent analyses.

8 We refined the *Nostoc* genome bins with information from the assembly graph produced
9 by SPAdes to achieve the highest quality MAGs. First, we used Graphbin2 (Mallawaarachchi et
10 al. 2020), a binning refinement program that applies a label propagation algorithm to improve the
11 binning results from other tools. Then, we used Bandage (Wick et al. 2015) to visualize the
12 metagenomic assembly graphs and labeled the contigs (graph edges) that were included in the
13 *Nostoc* genome bins by both MetBAT2 and Graphbin2. This allowed us to remove contaminant,
14 chimeric, and duplicated contigs, as well as include *Nostoc* contigs that were not binned by
15 MetaBAT2 because they were either too small (< 2500 bp) or had aberrant coverage (e.g.,
16 repetitive and mobile genetic elements, and rRNA genes). The refinement was partly possible
17 because the *Nostoc* genome was typically an isolated component in the metagenome assembly
18 graphs, and the *Nostoc* contigs had very high depth of coverage (median 175×; Supplementary
19 Data 1a) compared to the rest of the metagenome. The manual refinement was done using the
20 anvi-refine interactive interface from Anvio v7.1 (Eren et al. 2015). We obtained 124 *Nostoc*
21 MAGs with 98% median BUSCO completeness (using the *nostocales_odb10* database;
22 Supplementary Data 1a), all of which included a full copy of the 16S rRNA gene.

1 We then used Anvio v7.1 (Eren et al. 2015) to search for single-nucleotide variants
2 (SNVs) in the *Nostoc* MAGs to detect potential strain heterogeneity. We found that the median
3 number of SNVs per MAG was 5,394 (max: 105,836; Supplementary Fig. 7a). This represents
4 less than 0.1% of the average MAG size (~7.4 million bps, Supplementary Data 1a). Moreover,
5 the median number of SNVs per genome that fell within one of the 1,517 BUSCO markers we
6 used for phylogenetic analyses was 214 (max: 36,834; Supplementary Fig. 7 b), or less than
7 0.02% of the length of the concatenated alignment of those markers (i.e., 1,547,142 sites,
8 642,002 of which are parsimony-informative). We also found that, for most MAGs, the median
9 proportion of reads that differ from the consensus base was less than 0.1 (Supplementary Fig. 8e;
10 see Supplementary Fig. 8a–j for a summary of the full distributions). The same was true for
11 SNVs within BUSCO markers (Supplementary Fig. 8f). Importantly, the proportion of reads that
12 differ from the consensus base does not scale with the total number of SNVs in the genome
13 (Supplementary Fig. 7c) or within BUSCO markers (Supplementary Fig. 7d). This means that
14 the departure from the consensus base remained low even for the few MAGs with a relatively
15 high number of SNVs (Supplementary Fig. 7c–d).

16 Overall, the SNV analyses indicate that significant allele variation is both rare (< 0.1% of
17 MAG size on average; Supplementary Fig. S7a–b) and highly skewed toward the consensus
18 (average fraction of deviating alleles is < 0.1 per SNV for most MAGs; Supplementary Fig. 8e–
19 f). This variation is consistent with the notion that cyanolichen thalli contain a dominant strain of
20 *Nostoc* along with a low abundance of closely related strains of the same species-level clade (i.e.,
21 within 99.9% ANI on average).

22 We also classified the contigs from the *Nostoc* MAGs into chromosome and plasmid
23 origin using PlasX (Yu et al. 2024) and Deeplasmid (Andreopoulos et al. 2022). We combined

1 the classification outputs from both tools to obtain a consensus. PlasX has higher accuracy and
2 scalability than Deeplasmid (Yu et al. 2024). Therefore, if a contig was classified as plasmid only
3 by Deeplasmid, we only considered it if the contig depth deviated by $> 20\times$ from the median
4 coverage of the chromosome contigs as classified by PlasX.

5 ***Phylogenetic inference***

6 We first aligned the amino acid sequences of the 1,899 genes from the *nostocales_odb10*
7 database used by BUSCO using MAFFT v7.475 (Katoh and Standley 2013) with the --globalpair
8 algorithm with 1000 refinement iterations. We then obtained nucleotide alignments by back-
9 translating the amino acid alignments using PAL2NAL v14 (Suyama et al. 2006) and the
10 unaligned nucleotide sequences as input. Ambiguously aligned regions were removed by
11 trimming all sites with gaps using trimAl v1.2rev59 (Capella-Gutierrez et al. 2009). We only
12 kept the alignments of the 1,517 genes that had > 200 variable sites and > 136 taxa (i.e., $> 90\%$).
13 In addition, we extracted the 16S rRNA gene and the *trnL* intron sequence from the genomes and
14 aligned them with MAFFT as described above. These two markers will provide a link between
15 our phylogenomic framework and many previous studies that characterized the molecular
16 diversity of *Nostoc* using 16S or *trnL* sequences (Rajaniemi et al. 2005; Kaasalainen et al. 2015;
17 Strunecký et al. 2023). A tutorial with examples of these links is available in the GitHub
18 repository for this study: <https://github.com/cjpardodelahoz/nostoc>.

19 To infer gene trees, we first partitioned the coding nucleotide alignments into 1st, 2nd, and
20 3rd codon position and searched for the best partition scheme and substitution models using
21 ModelFinder (Kalyaanamoorthy et al. 2017) and PartitionFinder2 (Lanfear et al. 2016) as
22 implemented in IQ-Tree v1.6.12 (-m MFP+MERGE option; Nguyen et al. 2015). Then, we
23 searched for maximum likelihood gene trees in IQ-Tree with 1000 UFBoot2 (Hoang et al. 2018)

1 replicates. We used the resulting gene trees to infer a species tree with weighted-ASTRAL,
2 which uses branch support values (i.e., UFBoot2) to generate weighting schemes for the quartet-
3 based species tree inference to account for uncertainty in gene tree estimation (Zhang and
4 Mirarab 2022). We also inferred a maximum likelihood tree with a concatenated alignment of the
5 nucleotide sequences of the 1,517 BUSCO genes, the 16S rRNA gene, and the *trnL* intron. The
6 substitution model selection and tree search were done using the same parameters as we did for
7 the gene trees above. Overall, our phylogenetic analyses resulted in 1,519 single-locus trees, one
8 weighted-ASTRAL species tree (Fig. 1a and Supplementary Fig. 2a), and one maximum
9 likelihood concatenated species tree (Supplementary Fig. 2b).

10 *Quantification of phylogenetic conflict*

11 To quantify phylogenetic conflicts, we compared each of the 1,519 single-locus trees to
12 the weighted-ASTRAL species tree. We used DiscoVista (Sayyari et al. 2018) to calculate the
13 proportion of gene trees that strongly support, strongly reject, weakly support, and weakly reject
14 each of the bipartitions in the weighted-ASTRAL tree. We used 95% UFBoot2 as the threshold
15 to evaluate strong support. When a gene tree had missing taxa, the corresponding missing taxa
16 were removed from the weighted-ASTRAL tree before evaluating conflict. Then, we used
17 custom R functions and the R package *ggtree* v3.6.2 (Yu et al. 2017) to plot the results of the
18 conflict analyses as pie charts on the weighted-ASTRAL tree. In addition, we compared the
19 topologies of the weighted-ASTRAL and the concatenated tree to identify highly supported
20 conflicts (Supplementary Fig. 2) using the Phylo.io interactive web server (Robinson et al.
21 2016).

22 We tested whether there was a relationship between time elapsed between speciation
23 events (i.e., branch lengths in absolute time units) and the percentage of gene trees that strongly

1 support, strongly reject, weakly support, and weakly reject each bipartition in the ASTRAL tree.
2 We fitted four linear models between each of the percentage variables and the logarithm of
3 branch lengths, e.g., percent with strong support $\sim \log(\text{branch length})$. Each model included 148
4 data points corresponding to the 148 internal branches of the ASTRAL tree. We used the `lm()`
5 function in the *stats* package in R v4.2.2 (R Core Team 2013). The `lm()` function fits a linear
6 model and tests the null hypothesis that the slope of the linear equation is equal to 0. We assessed
7 significance with $\alpha=0.01$.

8 We also tested whether there was a relationship between the time elapsed between
9 speciation events and the percentage of parsimony-informative sites that support each bipartition
10 (i.e., site concordance factors [sCFs]) in the ASTRAL tree. To estimate sCFs, we first obtained
11 maximum likelihood estimates of branch lengths in substitutions per site for the ASTRAL
12 topology with the concatenated alignment of 1,519 loci described above. Then, we used the
13 resulting tree and branch lengths, as well as the concatenated alignment, to estimate sCFs. Both
14 analyses were performed in IQ-Tree (Mo et al. 2023). We fitted a linear model of the form $\text{sCF} \sim$
15 $\log(\text{branch length})$ as described above.

16 To ensure that the patterns of phylogenetic conflict we observed are independent of the
17 trace levels of strain heterogeneity we observed in the *Nostoc* MAGs, we also repeated the
18 phylogenetic inferences and the quantification of phylogenetic conflicts after filtering genes with
19 SNVs. For each MAG, we identified BUSCO genes with at least one SNV where the non-
20 consensus allele had a frequency ≥ 0.1 and removed those sequences from the single-locus
21 alignments. We also removed six outlier taxa that had SNVs in more than 20% of their BUSCO
22 genes. This filtered dataset contained 3.27% missing data compared to 0.97% missing data in the
23 original dataset. The analyses based on the filtered dataset recapitulated all patterns from the

1 original dataset (Supplementary Fig. 9a–d). We recovered a species tree topology identical to the
 2 tree in Fig. 1a (excluding the six outlier taxa) and with the same anomaly zone clusters. In
 3 addition, we found again that the proportion of both weakly and strongly supported phylogenetic
 4 conflicts, as well as the proportion of discordant sites, is associated with the time elapsed
 5 between speciation events (Supplementary Fig. 9a–d). This demonstrates that phylogenetic
 6 conflicts are not the result of strain heterogeneity or chimeric assemblies.

7 ***Detection of internodes in the anomaly zone***

8 Equation 4 in (Degnan and Rosenberg 2006) can be used to calculate the value of $a(x)$,
 9 which is the boundary of the anomaly zone for a branch of length x that has a descendant branch
 10 of length y . If $y < a(x)$, then x and y are in the anomaly zone. To detect branches that fall in the
 11 anomaly zone in the *Nostoc* phylogeny, we calculated $a(x)$ for each branch length x in the
 12 weighted-ASTRAL species tree and then compared $a(x)$ to the length y of each descendant
 13 internal branch in coalescent units.

