Effects of carbon nanotubes on the AC conductivity, permittivity, and electromagnetic shielding performance of polyurethane foams in the 15 Hz–26.5 GHz frequency range - 2025
Effects of carbon nanotubes on the AC conductivity, permittivity, and electromagnetic shielding performance of polyurethane foams in the 15 Hz–26.5 GHz frequency range
Khamis, Ahmad Mamoun; Urbanczyk, Laetitia; Detrembleur, Christopheet al.
2025 • In Journal of Materials Science: Materials in Electronics, 36 (28), p. 1836
[en] This study investigates the impact of increasing carbon nanotube (CNT) concen- tration on the AC conductivity, dielectric, and electromagnetic shielding proper- ties of polyurethane (PU) foams. Four CNT-PU foam samples with different CNT contents (1 wt.%, 2.3 wt.%, 6 wt.%, and 11.2 wt.%) were fabricated using the dip coating method. Three different measurement techniques were employed to char- acterize the AC conductivity and complex permittivity of the CNT-PU composites across various frequency ranges (kHz, MHz, and GHz). COMSOL software was also used to calculate the scattering parameters and visualize the electric field distribution. The microstructure SEM images of CNT-PU samples confirmed that the CNTs formed interconnected and well-distributed networks on the PU surface skeleton, leading to conductive pathways that boost the absorption loss. Therefore, increasing CNT content increased the permittivity and conductivity of CNT-PU samples, and consequently, the total shielding effectiveness (SET). The incorporation of 11.2 wt.% CNT greatly enhanced the AC conductivity, increas- ing it from 3.6 × 10–6 S/cm (pure PU) to 0.0068 S/cm at 10 MHz. Furthermore, the corresponding values of complex permittivity also increased from 1.32—j 0.0059 to 8.65—j 3.7 at 1000 MHz. The complex permittivity of 11.2 wt.% CNT sample was 3.76—j 3.56 at 25 GHz. The samples with 6 wt.% CNT and 11.2 wt.% CNT met the standard requirements for the electromagnetic interference shielding applications because their total shielding effectiveness (SET) values surpassed the 20 dB threshold within the 18–26.5 GHz frequency range. The visualization of the electric field distribution further confirmed that the 11.2 wt.% CNT sample greatly attenuated the electric field propagation through the material. The contribution of the absorption loss mechanism to the SET of CNT-PU samples surpassed 94% in the 18–26.5 GHz frequency range, indicating that the absorption loss was the main shielding mechanism in our samples.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège [BE] CERM - Center for Education and Research on Macromolecules - ULiège [BE]
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Khamis, Ahmad Mamoun ; Université Catholique de Louvain [UCLouvain] - Information and Communication Technologies, Electronics, and Applied Mathematics [ICTEAM] INSTITUTE - Belgium
Urbanczyk, Laetitia ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Detrembleur, Christophe ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; Walloon Excellence [ WEL] Research Institute - Wavre - Belgium
Huynen, Isabelle; Université Catholique de Louvain [UCLouvain] - Information and Communication Technologies, Electronics, and Applied Mathematics [ICTEAM] INSTITUTE - Belgium
Language :
English
Title :
Effects of carbon nanotubes on the AC conductivity, permittivity, and electromagnetic shielding performance of polyurethane foams in the 15 Hz–26.5 GHz frequency range
Publication date :
08 October 2025
Journal title :
Journal of Materials Science: Materials in Electronics
ISSN :
0957-4522
eISSN :
1573-482X
Publisher :
Springer Science and Business Media LLC
Volume :
36
Issue :
28
Pages :
1836
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FEDER - Fonds Européen de Développement Régional Walloon region
Funding text :
This work was performed in the frame of the UP_Plastics project co-funded by the European Union and the Walloon Region as part of the FEDER 2021–2027 Program.
S. Meena, N. Kumari, V. Gahlaut, C. Shekhar, S. Mitra, and U. K. Dwivedi, Electrical and EMI shielding studies of ferrite/MWCNTs/PVDF composite. J. Appl. Poly. Sci. pp. e56446.
H. Kim S. Jeon Y.S. Cho C. Huang S. Na J. Lee Y. Chung J. Kang S.W. Kim D. Choi Polydopamine-coated iron-nickel alloy and epoxy composites for electromagnetic interference shielding J. Appl. Polym. Sci. 141 no. 44 1:CAS:528:DC%2BB2cXhvFemt7nM e56187
M. Magioli B. Soares A. Sirqueira M. Rahaman D. Khastgir EMI shielding effectiveness and dielectrical properties of SBS/PAni. DBSA blends: effect of blend preparation J. Appl. Polym. Sci. 125 2 1476 1485 1:CAS:528:DC%2BC38Xnt1KrsA%3D%3D
R. Hsissou R. Seghiri Z. Benzekri M. Hilali M. Rafik A. Elharfi Polymer composite materials: a comprehensive review Compos. Struct. 262 1:CAS:528:DC%2BB38XivFKrurs%3D 113640
R. K. Mishra, M. G. Thomas, J. Abraham, K. Joseph, and S. Thomas, 2018 Electromagnetic interference shielding materials for aerospace application: a state of the art. Adv. Mater. Electromag. Shield. Fundament. Prop. Appl. pp. 327–365.