14 ***Detection of reticulations and ILS using species network inference***

15 We used the R package MSCquartets v1.1.2 (Rhodes et al. 2021) to test the fit of the
 16 multispecies coalescent model (MSC) to the distribution of quartet topologies from the 1,519
 17 gene trees that we inferred. For each quartet, MSCquartets tests the null hypotheses that the
 18 quartet count concordance factors ($qcCF$) arose from a species quartet tree of unspecified
 19 topology (“T3”) under the MSC, which implies that the observed gene tree conflicts are due to
 20 ILS. The alternative hypothesis is that the quartet is not tree-like, which may be evidence for
 21 reticulations or the result of noise from gene tree error. Some of the reticulations inferred by
 22 MSCquartets may be equivalent to sustained gene flow between diverging lineages as in the
 23 fragmented speciation model (Supplementary Fig. 1b). This is difficult to ascertain with

1 coalescent models because they assume that speciation is instantaneous (Retchless and Lawrence
2 2010). We then used the results of these tests to infer a species network splits graph under the
3 Network MSC with the NANUQ algorithm (Allman et al. 2019). We set $\beta = 0.1$ and $\alpha = 1e-6$. As
4 recommended by Allman et al. (2019), we chose a small α given the high proportion of weakly
5 supported conflicts in our dataset (Fig. 1a, c), which indicates a high prevalence of noise from
6 gene tree error. However, we also report the results of the quartet tests with $\alpha = 1e-2$, $1e-3$, and
7 $1e-5$ (Supplementary Table 1). We visualized the splits graph using SplitsTree v4.19.2 (Huson
8 1998).

9 ***Divergence time estimation***

10 There are no fossils that can be reliably assigned to *Nostoc*. Therefore, to infer divergence
11 times for *Nostoc*, we first dated a phylogeny of the order Nostocales using fossils and geological
12 calibrations. Then, we used several of the estimated age distributions within Nostocales as
13 secondary calibrations to infer divergence times within *Nostoc*. For the Nostocales analysis, we
14 used the 55 cyanobacterial taxa included in subset 0 of Pardo-De la Hoz et al. (2023;
15 Supplementary Data 2a). We also included the genome of *Nostoc* sp. cyanobiont of *Peltigera*
16 *malacea* JL33 (Supplementary Data 2a) so the split between *Nostoc* subclades 2 and 3 would be
17 represented in the dated tree (Cornet et al. 2021; Pardo-De la Hoz et al. 2023). We inferred
18 divergence times with MCMCTree, which allows Bayesian estimation of divergence times for a
19 fixed topology and large phylogenomic alignments (Yang 2007; dos Reis and Yang 2011). We
20 used the same topology as in Pardo-De la Hoz et al (2023; Supplementary Data 2a) and a
21 concatenated amino acid alignment of the 1,648 BUSCO genes used in that study. To date the
22 tree, we used two calibrations: i) a maximum age for the root set to 2,700 Ma with default right
23 tail probability $p_R = 0.025$, which is based on geological evidence for the early origin of

1 oxygenic photosynthesis (Farquhar et al. 2011; Uyeda et al. 2016); and ii) a calibration for the
2 crown age of Nostocales with a minimum age set to 1,600 Ma based on fossil evidence of
3 akinete-like structures which have a single origin in Nostocales, and a maximum age set to 2,320
4 Ma, which is the lower bound for the rise in atmospheric oxygen and must have predated the
5 evolution of heterocysts (Bekker et al. 2004; Tomitani et al. 2006). We used LG+G4 as the
6 substitution model, an uncorrelated relaxed clock model with default priors, and a birth (λ)-death
7 (μ) prior on node ages with $\lambda = \mu = 1$ and sampling fraction $\rho = 0.1$. We sampled from both the
8 prior and posterior distribution of divergence times using three MCMC chains with 100,000,000
9 generations, sampling every 1000th generation, and discarded the first 20,000,000 generations as
10 burnin. We assessed convergence by comparing the mean posterior node ages inferred with each
11 of the three chains and checking that the effective sample size was > 200 .

12 For the divergence time estimation within *Nostoc*, we used MCMCTree with the topology
13 of the weighted-ASTRAL tree and a concatenated alignment of the nucleotide sequences of the
14 1,519 loci dataset. We dated the tree with six secondary calibrations (i.e., 95% highest posterior
15 density intervals) obtained from the dated Nostocales tree: i) the root age was set between 1,160
16 and 1,840 Ma; ii) the age of the outgroup clade, which was set between 990 and 1,620 Ma; iii)
17 the age of the most recent common ancestor of cf. *Komarekiella* sp. (*Nostoc* sp. B 2019) and
18 subclades 1–3 was set between 710 and 1,410 Ma; iv) the crown age of the clade that includes
19 subclades 1–3 was set between 440 and 950 Ma; v) the crown age of subclade 1/*Desmonostoc*
20 was set between 150 and 460 Ma; and vi) the age of the most recent common ancestor of *Nostoc*
21 (i.e., subclades 2 and 3) was set between 180 and 590 Ma. All secondary calibration priors had a
22 uniform distribution with soft bounds and tail probabilities $p_R = p_L = 0.025$, which allowed
23 estimated ages to be outside the calibration range with a total probability density of 0.05. We

1 used HKY+G5 as the substitution model, and the same clock and tree priors as for the
2 Nostocales analysis. We sampled from both the prior and posterior distribution of divergence
3 times using three MCMC chains with 14,000,000 generations, sampling every 1,000th
4 generation, and discarded the first 4,000,000 generations as burnin. Convergence was assessed
5 the same way as for the Nostocales analysis. The dated *Nostoc* tree with age estimates in newick
6 format can be found in Supplementary Data 2b.

7 ***Genome clustering***

8 We used FastANI v1.31 (Jain et al. 2018) to calculate the average nucleotide identity
9 (ANI) and alignment fraction between every pair of *Nostoc* genomes in our sampling. We then
10 used a custom R script to group the genomes into clusters with a threshold of 95% ANI (Goris et
11 al. 2007; Jain et al. 2018; Olm et al. 2020). We also used PopCOGenT (Arevalo et al. 2019) to
12 delimit clusters of genomes based on estimates of recent gene flow. Finally, we classified our
13 genomes using the Genome Taxonomy Database Toolkit v.2.3.2 (Chaumeil et al. 2020) with the
14 –skip_ani_screen flag. For both analyses, we only used the chromosome contigs from each
15 MAG.

16 ***Sequencing of cyanolichens in Alberta***

17 We used 2,316 cyanolichen specimens collected in 366 sites of 1 ha each by the Alberta
18 Biodiversity Monitoring Institute (ABMI, www.abmi.ca; Supplementary Data 1c and d). The
19 ABMI systematically surveys biodiversity in sites located in a 20-km grid across the province of
20 Alberta, Canada. We genotyped the *Nostoc* photobionts and main fungal symbionts of the
21 cyanolichen specimens using amplicon sequencing on PacBio SMRT Cells (Armanhi et al. 2016;
22 Nelson et al. 2021). To do this, we extracted metagenomic DNA using the same protocol as for
23 the generation of *Nostoc* MAGs (Appendix S1). Then, we amplified the *rbcLX* region of the

1 *Nostoc* photobionts using primers CW and CX (Rudi et al. 1998), and the nrITS-partial LSU
2 region from the fungal partners using primers ITS1F and LR3 (Vilgalys and Hester 1990; Gardes
3 and Bruns 1993). We added tags at the 5' end of these primers (5'-
4 CTGGAGCACGAGGACACTGA-3' to forward primers and 5'-
5 GCTGTCAACGATACGCTACG-3' to reverse primers) that allowed the attachment of sample-
6 specific barcodes to the *rbcLX* and nrITS-partial LSU amplicons in a second PCR reaction. We
7 used 384 barcodes (Supplementary Data 3) and used the same barcode sequence on both ends of
8 each amplicon. Barcoded amplicons were pooled in sets of 384 samples and size selection was
9 performed to remove fragments < 700 bp using Mag-Bind TotalPure NGS (Omega Bio-tek)
10 magnetic beads. The libraries were prepared and sequenced at the Duke Sequencing and
11 Genomic Technologies core, with each pool sequenced in a separate PacBio SMRT Cell. We
12 used PURC (Rothfels et al. 2017) to demultiplex the PacBio Circular Consensus Sequences and
13 only kept sequences with > 20× read depth.

14 ***Classification of Nostoc rbcLX sequences***

15 We assembled a dataset that included i) the full *rbcL* and *rbcX* sequences from the 151
16 reference taxa in our phylogenomic analyses (Supplementary Data 1a); ii) the 2,316 *rbcLX*
17 sequences from the ABMI cyanolichen specimens (Supplementary Data 1a); and iii) 1,098 public
18 *rbcLX* sequences that had been included in previous phylogenetic analyses of *Nostoc* that
19 identified multiple phylogroups within the genus (Supplementary Data 1b; O'Brien et al. 2013;
20 Magain et al. 2017; Chagnon et al. 2018; Magain et al. 2018; Miadlikowska et al. 2018; Pardo-
21 De la Hoz et al. 2018). This last set consists mostly of *Nostoc* sequences from cyanolichens
22 collected worldwide, but it also includes sequences from free-living and plant-symbiotic strains
23 (Supplementary Data 1b). Initially, we retrieved all sequences included in the analyses of those

1 previous studies and later removed 291 sequences which only spanned the *rbcX* region or were
2 missing most of the 3' end of the *rbcL* gene. We then aligned all 3,274 sequences using MAFFT
3 with the --retree 1 and --maxiterate 0 flags and manually refined and excluded ambiguous
4 regions and the spacer in Mesquite v3.70 (<http://www.mesquiteproject.org/>). We used this
5 alignment to place the ABMI (ii) and public (iii) *rbcLX* sequences on the phylogenomic tree of
6 *Nostoc* using the Evolutionary Placement Algorithm implemented in RAxML v8.2.12 (Berger et
7 al. 2011; Stamatakis 2014) and the weighted-ASTRAL *Nostoc* tree (Fig. 1 and Supplementary
8 Fig. 2a) as the reference topology. The EPA placed 98% (3058) of the queries within one of the
9 sections and subclades delimited in Figs. 1–3. We used the placements to sort the reference and
10 query *rbcLX* sequences into 16 sets, one for each of the 16 sections in *Nostoc* subclades 2 and 3.
11 Those sets of sequences were then aligned with MAFFT and refined manually in Mesquite.
12 Sorting the sequences by section allowed the inclusion of the spacer region in the subsequent
13 phylogenetic analyses of all alignments. We then inferred maximum likelihood trees from each
14 alignment using IQ-Tree with 1000 UFBoot2 replicates.

15 We used the resulting trees to test the delimitations of 43 phylogroups that had been
16 defined in previous phylogenetic studies of *Nostoc* based solely on *rbcLX* (O'Brien et al. 2013;
17 Magain et al. 2017; Magain et al. 2018). For this, we removed the ABMI taxa from the trees and
18 only examined the relationships among the public *rbcLX* sequences and the *rbcLX* sequences
19 from the genomes included in the phylogenomic analyses (Supplementary Fig. 5a–n). This
20 allowed us to determine the cases where the sequences previously assigned to a phylogroup were
21 recovered as monophyletic and how these clades relate to the clusters delimited with genomic
22 data (Fig. 3). We propose the recognition of 43 *Nostoc* phylogroups within *Nostoc* subclades 2
23 and 3 (32 delimited previously and 11 defined here; Supplementary Table 2; Supplementary Data

1 1b; Supplementary Fig. 5a–n) that can be identified using genomic or *rbcLX* sequence data.
2 Twenty-one of these phylogroups correspond to a single gene-flow cluster identified with
3 PopCOGenT (Supplementary Fig. 5a–b, d–j, and n). In two cases, we merged a pair of sister
4 clades that had been delimited as two phylogroups into one because they corresponded to the
5 same gene-flow unit inferred by PopCOGenT (phylogroups XVI and XVIII, and phylogroups
6 XIII and XLIII; Supplementary Fig. 5i). However, several of these phylogroups were recovered
7 as clades nested within a set of less structured but closely related strains (e.g., section 3.1;
8 Supplementary Fig. 5a). This is probably the result of rapid diversification leaving behind a near-
9 continuum of diversity as we observed at broader phylogenetic scales in *Nostoc* (Fig. 3) and as
10 evidenced by the presence of multiple internodes that fall in the anomaly zone within the
11 sections (Fig. 3). Therefore, we consider these larger clades as species complexes. Altogether,
12 our approach allowed us to classify the public *rbcLX* sequences into phylogroups and/or species
13 complexes, sections, and subclades (Supplementary Data 1b). Finally, we used these
14 delimitations to classify the ABMI sequences according to their position in the section trees
15 relative to the public sequences. Altogether, 1,705 ABMI sequences were classified to
16 phylogroup level; 2,307 were classified at least to section and species complex; and only 7
17 sequences have an uncertain position within the *Nostoc* tree (Supplementary Data 1c). These
18 *incertae sedis* strains should be targets for future genome sequencing because they probably
19 represent additional sections or subclades.

20 ***Classification of mycobionts from Alberta cyanolichens***

21 We examined all cyanolichen specimens and assigned preliminary identifications to the
22 lichen-forming fungus (mycobiont) based on morphological traits (Supplementary Data 1c). Of
23 the 2,316 cyanolichen specimens we used, 2,060 were from the lichen-forming fungal genus

1 *Peltigera*. For those specimens, we assigned molecular species identifications by placing the
2 nrITS and partial LSU sequences into the *Peltigera* phylogeny available on the T-BAS platform
3 (<https://guide-tbas.cifr.ncsu.edu/tbas>) using the EPA algorithm (Carbone et al. 2017; Carbone et
4 al. 2019). We also performed BLASTn searches of the nrITS sequences against a custom
5 database that included all *Peltigera* sequences from previous studies on the phylogeny,
6 systematics, and species delimitation within this genus (O'Brien et al. 2013; Miadlikowska et al.
7 2014; Magain et al. 2017; Chagnon et al. 2018; Magain et al. 2018; Miadlikowska et al. 2018;
8 Pardo-De la Hoz et al. 2018). For the remaining cyanolichen specimens from other genera, we
9 assigned molecular identifications at the genus or species level based on BLAST searches of the
10 nrITS sequences against the NCBI nucleotide database. Overall, we assigned molecular
11 identifications to the lichen-forming fungus for 2,146 cyanolichen specimens (Supplementary
12 Data 1c).

Data availability

2 All sequence data were deposited in GenBank under BioProject accession
3 PRJNA1066398. Amplicon sequence data is available under GenBank accessions
4 KIFN01000001–KIFN01002316 (*rbcLX*), KIFO01000001–KIFO01002145 (nrITS), and
5 KIFP01000001–KIFO01001677 (partial nrLSU). Metagenomic reads are available from the
6 Sequence Read Archive under accessions SRR28386200–SRR28386311. *Nostoc* genome
7 assemblies' accession numbers are listed in Supplementary Data S1a. All the outputs from
8 computational analyses and processing pipelines were deposited in the Dryad Digital Repository
9 DOI: 10.5061/dryad.dv41ns25x. Phylogenomic and *rbcLX* trees and alignments of *Nostoc* are
10 available on the T-BAS (<https://guide-tbas.cifr.ncsu.edu/tbas>) platform for download and
11 placement of unknown *Nostoc* sequences. A tutorial for placement of unknown queries can be
12 found in the GitHub repository for this study:
13 https://github.com/cjpardodelahoz/nostoc/blob/main/tbas_tutorial/README.md. All code used
14 to analyze the data in the present study can be found in the GitHub repository for this study:
15 <https://github.com/cjpardodelahoz/nostoc>.

Acknowledgements

17 We are very thankful to the ABMI technicians and staff that collected and helped process the
18 thousands of cyanolichen specimens we used in the study, and to Scott LaGreca for managing the
19 specimen loans. We thank Ignazio Carbone for his help in making the phylogenomic dataset
20 available for placements in T-BAS. We also thank Tom Milledge and Katie Kilroy for their
21 technical support with the Duke Computer Cluster. Finally, we thank Amanda Rossillo for her
22 help editing the manuscript and Moe Silva for assisting with figure preparation. This work was
23 funded by National Science Foundation award BEE 1929994 to FL and JM.

1 **Author contributions**

2 C.J.P-D., D.H., F.L., and J.M. conceived the study and secured funding. C.J.P-D., D.H., D.T.,
3 I.D.M, J.M., S.G, and S.T. processed herbarium specimens and curated metadata. C.J.P-D.,
4 I.D.M, and W.W. generated amplicon sequence data. C.J.P-D., D.G-G., L.C. and N.M. generated
5 metagenomic data. C.J.P-D. and D.H. generated site maps. C.J.P-D. conducted all bioinformatic
6 analyses with input from D.H., F.L., J.M., L.C., N.M, and P.D. C.J.P-D. prepared the first draft of
7 the manuscript and all authors contributed to the final version.

1 **References**

2 Allman ES, Baños H, Rhodes JA. 2019. NANUQ: A method for inferring species networks from
3 gene trees under the coalescent model. *Algorithms for Molecular Biology* 14:1–25.

4 Andreopoulos WB, Geller AM, Lucke M, Balewski J, Clum A, Ivanova NN, Levy A. 2022.
5 Deeplasmid: Deep learning accurately separates plasmids from bacterial chromosomes.
6 *Nucleic Acids Research* 50:E17.

7 Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. 2019. A reverse ecology approach
8 based on a biological definition of microbial populations. *Cell* 178:820–834.e14.

9 Armanhi JSL, De Souza RSC, De Araújo LM, Okura VK, Mieczkowski P, Imperial J, Arruda P.
10 2016. Multiplex amplicon sequencing for microbe identification in community-based
11 culture collections. *Scientific Reports* 6:1–9.

12 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko
13 SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: A new genome assembly algorithm and
14 its applications to single-cell sequencing. *Journal of Computational Biology* 19:455–477.

15 Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetze LL, Beukes NJ.
16 2004. Dating the rise of atmospheric oxygen. *Nature* 427:117–120.

17 Belinchón R, Yahr R, Ellis CJ. 2015. Interactions among species with contrasting dispersal
18 modes explain distributions for epiphytic lichens. *Ecography* 38:762–768.

1 Bell-Doyon P, Laroche J, Saltonstall K, Villarreal Aguilar JC. 2020. Specialized bacteriome
2 uncovered in the coralloid roots of the epiphytic gymnosperm, *Zamia pseudoparasitica*.
3 *Environmental DNA* 2:418–428.

4 Berger SA, Krompass D, Stamatakis A. 2011. Performance, accuracy, and web server for
5 evolutionary placement of short sequence reads under maximum likelihood. *Systematic*
6 *Biology* 60:291–302.

7 Bjorner M, Molloy EK, Dewey CN, Solís-Lemus C. 2023. Detectability of varied hybridization
8 scenarios using genome-scale hybrid detection methods. Available from:
9 <http://arxiv.org/abs/2211.00712>

10 Bobay L-M, Ochman H. 2017. Biological species are universal across life's domains. *Genome*
11 *Biology and Evolution* 9:491–501.

12 Cadillo-Quiroz H, Didelot X, Held NL, Herrera A, Darling A, Reno ML, Krause DJ, Whitaker
13 RJ. 2012. Patterns of gene flow define species of thermophilic Archaea. *PLoS Biology*
14 10:e1001265.

15 Cao H, Shimura Y, Masanobu K, Yin Y. 2014. Draft genome sequence of the toxic bloom-
16 forming cyanobacterium *Aphanizomenon flos-aquae* NIES-81. *Genome Announcements*
17 2: e00044-14.

18 Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated
19 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25:1972–1973.

1 Carbone I, White JB, Miadlikowska J, Arnold AE, Miller MA, Kauff F, U'Ren JM, May G,
2 Lutzoni F. 2017. T-BAS: Tree-Based Alignment Selector toolkit for phylogenetic-based
3 placement, alignment downloads and metadata visualization: An example with the
4 Pezizomycotina tree of life. *Bioinformatics* 33:1160–1168.

5 Carbone I, White JB, Miadlikowska J, Arnold AE, Miller MA, Magain N, U'Ren JM, Lutzoni F.
6 2019. T-BAS Version 2.1: Tree-Based Alignment Selector Toolkit for evolutionary
7 placement of DNA sequences and viewing alignments and specimen Metadata on curated
8 and custom trees. *Microbiology Resource Announcements* 8:1–5.

9 Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell
10 HD, Orr G, Markillie LM, et al. 2022. Novel metabolic interactions and environmental
11 conditions mediate the boreal peatmoss-cyanobacteria mutualism. *The ISME Journal*
12 16:1074–1085.