M.H. Al-Saleh U. Sundararaj Electromagnetic interference shielding mechanisms of CNT/polymer composites Carbon 47 7 1738 1746 1:CAS:528:DC%2BD1MXltVGju7Y%3D
M.G. Jang S.C. Ryu K.J. Juhn S.K. Kim W.N. Kim Effects of carbon fiber modification with multiwall CNT on the electrical conductivity and EMI shielding effectiveness of polycarbonate/carbon fiber/CNT composites J. Appl. Polym. Sci. 136 14 47302
L. Guohua, Z. Zhiyong, and W. Yangang, 2025 Research progress on highly conductive polymer composites based on carbon‐based nanofillers. Poly. Comp.
S. Bayda M. Adeel T. Tuccinardi M. Cordani F. Rizzolio The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine Molecules 25 1 112 31892180 6982820
X. Cheng, 2014 Nanostructures: fabrication and applications. Nanolithography. pp. 348–375: Elsevier.
S. Malik K. Muhammad Y. Waheed Nanotechnology: a revolution in modern industry Molecules 28 2 661 1:CAS:528:DC%2BB3sXhvF2iu7k%3D 36677717 9865684
S. Alfei G. Zuccari Last fifteen years of nanotechnology application with our contribute Nanomaterials 15 4 265 1:CAS:528:DC%2BB2MXlt1Ogsbw%3D 39997828 11858446
S.A. Zaidi J.H. Shin Recent developments in nanostructure based electrochemical glucose sensors Talanta 149 30 42 1:CAS:528:DC%2BC2MXhvFagsb7I 26717811
N. Chikyu T. Nakano G. Kletetschka Y. Inoue Excellent electromagnetic interference shielding characteristics of a unidirectionally oriented thin multiwalled carbon nanotube/polyethylene film Mater. Des. 195 1:CAS:528:DC%2BB3cXhsFKgs7rF 108918
V. S. Eswaraiah, Venkataraman; Ramaprabhu, Sundara, 2011 Functionalized graphene–PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296(10): 894–898
S. Chen K. Li G. Wang W. Ding X. Zhang Y. Zhao Y. Yang J. Chen Microcellular foamed bilayer iPP/CNTs-HDPE/CNTs nanocomposites for electromagnetic interference shielding application J. Polym. Res. 31 12 357 1:CAS:528:DC%2BB2cXis1eiurvI
S. Sultana, M. Rahaman, and M. R. Chandan, 2025 “Enhancing EMI Shielding Efficiency of Polyurethane Foam by Incorporating MWCNT-Decorated Hollow Glass Microspheres,” ACS omega.
C.K. Kum Y.-T. Sung M.S. Han W.N. Kim H.S. Lee S.-J. Lee J. Joo Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites Macromol. Res. 14 456 460 1:CAS:528:DC%2BD28Xps1Sgt7w%3D
J.-M. Thomassin C. Pagnoulle L. Bednarz I. Huynen R. Jerome C. Detrembleur Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction J. Mater. Chem. 18 7 792 796 1:CAS:528:DC%2BD1cXitlegsrs%3D
K. Chizari M. Arjmand Z. Liu U. Sundararaj D. Therriault Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications Mater. Today Commun. 11 112 118 1:CAS:528:DC%2BC2sXhs1GlsLvP
S. Sultana M.R. Chandan Enhanced EMI shielding efficiency of graphene nanoplatelets and glass sphere composite-loaded ultralight weight flexible polyurethane foam Polym. Adv. Technol. 35 10 1:CAS:528:DC%2BB2cXit1yjtL7O e6611
S. Jafarzadeh A. Farzaneh V. Haddadi-Asl I.S. Jouibari A review on electrically conductive polyurethane nanocomposites: from principle to application Polym. Compos. 44 12 8266 8302 1:CAS:528:DC%2BB3sXhvVOgur%2FO
Z.E. Zadeh A. Solouk M. Shafieian M.H. Nazarpak Electrospun polyurethane/carbon nanotube composites with different amounts of carbon nanotubes and almost the same fiber diameter for biomedical applications Mater. Sci. Eng. C 118 111403