13 Chafin TK, Douglas MR, Bangs MR, Martin BT, Mussmann SM, Douglas ME. 2021.
14 Taxonomic uncertainty and the anomaly zone: Phylogenomics disentangle a rapid
15 radiation to resolve contentious species (*Gila robusta* complex) in the Colorado river.
16 *Genome Biology and Evolution* 13:1–19.

17 Chagnon P, Magain N, Miadlikowska J, Lutzoni F. 2018. Strong specificity and network
18 modularity at a very fine phylogenetic scale in the lichen genus *Peltigera*. *Oecologia*
19 187:767–782.

1 Chagnon P, Magain N, Miadlikowska J, Lutzoni F. 2019. Species diversification and
2 phylogenetically constrained symbiont switching generated high modularity in the lichen
3 genus *Peltigera*. *Journal of Ecology* 107:1645–1661.

4 Chambers EA, Hillis DM. 2020. The multispecies coalescent over-splits species in the case of
5 geographically widespread taxa. *Systematic Biology* 69:184–193.

6 Chambers EA, Marshall TL, Hillis DM. 2023. The importance of contact zones for
7 distinguishing interspecific from intraspecific geographic variation. *Systematic Biology*
8 72:357–371.

9 Chase AB, Arevalo P, Brodie EL, Polz MF, Karaoz U, Martiny JBH. 2019. Maintenance of
10 sympatric and allopatric populations in free-living terrestrial Bacteria. *mBio* 10:1–11.

11 Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2020. GTDB-Tk: a toolkit to classify
12 genomes with the Genome Taxonomy Database. *Bioinformatics* 36:1925–1927.

13 Chen Z, Shang J, Hou S, Li T, Li Q, Yang Y, Hess WR, Qiu B. 2021. Genomic and
14 transcriptomic insights into the habitat adaptation of the diazotrophic paddy-field
15 cyanobacterium *Nostoc sphaeroides*. *Environmental Microbiology* 10:5802–5822.

16 Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, Edwards SV. 2019. Whole-genome
17 analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an
18 empirical anomaly zone. *Systematic Biology* 68:937–955.

19 Cobo-Simón M, Hart R, Ochman H. 2023. *Escherichia Coli*: What is and which are? *Molecular
20 Biology and Evolution* 40:msac273.

1 Cohan FM. 2002. What are bacterial species? *Annual Review of Microbiology* 56:457–487.

2 Cohan FM. 2019. Systematics: The cohesive nature of bacterial species taxa. *Current Biology*
3 29:R169–R172.

4 Coleman GA, Davín AA, Mahendarajah TA, Szánthó LL, Spang A, Hugenholtz P, Szöllősi GJ,
5 Williams TA. 2021. A rooted phylogeny resolves early bacterial evolution. *Science*
6 372:eabe0511.

7 Cornet L, Magain N, Baurain D, Lutzoni F. 2021. Exploring syntetic conservation across
8 genomes for phylogenetic studies of organisms subjected to horizontal gene transfers: A
9 case study with Cyanobacteria and cyanolichens. *Molecular Phylogenetics and Evolution*
10 162:107100.

11 Dahl TW, Arens SKM. 2020. The impacts of land plant evolution on Earth's climate and
12 oxygenation state – An interdisciplinary review. *Chemical Geology* 547:119665.

13 Dal Grande F, Beck A, Cornejo C, Singh G, Cheenacharoen S, Nelsen MP, Scheidegger C. 2014.
14 Molecular phylogeny and symbiotic selectivity of the green algal genus *Dictyochloropsis*
15 s.l. (Trebouxiophyceae): A polyphyletic and widespread group forming photobiont-
16 mediated guilds in the lichen family Lobariaceae. *New Phytologist* 202:455–470.

17 Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T,
18 McCarthy SA, Davies RM, et al. 2021. Twelve years of SAMtools and BCFtools.
19 *GigaScience* 10:giab008.

1 Darnajoux R, Magain N, Renaudin M, Lutzoni F, Bellenger J-P, Zhang X. 2019. Molybdenum
2 threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests.
3 *Proceedings of the National Academy of Sciences* 116:201913314.

4 Daubin V. 2002. A phylogenomic approach to bacterial phylogeny: Evidence of a core of genes
5 sharing a common history. *Genome Research* 12:1080–1090.

6 Degnan JH, Rosenberg NA. 2006. Discordance of species trees with their most likely gene trees.
7 *PLoS Genetics* 2:e68.

8 Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the
9 multispecies coalescent. *Trends in Ecology & Evolution* 24:332–340.

10 Díaz-Escandón D, Tagirdzhanova G, Vanderpool D, Allen CCG, Aptroot A, Češka O,
11 Hawksworth DL, Huereca A, Knudsen K, Kocourková J, et al. 2022. Genome-level
12 analyses resolve an ancient lineage of symbiotic ascomycetes. *Current Biology* 32:5209-
13 5218.e5.

14 Diop A, Torrance EL, Stott CM, Bobay L-M. 2022. Gene flow and introgression are pervasive
15 forces shaping the evolution of bacterial species. *Genome Biology* 23:1–19.

16 Doolittle WF. 1999. Lateral genomics. *Trends in Biochemical Sciences* 24:M5–M8.

17 Doolittle WF. 2012. Population genomics: How bacterial species form and why they don't exist.
18 *Current Biology* 22:R451–R453.

1 Drès M, Mallet J. 2002. Host races in plant-feeding insects and their importance in sympatric
2 speciation. *Philosophical Transactions Royal Society London B Biological Sciences*
3 357:471–492.

4 Duran-Nebreda S, Valverde S. 2022. Composition, structure and robustness of lichen guilds.
5 *Scientific Reports*:1–15.

6 Dvořák P, Hašler P, Pouličková A. 2020. New insights into the genomic evolution of
7 cyanobacteria using herbarium exsiccatae. *European Journal of Phycology* 55:30–38.

8 Dvořák P, Jahodářová E, Stanojković A, Skoupý S, Casamatta DA. 2023. Population genomics
9 meets the taxonomy of cyanobacteria. *Algal Research* 72:103128.

10 Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. 2015. Anvi'o:
11 an advanced analysis and visualization platform for 'omics data. *PeerJ* 3:e1319.

12 Everitt RG, Didelot X, Batty EM, Miller RR, Knox K, Young BC, Bowden R, Auton A,
13 Votintseva A, Larner-Svensson H, et al. 2014. Mobile elements drive recombination
14 hotspots in the core genome of *Staphylococcus aureus*. *Nat Commun* 5:3956.

15 Farquhar J, Zerkle AL, Bekker A. 2011. Geological constraints on the origin of oxygenic
16 photosynthesis. *Photosynthesis Research* 107:11–36.

17 Fedrowitz K, Kaasalainen U, Rikkinen J. 2012. Geographic mosaic of symbiont selectivity in a
18 genus of epiphytic cyanolichens. *Ecology and Evolution* 2:2291–2303.

19 Fraser C, Hanage WP, Spratt BG. 2007. Recombination and the nature of bacterial speciation.
20 *Science* 315:476–480.

1 Frost LS, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic elements: the agents of
2 open source evolution. *Nature Reviews Microbiology* 3:722–732.

3 Gagunashvili AN, Andrésson ÓS. 2018. Distinctive characters of *Nostoc* genomes in
4 cyanolichens. *BMC Genomics* 19:1–18.

5 Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes -
6 application to the identification of mycorrhizae and rusts. *Molecular Ecology* 2:113–118.

7 Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA–
8 DNA hybridization values and their relationship to whole-genome sequence similarities.
9 *International Journal of Systematic and Evolutionary Microbiology* 57:81–91.

10 Halsør M-JH, Liaimer A, Pandur S, Ræder ILU, Småls AO, Altermark B. 2019. Draft genome
11 sequence of the symbiotically competent cyanobacterium *Nostoc* sp. strain KVJ20.
12 *Microbiology Resource Announcements* 8:14–16.

13 Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: Improving the
14 Ultrafast Bootstrap approximation. *Molecular Biology and Evolution* 35:518–522.

15 Hrouzek P, Lukešová A, Mareš J, Ventura S. 2013. Description of the cyanobacterial genus
16 *Desmonostoc* gen. nov. including *D. muscorum* comb. nov. as a distinct, phylogenetically
17 coherent taxon related to the genus *Nostoc*. *Fottea* 13:201–213.

18 Huang H, Knowles LL. 2009. What is the danger of the anomaly zone for empirical
19 phylogenetics? *Systematic Biology* 58:527–536.

1 Huson DH. 1998. SplitsTree: Analyzing and visualizing evolutionary data. *Bioinformatics*
2 14:68–73.

3 Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies.
4 *Molecular Biology and Evolution* 23:254–267.

5 Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI
6 analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nature
7 Communications* 9:5114.

8 Kaasalainen U, Olsson S, Rikkinen J. 2015. Evolution of the tRNA_{Leu} (UAA) intron and
9 congruence of genetic markers in lichen-symbiotic *Nostoc*. *PLoS ONE* 10:1–21.

10 Kaasalainen U, Tuovinen V, Mwachala G, Pellikka P, Rikkinen J. 2021. Complex interaction
11 networks among cyanolichens of a tropical biodiversity hotspot. *Frontiers in
12 Microbiology* 12:1–12.

13 Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast
14 model selection for accurate phylogenetic estimates. *Nature Methods* 14:587–589.

15 Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 2: An adaptive
16 binning algorithm for robust and efficient genome reconstruction from metagenome
17 assemblies. *PeerJ* 2019:1–13.

18 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
19 improvements in performance and usability. *Molecular Biology and Evolution* 30:772–
20 780.

1 Kidston R, Lang WH. 1921. On old red sandstone plants showing structure, from the Rhynie
2 Chert bed, Aberdeenshire. Part V. The Thallophyta occurring in the Peat-Bed; the
3 succession of the plants throughout a vertical section of the bed, and the conditions of
4 accumulation and preservation of the deposit. *Transactions of the Royal Society*
5 *Edinborough*. 52:855–902.

6 Knack JJ, Wilcox LW, Delaux P-M, Ané J-M, Piotrowski MJ, Cook ME, Graham JM, Graham
7 LE. 2015. Microbiomes of streptophyte algae and bryophytes suggest that a functional
8 suite of microbiota fostered plant colonization of land. *International Journal of Plant*
9 *Sciences* 176:405–420.

10 Kollár J, Pouličková A, Dvořák P. 2022. On the relativity of species, or the probabilistic solution
11 to the species problem. *Molecular Ecology* 31:411–418.