K. Nakagawa, 2011 “Foam materials made from carbon nanotubes,” Carbon Nanotubes-From Research to Applications.
Q. Xu W. Zhang Improvement of the electromechanical properties of thermoplastic polyurethane composite by ionic liquid modified multiwall carbon nanotubes E-Polymers 21 no. 1 166 178 1:CAS:528:DC%2BB3MXht1ygs77L
D. Zhang H. Yang J. Pan B. Lewis W. Zhou K. Cai A. Benatar L.J. Lee J.M. Castro Multi-functional CNT nanopaper polyurethane nanocomposite fabricated by ultrasonic infiltration and dip soaking processes Compos. B Eng. 182 1:CAS:528:DC%2BB3cXmsVKmsA%3D%3D 107646
X. Huang D. Yu S. Wang Microwave absorption properties of multi-walled carbon nanotubes/carbonyl iron particles/polyurethane foams Materials 15 16 5690 1:CAS:528:DC%2BB38Xit1Gnt7vK 36013823 9416506
E. Zawadzak M. Bil J. Ryszkowska S.N. Nazhat J. Cho O. Bretcanu J.A. Roether A.R. Boccaccini Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds Biomed. Mater. 4 1 19020345 015008
X. Wang H. Li T. Wang X. Niu Y. Wang S. Xu Y. Jiang L. Chen H. Liu Flexible and high-performance piezoresistive strain sensors based on multi-walled carbon nanotubes@ polyurethane foam RSC Adv. 12 22 14190 14196 1:CAS:528:DC%2BB38Xht1Gjs7bO 35558828 9092363
X.-C. Zhang F. Scarpa R. McHale A.P. Limmack H.-X. Peng Carbon nano-ink coated open cell polyurethane foam with micro-architectured multilayer skeleton for damping applications RSC Adv. 6 83 80334 80341
A. Tewari S. Gandla S. Bohm C.R. McNeill D. Gupta Highly exfoliated MWNT–rGO ink-wrapped polyurethane foam for piezoresistive pressure sensor applications ACS Appl. Mater. Interf. 10 6 5185 5195 1:CAS:528:DC%2BC1cXhs1ymu74%3D
M. Nabeel M. Mousa B. Viskolcz B. Fiser L. Vanyorek Recent advances in flexible foam pressure sensors: manufacturing, characterization, and applications–a review Polym. Rev. 64 2 449 489 1:CAS:528:DC%2BB3sXitFWlsbbL
H. Xu, Y. Zhang, and F. Zheng, 2009 “Study on measuring method of dielectric spectroscopy for polymer dielectrics,” in 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials. pp. 922–925.
A. Hosseinbeig S. Marathe D. Pommerenke Characterization of relative complex permittivity and permeability for magneto-dielectric sheets IEEE Trans. Electromagn. Compat. 60 6 1786 1794
S. Hang, and W. Xue-tao, “Application of COMSOL multiphysics in thermal effect analysis of electromagnetic active vibration absorber,” in IOP Conference Series: Materials Science and Engineering, 2017, pp. 012037.
A. Akdagli K. Guney New wide-aperture-dimension formula obtained by using a particle swarm optimization for optimum gain pyramidal horns Microw. Opt. Technol. Lett. 48 6 1201 1205
H.-Z. Ma J.-N. Zhao R. Tang Y. Shao K. Ke K. Zhang B. Yin M.-B. Yang Polypyrrole@ CNT@ PU conductive sponge-based triboelectric nanogenerators for human motion monitoring and self-powered ammonia sensing ACS Appl. Mater. Interf. 15 47 54986 54995 1:CAS:528:DC%2BB3sXitlGnt7zF
D. Wu M. Wei R. Li T. Xiao S. Gong Z. Xiao Z. Zhu Z. Li A percolation network model to predict the electrical property of flexible CNT/PDMS composite films fabricated by spin coating technique Compos. B Eng. 174 107034
P.R. Connolly M. Josh K.T. O'Neill S.J. Seltzer M.O. Wigand M.B. Clennell E.F. May M.L. Johns Dielectric polarization studies in partially saturated shale cores J. Geophys. Res. Solid Earth 124 11 10721 10734
A.S. Hoang Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films Adv. Nat. Sci. Nanosci. Nanotechnol. 2 2 025007
M. Yanılmaz A.S. Sarac A review: effect of conductive polymers on the conductivities of electrospun mats Text. Res. J. 84 12 1325 1342
S. Bronnikov S. Kostromin M. Asandulesa D. Pankin A. Podshivalov Interfacial interactions and interfacial polarization in polyazomethine/MWCNTs nanocomposites Compos. Sci. Technol. 190 1:CAS:528:DC%2BB3cXmvFSgsbo%3D 108049
T. Durance, and P. Yaghmaee, 2011 “4.51-microwave dehydration of food and food ingredients,” Comprehensive biotechnology, pp. 617–628.