12 Komárek J, Kaštovský J, Mareš J, Johansen JR. 2014. Taxonomic classification of
13 cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. *Preslia*
14 86:295–335.

15 Konstantinidis KT, Tiedje JM. 2005. Genomic insights that advance the species definition for
16 prokaryotes. *Proceedings of the National Academy of Sciences* 102:2567–2572.

17 Krings M, Hass H, Kerp H, Taylor TN, Agerer R, Dotzler N. 2009. Endophytic cyanobacteria in
18 a 400-million-yr-old land plant: A scenario for the origin of a symbiosis? *Review of*
19 *Palaeobotany and Palynology* 153:62–69.

20 Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, Zdobnov EM. 2019.
21 OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral

1 genomes for evolutionary and functional annotations of orthologs. *Nucleic Acids*
2 *Research* 47:D807–D811.

3 Kubatko LS, Degnan JH. 2007. Inconsistency of phylogenetic estimates from concatenated data
4 under coalescence. *Systematic Biology* 56:17–24.

5 Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2016. PartitionFinder 2: New
6 methods for selecting partitioned models of evolution for molecular and morphological
7 phylogenetic analyses. *Molecular Biology and Evolution* 34:msw260.

8 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nature Methods*
9 9:357–359.

10 Lawrence JG. 2013. Gradual speciation: Further entangling the tree of life. In: Gophna U, editor.
11 Lateral gene transfer in evolution. New York, NY: Springer. p. 243–262.

12 Lawrence JG, Ochman H. 1998. Molecular archaeology of the *Escherichia coli* genome.
13 *Proceedings of the National Academy of Sciences* 95:9413–9417.

14 Leducq JB, Sneddon D, Santos M, Condrain-Morel D, Bourret G, Martinez-Gomez NC, Lee JA,
15 Foster JA, Stolyar S, Shapiro BJ, et al. 2022. Comprehensive phylogenomics of
16 *Methylobacterium* reveals four evolutionary distinct groups and underappreciated
17 phyllosphere diversity. *Genome Biology and Evolution* 14:1–20.

18 Lenton TM, Daines SJ. 2017. Matworld – the biogeochemical effects of early life on land. *New*
19 *Phytologist* 215:531–537.

1 Lopes F, Oliveira LR, Kessler A, Beux Y, Crespo E, Cárdenas-Alayza S, Majluf P, Sepúlveda M,
2 Brownell RL, Franco-Trecu V, et al. 2021. Phylogenomic discordance in the eared seals
3 is best explained by incomplete lineage sorting following explosive radiation in the
4 southern hemisphere. *Systematic Biology* 70:786–802.

5 Lu J, Magain N, Miadlikowska J, Coyle JR, Truong C, Lutzoni F. 2018. Bioclimatic factors at an
6 intrabiome scale are more limiting than cyanobiont availability for the lichen-forming
7 genus *Peltigera*. *American Journal of Botany* 105:1198–1211.

8 Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT. 2011. Genome
9 sequencing of environmental *Escherichia coli* expands understanding of the ecology and
10 speciation of the model bacterial species. *Proceedings of the National Academy of
11 Sciences* 108:7200–7205.

12 Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, Arnold AE, Lewis LA,
13 Swofford DL, Hibbett D, et al. 2018. Contemporaneous radiations of fungi and plants
14 linked to symbiosis. *Nature Communications* 9:5451.

15 Maddison WP. 1997. Gene trees in species trees. *Systematic Biology* 46:523–536.

16 Magain N, Miadlikowska J, Goffinet B, Sérusiaux E, Lutzoni F. 2017. Macroevolution of
17 specificity in cyanolichens of the genus *Peltigera* Section *Polydactylon*
18 (Lecanoromycetes, Ascomycota). *Systematic Biology* 66:74–99.

19 Magain N, Truong C, Goward T, Niu D, Goffinet B, Sérusiaux E, Vitikainen O, Lutzoni F,
20 Miadlikowska J. 2018. Species delimitation at a global scale reveals high species richness

1 with complex biogeography and patterns of symbiont association in *Peltigera* section
2 *Peltigera* (lichenized Ascomycota: Lecanoromycetes). *Taxon* 67:836–870.

3 Magallón S, Hilu KW, Quandt D. 2013. Land plant evolutionary timeline: Gene effects are
4 secondary to fossil constraints in relaxed clock estimation of age and substitution rates.
5 *American Journal of Botany* 100:556–573.

6 Mallawaarachchi V, Wickramarachchi A, Lin Y. 2020. GraphBin: Refined binning of
7 metagenomic contigs using assembly graphs. *Bioinformatics* 36:3307–3313.

8 Martinez-Gutierrez CA, Aylward FO. 2021. Phylogenetic signal, congruence, and uncertainty
9 across Bacteria and Archaea. *Molecular Biology and Evolution* 38:5514–5527.

10 Mendes FK, Hahn MW. 2018. Why Concatenation fails near the anomaly zone. *Systematic
11 Biology* 67:158–169.

12 Miadlikowska J, Magain N, Pardo-De la Hoz CJ, Niu D, Goward T, Sérusiaux E, Lutzoni F.
13 2018. Species in section *Peltidea (aphthosa group)* of the genus *Peltigera* remain cryptic
14 after molecular phylogenetic revision. *Plant and Fungal Systematics* 63:45–64.

15 Miadlikowska J, Richardson D, Magain N, Ball B, Anderson F, Cameron R, Lendemer J, Truong
16 C, Lutzoni F. 2014. Phylogenetic placement, species delimitation, and cyanobiont identity
17 of endangered aquatic *Peltigera* species (lichen-forming Ascomycota, Lecanoromycetes).
18 *American Journal of Botany* 101:1141–1156.

19 Mo YK, Lanfear R, Hahn MW, Minh BQ. 2023. Updated site concordance factors minimize
20 effects of homoplasy and taxon sampling. *Bioinformatics* 39: btac741.

1 Morales-Briones DF, Kadereit G, Tefarikis DT, Moore MJ, Smith SA, Brockington SF,
2 Timoneda A, Yim WC, Cushman JC, Yang Y. 2021. Disentangling sources of gene tree
3 discordance in phylogenomic data sets: Testing ancient hybridizations in Amaranthaceae
4 s.l. *Systematic Biology* 70:219–235.

5 Mostowy R, Croucher NJ, Andam CP, Corander J, Hanage WP, Marttinen P. 2017. Efficient
6 inference of recent and ancestral recombination within bacterial populations. *Molecular
7 Biology and Evolution* 34:1167–1182.

8 Murray GGR, Weinert LA, Rhule EL, Welch JJ. 2016. The phylogeny of *Rickettsia* using
9 different evolutionary signatures: How tree-like is bacterial evolution? *Systematic
10 Biology* 65:265–279.

11 Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH. 2020. The macroevolutionary
12 dynamics of symbiotic and phenotypic diversification in lichens. *Proceedings of the
13 National Academy of Sciences*:202001913.

14 Nelson JM, Hauser DA, Gudiño JA, Guadalupe YA, Meeks JC, Salazar Allen N, Villarreal JC, Li
15 F-W. 2019. Complete genomes of symbiotic cyanobacteria clarify the evolution of
16 vanadium-nitrogenase. *Genome Biology and Evolution* 11:1959–1964.

17 Nelson JM, Hauser DA, Li F. 2021. The diversity and community structure of symbiotic
18 cyanobacteria in hornworts inferred from long-read amplicon sequencing. *American
19 Journal of Botany* 108:1731–1744.

1 Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective
2 stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology*
3 and Evolution

4 32:268–274.

5 Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPADEs: a new versatile
6 metagenomic assembler. *Genome Research* 27:824–834.

7 O'Brien HE, Miadlikowska J, Lutzoni F. 2013. Assessing population structure and host
specialization in lichenized cyanobacteria. *New Phytologist* 198:557–566.

8 Oliveira PH, Touchon M, Cury J, Rocha EPC. 2017. The chromosomal organization of
9 horizontal gene transfer in bacteria. *Nature Communications* 8:25–28.

10 Olm MR, Crits-Christoph A, Diamond S, Lavy A, Matheus Carnevali PB, Banfield JF. 2020.
11 Consistent metagenome-derived metrics verify and delineate bacterial species
12 boundaries. *mSystems* 5:e00731-19.

13 Otálora MAG, Martínez I, O'Brien H, Molina MC, Aragón G, Lutzoni F. 2010. Multiple origins
14 of high reciprocal symbiotic specificity at an intercontinental spatial scale among
15 gelatinous lichens (Collemataceae, Lecanoromycetes). *Molecular Phylogenetics and*
16 *Evolution* 56:1089–1095.

17 Palmer M, Venter SN, Coetzee MPA, Steenkamp ET. 2019. Prokaryotic species are *sui generis*
18 evolutionary units. *Systematic and Applied Microbiology* 42:145–158.

1 Pardo-De la Hoz CJ, Magain N, Lutzoni F, Goward T, Restrepo S, Miadlikowska J. 2018.

2 Contrasting symbiotic patterns in two closely related lineages of trimembered lichens of

3 the genus *Peltigera*. *Frontiers in Microbiology* 9:1–14.

4 Pardo-De la Hoz CJ, Magain N, Piatkowski B, Cornet L, Dal Forno M, Carbone I, Miadlikowska

5 J, Lutzoni F. 2023. Ancient rapid radiation explains most conflicts among gene trees and

6 well-supported phylogenomic trees of nostocalean cyanobacteria. *Systematic Biology*

7 72:694–712.

8 Pardo-De la Hoz CJ, Medeiros ID, Gibert JP, Chagnon P-L, Magain N, Miadlikowska J, Lutzoni

9 F. 2022. Phylogenetic structure of specialization: A new approach that integrates partner

10 availability and phylogenetic diversity to quantify biotic specialization in ecological

11 networks. *Ecology and Evolution* 12:6.

12 Parks DH, Chuvochina M, Chaumeil P, Rinke C, Mussig AJ, Hugenholtz P. 2020. A complete

13 domain-to-species taxonomy for Bacteria and Archaea. *Nature Biotechnology* 38:1079–

14 1086.

15 Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil PA, Hugenholtz P. 2022. GTDB: An

16 ongoing census of bacterial and archaeal diversity through a phylogenetically consistent,

17 rank normalized and complete genome-based taxonomy. *Nucleic Acids Research*

18 50:D785–D794.

19 Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the

20 quality of microbial genomes recovered from isolates, single cells, and metagenomes.

21 *Genome Research* 25:1043–1055.

1 R Core Team A. 2013. R: A language and environment for statistical computing.

2 Rajaniemi P, Hrouzek P, Kaštovská K, Willame R, Rantala A, Hoffmann L, Komárek J, Sivonen
3 K. 2005. Phylogenetic and morphological evaluation of the genera *Anabaena*,
4 *Aphanizomenon*, *Trichormus* and *Nostoc* (Nostocales, cyanobacteria). *International*
5 *Journal of Systematic and Evolutionary Microbiology* 55:11–26.

6 dos Reis M, Yang Z. 2011. Approximate likelihood calculation on a phylogeny for bayesian
7 estimation of divergence times. *Molecular Biology and Evolution* 28:2161–2172.

8 Retchless AC, Lawrence JG. 2010. Phylogenetic incongruence arising from fragmented
9 speciation in enteric bacteria. *Proceedings of the National Academy of Sciences*
10 107:11453–11458.

11 Rhodes JA, Baños H, Mitchell JD, Allman ES. 2021. MSCquartets 1.0: quartet methods for
12 species trees and networks under the multispecies coalescent model in R. *Bioinformatics*
13 37:1766–1768.

14 Rikkinen J. 2003. Ecological and evolutionary role of photobiont-mediated guilds in lichens.
15 *Symbiosis* 34:99–110.

16 Rikkinen J, Oksanen I, Lohtander K. 2002. Lichen guilds share related cyanobacterial symbionts.
17 *Science* 297:357.

18 Robinson O, Dylus D, Dessimoz C. 2016. Phylo.io : Interactive viewing and comparison of large
19 phylogenetic trees on the web. *Molecular Biology and Evolution* 33:2163–2166.

1 Rodríguez-Arribas C, Martínez I, Aragón G, Zamorano-Elgueta C, Cavieres L, Prieto M. 2023.

2 Specialization patterns in symbiotic associations: A community perspective over spatial

3 scales. *Ecology and Evolution* 13:e10296.

4 Rodriguez-R LM, Jain C, Conrad RE, Aluru S, Konstantinidis KT. 2021. Reply to: "Re-

5 evaluating the evidence for a universal genetic boundary among microbial species."

6 *Nature Communications* 12:4060.

7 Rolshausen G, Hallman U, Grande FD, Otte J, Knudsen K, Schmitt I. 2020. Expanding the

8 mutualistic niche: parallel symbiont turnover along climatic gradients. *Proceedings of the*

9 *Royal Society B: Biological Sciences* 287:20192311.

10 Rosenberg NA. 2013. Discordance of species trees with their most likely gene trees: A unifying

11 principle. *Molecular Biology and Evolution* 30:2709–2713.

12 Rothfels CJ, Pryer KM, Li F. 2017. Next-generation polyploid phylogenetics: rapid resolution of

13 hybrid polyploid complexes using PacBio single-molecule sequencing. *New Phytologist*

14 213:413–429.

15 Roycroft EJ, Moussalli A, Rowe KC. 2020. Phylogenomics uncovers confidence and conflict in

16 the rapid radiation of australo-papuan rodents. *Systematic Biology* 69:431–444.

17 Rudi K, Skulberg OM, Jakobsen KS. 1998. Evolution of cyanobacteria by exchange of genetic

18 material among phyletically related strains. *Journal of Bacteriology* 180:3453–3461.

19 Sakoparnig T, Field C, van Nimwegen E. 2021. Whole genome phylogenies reflect the

20 distributions of recombination rates for many bacterial species. *eLife* 10:e65366.

1 Sayyari E, Whitfield JB, Mirarab S. 2018. DiscoVista: Interpretable visualizations of gene tree
2 discordance. *Molecular Phylogenetics and Evolution* 122:110–115.

3 Scotta Hentschke G, Johansen JR, Pietrasik N, Rigonato J, Fiore MF, Leite Sant'Anna C. 2017.
4 *Komarekiella atlantica* gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial
5 taxon from the Atlantic Rainforest and Kauai, Hawaii. *Fottea* 17:178–190.

6 Servais T, Cascales-Miñana B, Cleal CJ, Gerrienne P, Harper DAT, Neumann M. 2019.
7 Revisiting the great ordovician diversification of land plants: Recent data and
8 perspectives. *Palaeogeography, Palaeoclimatology, Palaeoecology* 534:109280.

9 Shang JL, Chen M, Hou S, Li T, Yang YW, Li Q, Jiang HB, Dai GZ, Zhang ZC, Hess WR, et al.
10 2019. Genomic and transcriptomic insights into the survival of the subaerial
11 cyanobacterium *Nostoc flagelliforme* in arid and exposed habitats. *Environmental*
12 *Microbiology* 21:845–863.

13 Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabó G, Polz MF, Alm EJ.
14 2012. Population genomics of early events in the ecological differentiation of Bacteria.
15 *Science* 336:48–51.

16 Shapiro BJ, Leducq J-B, Mallet J. 2016. What is speciation? *PLOS Genetics* 12:e1005860.

17 Shen P, Huang HV. 1986. Homologous recombination in *Escherichia coli*: dependence on
18 substrate length and homology. *Genetics* 112:441–457.

19 Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N,
20 Rippka R, et al. 2013. Improving the coverage of the cyanobacterial phylum using

1 diversity-driven genome sequencing. *Proceedings of the National Academy of Sciences*
2 110:1053–1058.

3 Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO:
4 Assessing genome assembly and annotation completeness with single-copy orthologs.
5 *Bioinformatics* 31:3210–3212.

6 Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of
7 large phylogenies. *Bioinformatics* 30:1312–1313.

8 Stanojković A, Skoupý S, Johannesson H, Dvořák P. 2024. The global speciation continuum of
9 the cyanobacterium *Microcoleus*. *Nat Commun* 15:2122.

10 Strunecký O, Ivanova AP, Mareš J. 2023. An updated classification of cyanobacterial orders and
11 families based on phylogenomic and polyphasic analysis. *Journal of Phycology* 59:12–
12 51.

13 Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence
14 alignments into the corresponding codon alignments. *Nucleic Acids Research* 34:W609–
15 W612.

16 Thomas CM, Nielsen KM. 2005. Mechanisms of, and barriers to, horizontal gene transfer
17 between bacteria. *Nature Reviews Microbiology* 3:711–721.

18 Tomitani A, Knoll AH, Cavanaugh CM, Ohno T. 2006. The evolutionary diversification of
19 cyanobacteria: Molecular-phylogenetic and paleontological perspectives. *Proceedings of
20 the National Academy of Sciences* 103:5442–5447.

1 Uyeda JC, Harmon LJ, Blank CE. 2016. A comprehensive study of cyanobacterial morphological
2 and ecological evolutionary dynamics through deep geologic time. *PLoS ONE*
3 11:e0162539.

4 Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically
5 amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology*
6 172:4238–4246.

7 Villarreal A, JC, Renzaglia KS. 2006. Structure and development of *Nostoc* strands in
8 *Leiosporoceros dussii* (Anthocerotophyta): a novel symbiosis in land plants. *American*
9 *Journal of Botany* 93:693–705.

10 Wang X, Zhang Y, Ren M, Xia T, Chu X, Liu C, Lin X, Huang Y, Chen Z, Yan A, et al. 2020.
11 Cryptic speciation of a pelagic *Roseobacter* population varying at a few thousand
12 nucleotide sites. *The ISME Journal* 14:3106–3119.

13 Warshan D, Espinoza JL, Stuart RK, Richter RA, Kim SY, Shapiro N, Woyke T, C Kyrpides N,
14 Barry K, Singan V, et al. 2017. Feathermoss and epiphytic *Nostoc* cooperate differently:
15 Expanding the spectrum of plant-cyanobacteria symbiosis. *The ISME Journal* 11:2821–
16 2833.

17 Warshan D, Liaimer A, Pederson E, Kim S-Y, Shapiro N, Woyke T, Altermark B, Pawlowski K,
18 Weyman PD, Dupont CL, et al. 2018. Genomic changes associated with the evolutionary
19 transitions of *Nostoc* to a plant symbiont. *Molecular Biology and Evolution* 35:1160–
20 1175.

1 Whitfield JB, Lockhart PJ. 2007. Deciphering ancient rapid radiations. *Trends in Ecology and*
2 *Evolution* 22:258–265.

3 Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: Interactive visualization of de novo
4 genome assemblies. *Bioinformatics* 31:3350–3352.

5 Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. *Molecular Biology and*
6 *Evolution* 24:1586–1591.

7 Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. 2017. *ggtree*: an R package for visualization and
8 annotation of phylogenetic trees with their covariates and other associated data. *Methods*
9 *in Ecology and Evolution* 8:28–36.

10 Yu MK, Fogarty EC, Eren AM. 2024. Diverse plasmid systems and their ecology across human
11 gut metagenomes revealed by PlasX and MobMess. *Nature Microbiology* 9:830–847.

12 Zhang C, Mirarab S. 2022. Weighting by gene tree uncertainty improves accuracy of quartet-
13 based species trees. *Molecular Biology and Evolution* 39:msac215.

14 Zhu T, Hou S, Lu X, Hess WR. 2017. Draft genome sequences of nine cyanobacterial strains
15 from diverse habitats. *Genome Announcements* 5:824–834.

16 Zúñiga C, Leiva D, Carú M, Orlando J. 2017. Substrates of *Peltigera* lichens as a potential
17 source of cyanobionts. *Microbial Ecology* 74:561–569.

18 Zúñiga C, Leiva D, Ramírez-Fernández L, Carú M, Yahr R, Orlando J. 2015. Phylogenetic
19 diversity of *Peltigera* cyanolichens and their photobionts in southern Chile and
20 Antarctica. *Microbes and environments* 30:172–179.

1 **Tables**

2 **Table 1.** Summary of fungal partner sharing between cooccurring and non-cooccurring pairs of
3 cyanolichen specimens with *Nostoc* OTUs from section 3.6 in Alberta, Canada (Fig. 4a).