J. Wu Y. Gao W. Hu Z. Lu Influence of carbon nanotubes on the absorption performance and mechanical behavior of basalt fiber composite materials Polym. Compos. 46 4 3109 3121 1:CAS:528:DC%2BB2cXitlWnsbzI
B. Wang, Y. Liu, M. Dong, and G. Zuo, “Study on changing the dielectric constant and radar reflection of foamed polyurethane by adding graphite,” in Journal of Physics: Conference Series, 2021, pp. 012004.
K. Shehzad Z.-M. Dang M.N. Ahmad R.U.R. Sagar S. Butt M.U. Farooq T.-B. Wang Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites Carbon 54 105 112 1:CAS:528:DC%2BC38XhvVWjur7J
M.C. Sekhar P. Kondaiah S.J. Chandra G.M. Rao S. Uthanna Effect of substrate bias voltage on the structure, electric and dielectric properties of TiO2 thin films by DC magnetron sputtering Appl. Surf. Sci. 258 5 1789 1796 1:CAS:528:DC%2BC3MXhsV2itL3K
B. Huang J. Yue B. Fan Y. Liu X. Huang Vertical carbon nanotubes arrays with controlled morphology on silicon carbide fibers for electromagnetic wave absorption Ceram. Int. 48 13 19375 19381 1:CAS:528:DC%2BB38Xosl2ltLs%3D
M. Qin L. Zhang H. Wu Dielectric loss mechanism in electromagnetic wave absorbing materials Adv. Sci. 9 10 2105553 1:CAS:528:DC%2BB38XhtVGis7zJ
S. P. Walch, “The bonding of NOz, NH, and CHI” to models of a (10, O) carbon nanotube.”
A. Mora P. Verma S. Kumar Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling Compos. B Eng. 183 1:CAS:528:DC%2BB3cXmsVOisw%3D%3D 107600
Y. Luo Y. Guo C. Wei J. Chen G. Zhao Q. Yuan Y. Zhu Lightweight, compressible, and stretchable composite foams for ultra-efficient and high-stable electromagnetic interference shielding materials Carbon 215 1:CAS:528:DC%2BB3sXitVert7zJ 118480
R.R. Mohan S.J. Varma J. Sankaran Impressive electromagnetic shielding effects exhibited by highly ordered, micrometer thick polyaniline films Appl. Phys. Lett. 10.1063/1.4945791
M.H. Al-Saleh G.A. Gelves U. Sundararaj Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI shielding Compos. A Appl. Sci. Manuf. 42 1 92 97
K. Huang M. Chen G. He X. Hu W. He X. Zhou Y. Huang Z. Liu Stretchable microwave absorbing and electromagnetic interference shielding foam with hierarchical buckling induced by solvent swelling Carbon 157 466 477 1:CAS:528:DC%2BC1MXitV2mtrbL
G. Sang P. Xu T. Yan V. Murugadoss N. Naik Y. Ding Z. Guo Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding Nano-Micro Letters 13 1 153 1:CAS:528:DC%2BB3MXitFGmu7fP 34236560 8266988
Z. Lei D. Tian X. Liu J. Wei K. Rajavel T. Zhao Y. Hu P. Zhu R. Sun C.-P. Wong Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity Chem. Eng. J. 424 1:CAS:528:DC%2BB3MXhtFOltbjP 130365
K. Sushmita A.V. Menon S. Sharma A.C. Abhyankar G. Madras S. Bose Mechanistic insight into the nature of dopants in graphene derivatives influencing electromagnetic interference shielding properties in hybrid polymer nanocomposites J. Phys. Chem. C 123 4 2579 2590 1:CAS:528:DC%2BC1MXjtlOntg%3D%3D
S.P. Pawar S. Bose Extraordinary synergy in attenuating microwave radiation with cobalt-decorated graphene oxide and carbon nanotubes in polycarbonate/poly (styrene-co-acrylonitrile) blends ChemNanoMat 1 8 603 614 1:CAS:528:DC%2BC2MXhvFemtLzO
Y. Zhao J. Hou Z. Bai Y. Yang X. Guo H. Cheng Z. Zhao X. Zhang J. Chen C. Shen Facile preparation of lightweight PE/PVDF/Fe3O4/CNTs nanocomposite foams with high conductivity for efficient electromagnetic interference shielding Compos. A Appl. Sci. Manuf. 139 1:CAS:528:DC%2BB3MXitFCqt7s%3D 106095