Nostoc OTUs	Total specimen pairs	Cooccurring specimen pairs	Non-cooccurring specimen pairs	Cooccurring specimen pairs sharing fungal partner	Non-cooccurring specimen pairs sharing fungal partner	% of cooccurring specimen pairs sharing fungal partner	% of non-cooccurring specimen pairs sharing fungal partner
V and XLII	18078	107	17971	26	1561	24.29	8.68
3.6a and XLII	4554	24	4530	2	430	8.33	9.49
3.6a and V	17292	169	17123	50	4207	29.58	24.56
XLII and XLII	2346	35	2311	9	367	25.71	15.88
V and V	34191	499	33692	120	6251	24.04	18.55
3.6a and 3.6a	2145	31	2114	18	718	58.06	33.96

4

1 **Figure legends**

2 **Figure 1.** *Nostoc* phylogenetic history is characterized by multiple rapid radiations associated
3 with plant evolution. **a** Phylogenomic tree of *Nostoc* with estimates of divergence times
4 including 151 taxa (Supplementary Data 1a). The topology was inferred with weighted-ASTRAL
5 (Zhang and Mirarab 2022) using 1,519 gene trees. The gray node bars show the 95% highest
6 posterior density of divergence times estimated with MCMCTree (dos Reis and Yang 2011). Pie
7 charts show the proportion of the 1519 gene trees that recovered each node with strong support,
8 strong conflict, weak support, or weak conflict, or that were not scored due to missing data. We
9 used 95% UFboot as the support threshold to assess conflicts. The delimitation of subclades 1–3
10 is partially based on Otalora et al. (Otalora et al. 2010), but both of our phylogenomic analyses
11 (see Supplementary Fig. 2) recovered a different topology compared to their study, which was
12 based solely on *rbcL*X. We also found that the 16S sequence of the type species of the genus
13 *Demonostoc* falls within subclade 1. *Desmonostoc* was segregated from *Nostoc* and the two
14 genera are sister (Hrouzek et al. 2013), thus, subclade 1 likely corresponds to *Desmonostoc*. The
15 lineage labeled “cf. *Komarekiella* sp.” corresponds to strain *Nostoc* sp. B 2019, which is
16 classified as *Nostoc* in GenBank but probably represents the closely related genus *Komarekiella*
17 (Scotta Hentschke et al. 2017) according to GTDB. Terricolous cyanolichens include those
18 growing directly on soil, mosses, and rocks. The vertical color strips, concave-up red arcs, and
19 dashed arrows indicate estimated major evolutionary events for plants (green strips) and fungi
20 (peach strips; Lutzoni et al. 2018). Concave-down red arcs indicate the estimated age of major
21 events during *Nostoc* evolution. The early radiation of angiosperms includes the crown age of
22 angiosperms until the crown age of Pentapetalae (Magallón et al. 2013). The maximum age for
23 the origin of ascolichens corresponds to the stem age of the clade that includes Arthoniomycetes,

1 Dothideomycetes, Eurotiomycetes, Lecanoromycetes, and Lichinomycetes (Díaz-Escandón et al.
2 2022). Numbered black arcs indicate anomaly zone clusters. **b** and **c** show the relationship
3 between topological conflicts and time between speciation events. Each dot corresponds to an
4 internal branch from the *Nostoc* species tree (**a**). The values on the X axis indicate the median
5 branch length in millions of years, and the Y values are the percentage of gene trees that strongly
6 (**b**) or weakly (**c**) reject each given internode. The dashed lines represent the predicted values
7 from the linear model we fitted to the log-transformed data.

8

9 **Figure 2.** Reticulations are common between closely-related lineages of *Nostoc* during rapid
10 diversification associated with anomaly zones. Phylogenetic split network inferred with NANUQ
11 (Allman et al. 2019). Parallel edges are associated with the same split of taxa. The edge lengths
12 represent split weights, which are proportional to the fraction of quartets supporting a given split.
13 Numbered black arcs indicate areas of the network that correspond to the nine anomaly zone
14 clusters shown in Figure 1a.

15

16 **Figure 3.** *Nostoc* diversification patterns resulted in heterogenous species boundaries. The dot
17 plot shows the distribution of ANI values between all pairs of *Nostoc* and *Desmonostoc*
18 genomes. Each row of dots shows the ANI values between a single *Nostoc* or *Desmonostoc*
19 genome (at the tip of the corresponding terminal branch) and all the other *Nostoc* or
20 *Desmonostoc* genomes included in this phylogeny. The vertical gray shade (spanning 83–95%
21 ANI) shows the range that the ANI gap is expected to span (Jain et al. 2018). The vertical dashed
22 line shows the 95% ANI threshold typically used for bacterial species delimitation
23 (Konstantinidis and Tiedje 2005; Parks et al. 2020). The tree and branch lengths are the same as

1 in Fig. 1a, but without the outgroup taxa and cf. *Komarekiella* sp. The numbers with decimal
2 point to the right of the tree correspond to the sixteen sections (highlighted with two different
3 shades of gray) that we delimited within subclades 2 and 3. The two columns with color blocks
4 show the genome clusters inferred using 95% ANI and PopCOGenT; blue indicates clusters
5 supported by both methods, lilac indicates discordant clusters.

6

7 **Figure 4.** *Nostoc* lineage boundaries are maintained despite cooccurrence and shared fungal
8 symbiotic partners (*Peltigera*). This example is from *Nostoc* section 3.6 (Figs. 1–3) from
9 cyanolichens collected in Alberta, Canada. We considered each labeled clade as one OTU (i.e.,
10 phylogroups V and XLII, and spp. complex 3.6a) for a total of three OTUs. **a** Maximum
11 likelihood tree of 426 *Nostoc rbcLX* sequences. The color of the circles at the branch tips
12 indicates the number of cooccurring *Nostoc* OTUs from section 3.6 at the specific sites where
13 each specimen was collected. Numbers above branches are UFBoot2 support values. Branch
14 lengths represent the expected number of nucleotide substitutions per site. **b** Relief map of
15 Alberta showing the distribution of 152 sites where the lichenized *Nostoc* were collected. **c**
16 Interaction matrix between *Nostoc* and *Peltigera* lichen-forming fungal partners. Each cell in the
17 matrix shows the frequency of the respective combination of *Nostoc* OTU and its fungal partner
18 *Peltigera* in Alberta.

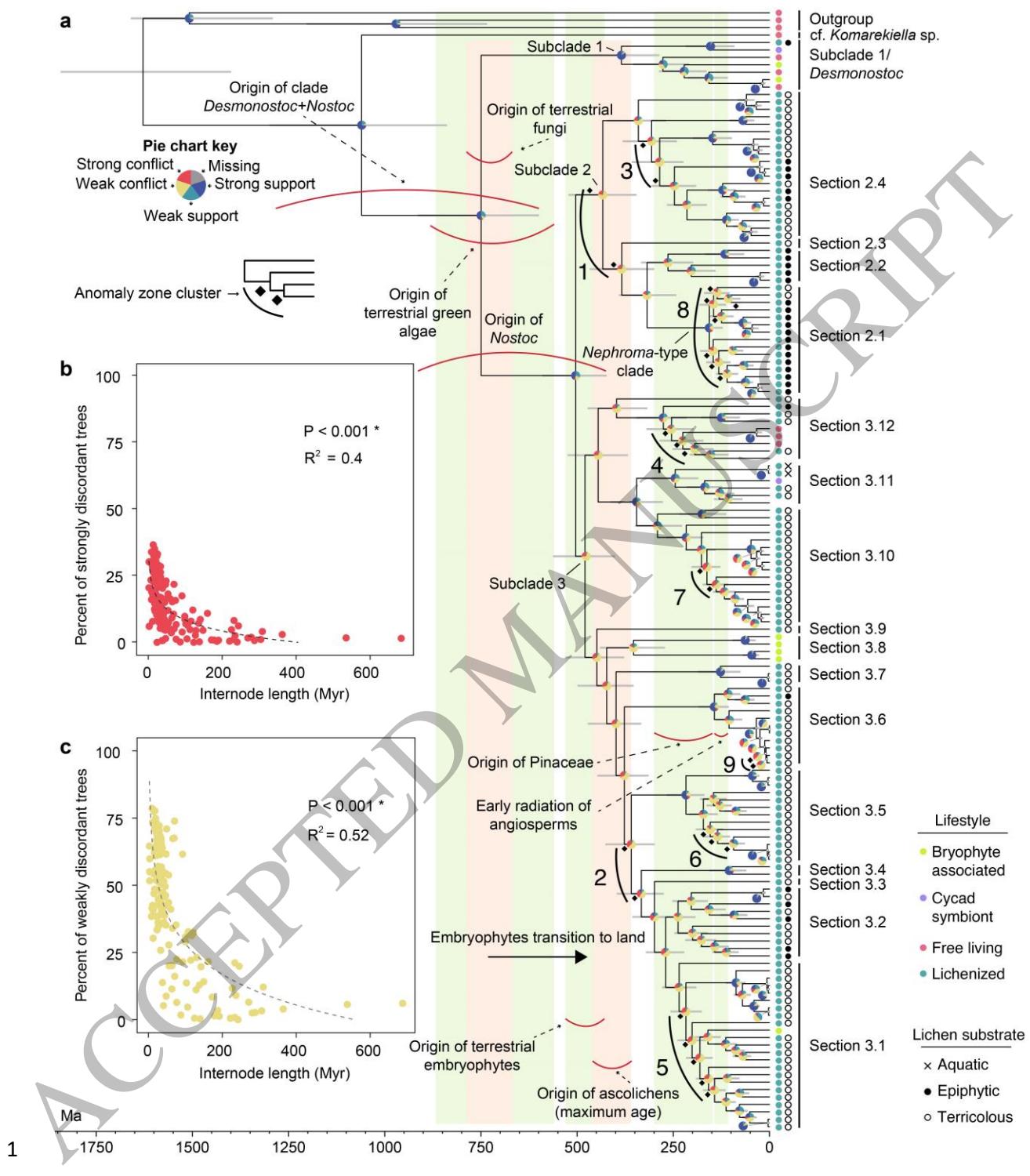
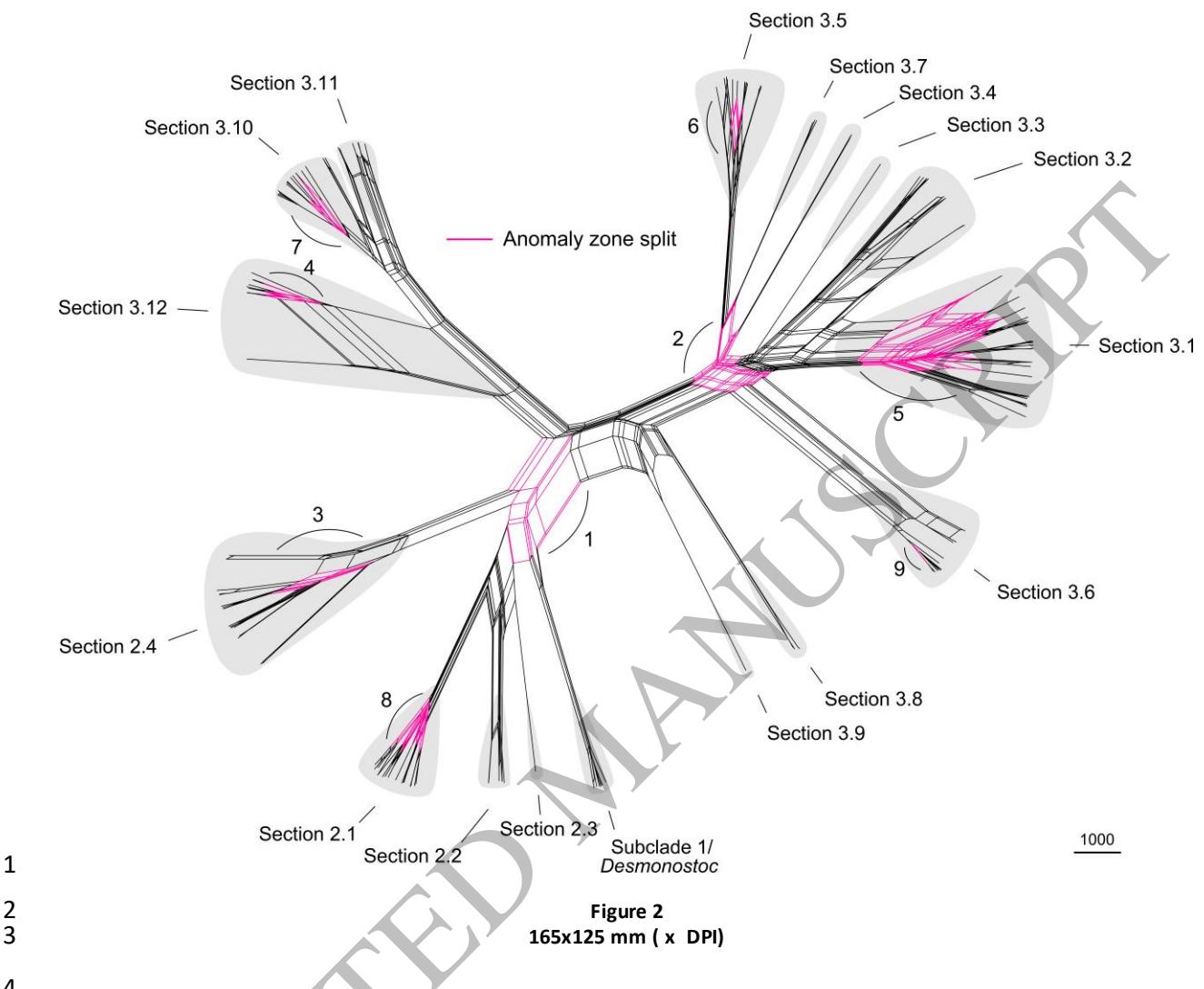



Figure 1
165x194 mm (x DPI)

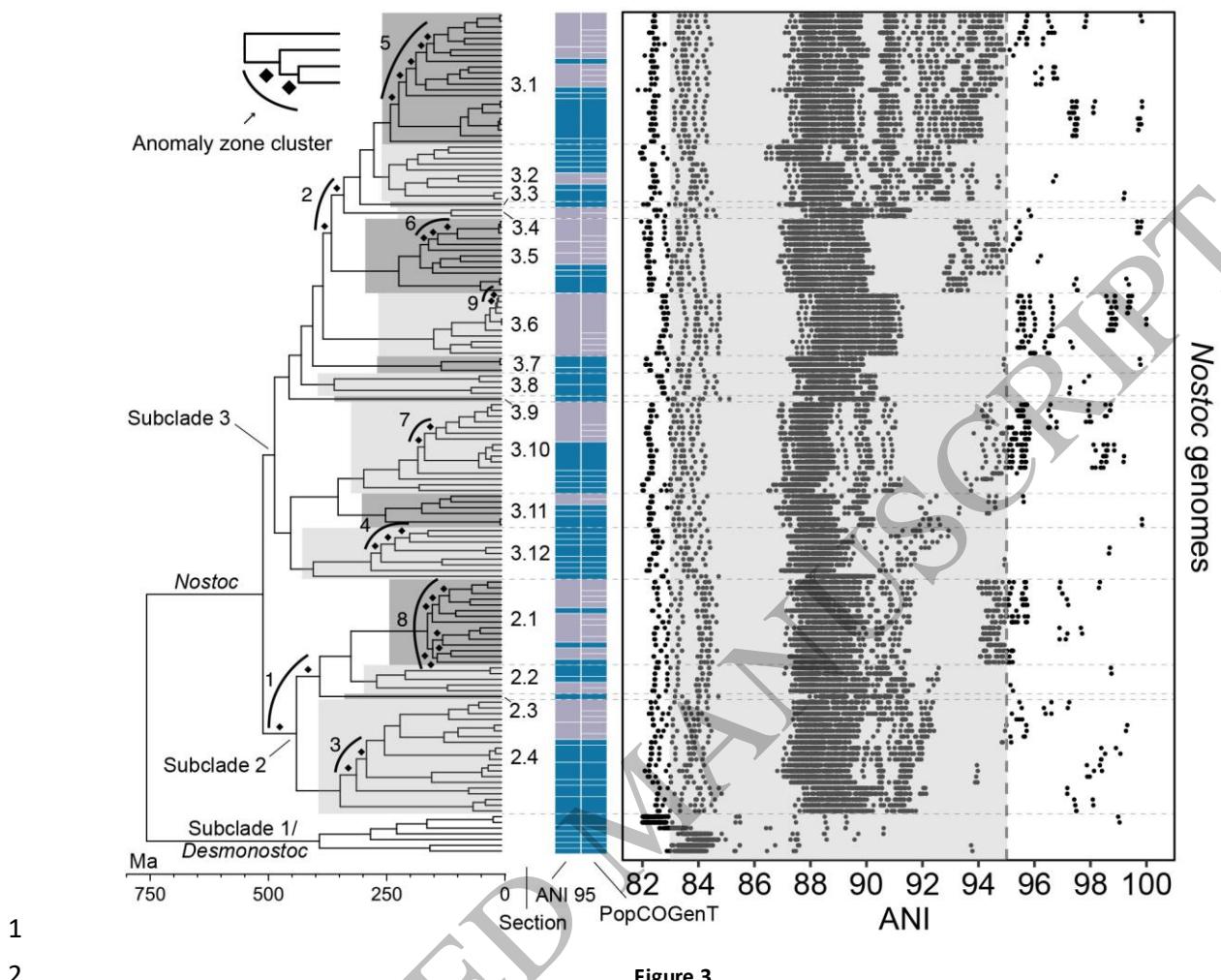
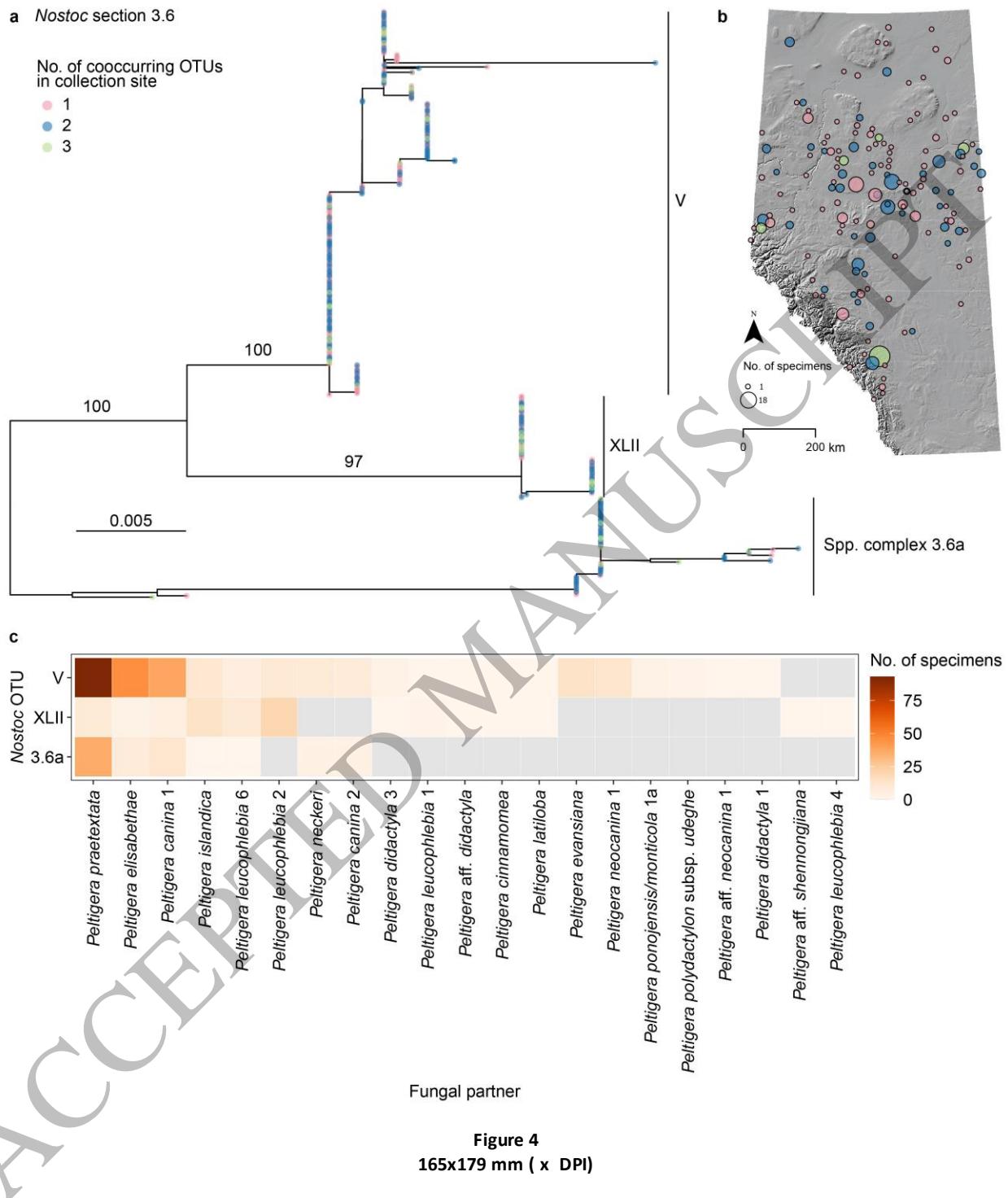



Figure 3
149x127 mm (x DPI)

Figure 4
165x179 mm (x DPI)