Proof-of-concept of bayesian latent class modelling usefulness for assessing diagnostic tests in absence of diagnostic standards in mental health. - 2025
Bayesian latent class modelling; Burnout; Prevalence; Sensitivity; Specificity; Multidisciplinary
Abstract :
[en] [en] UNLABELLED: This study aimed at demonstrating the feasibility, utility and relevance of the Bayesian Latent Class Modelling (BLCM), not assuming a gold standard, when assessing the diagnostic accuracy of the first hetero-assessment test for early detection of occupational burnout (EDTB) by healthcare professionals and the OLdenburg Burnout Inventory (OLBI). We used available data from OLBI and EDTB completed for 100 Belgian and 42 Swiss patients before and after medical consultations. We applied the Hui-Walter framework for two tests and two populations and ran models with minimally informative priors, with and without conditional dependency between diagnostic sensitivities and specificities. We further performed sensitivity analysis by replacing one of the minimally informative priors with the distribution beta, at each time for all priors. We also performed the sensitivity analysis using literature-based informative priors for OLBI. Using the BLCM without conditional dependency, the diagnostic sensitivity and specificity of the EDTB were 0.91 (0.77-1.00) and 0.82 (0.59-1.00), respectively. The sensitivity analysis did not yield any significant changes in these results. The EDTB’s sensitivity and specificity obtained by a BLCM approach are better compared to the previous studies when EDTB was evaluated against OLBI, considered as a gold standard. These findings show the utility and relevance of BLCM in the absence of a gold standard.
SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1038/s41598-025-17332-3.
Disciplines :
Social, industrial & organizational psychology
Author, co-author :
Shoman, Yara; Center of primary care and public health (Unisanté), University of Lausanne, Lausanne, 1066, Switzerland. yara.shoman@unisante.ch
Hartnack, Sonja; Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland ; Centre for Veterinary Systems Transformation and Sustainability Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
Leclercq, Céline ; Université de Liège - ULiège > Département de Psychologie
Hansez, Isabelle ; Université de Liège - ULiège > Département de Psychologie > Valorisation des ressources humaines
Guseva Canu, Irina; Center of primary care and public health (Unisanté), University of Lausanne, Lausanne, 1066, Switzerland
Language :
English
Title :
Proof-of-concept of bayesian latent class modelling usefulness for assessing diagnostic tests in absence of diagnostic standards in mental health.
Committee on Diagnostic Error in Health Care; Board on Health Care Services; Institute of Medicine; The National Academies of Sciences E, and Medicine. in The Diagnostic Process. (eds Balogh, E., Miller, B. & Ball, J.) (National Academies, 2019).
A. Santini A. Man S. Voidăzan Accuracy of diagnostic tests J. Crit. Care Med. (Targu Mures) 7 3 241 248 10.2478/jccm-2021-0022 34722928
Dohoo, I. R, Martin, W. & Stryhn, H. E. Veterinary epidemiologic research (2003).
J.J.F. Breedvelt et al. A systematic review of mental health measurement scales for evaluating the effects of mental health prevention interventions Eur. J. Pub. Health 30 3 510 516 10.1093/eurpub/ckz233
M.R. Schofield et al. On the robustness of latent class models for diagnostic testing with no gold standard Stat. Med. 40 22 4751 4763 4315449 10.1002/sim.8999 33990992 8440412
C.M. Umemneku Chikere K.J. Wilson A.J. Allen L. Vale Comparative diagnostic accuracy studies with an imperfect reference standard – a comparison of correction methods BMC Med. Res. Methodol. 21 1 67 10.1186/s12874-021-01255-4 33845775 8040223
A. Cheung et al. Bayesian latent class analysis when the reference test is imperfect Rev. Sci. Tech. Oie 40 1 271 286 1:STN:280:DC%2BB2c7psFWquw%3D%3D 10.20506/rst.40.1.3224
L. Joseph T.W. Gyorkos L. Coupal Bayesian Estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard Am. J. Epidemiol. 141 3 263 272 1:STN:280:DyaK2M7kt1SksQ%3D%3D 10.1093/oxfordjournals.aje.a117428 7840100
A.J. Branscum I.A. Gardner W.O. Johnson Estimation of diagnostic-test sensitivity and specificity through bayesian modeling Prev. Vet. Med. 68 2–4 145 163 1:STN:280:DC%2BD2M7ovVCltw%3D%3D 10.1016/j.prevetmed.2004.12.005 15820113
S.L. Hui S.D. Walter Estimating the error rates of diagnostic tests Biometrics 36 1 167 171 1:STN:280:DyaL3c7nsFKmtg%3D%3D 10.2307/2530508 7370371
P.M. Vacek The effect of conditional dependence on the evaluation of diagnostic tests Biometrics 41 4 959 968 1:STN:280:DyaL287mtVSqsg%3D%3D 10.2307/2530967 3830260
N. Dendukuri L. Joseph Bayesian approaches to modeling the conditional dependence between multiple diagnostic tests Biometrics 57 1 158 167 1833302 1:STN:280:DC%2BD3MzmvVejsg%3D%3D 10.1111/j.0006-341X.2001.00158.x 11252592
M.P. Georgiadis W.O. Johnson I. G IA Correlation-adjusted Estimation of sensitivity and specificity of two diagnostic tests J. Roy Stat. Soc. C (Appl Stat) 52 1 63 76 1963213 10.1111/1467-9876.00389
Nadon, L, De Beer, L. T. & Morin, A. J. S. Should burnout be conceptualized as a mental disorder?? behavioral sciences (Basel. Switzerland); 12 (3), 11 (2022).
Y. Shoman S.C. Marca R. Bianchi L. Godderis H.F. van der Molen Guseva Canu I. Psychometric properties of burnout measures: a systematic review Epidemiol. Psychiatric Sci. 30 e8 1:STN:280:DC%2BB3svpt1yjsQ%3D%3D 10.1017/S2045796020001134
Fédéral, S. P. Détection Précoce du Burnout: Outil Pour le Médecin Généraliste Burnout (Early Detection of Burnout: BPSEWSTool for the General Physician) 2020 [Available from: Available online: https://www.souffrance-et-travail.com/magazine/burn-out/outil-de-detection-precoce-du-burn-out/
Casanova, M. La evaluación educativa: escuela básica. México, DC Muralla-SEP (1998). Available from: http://ed.dgespe.sep.gob.mx/materiales/primaria/competencias.didacticas/la.evaluacion.educativa.educacion.basica.pdf
C. Leclercq L. Braeckman P. Firket A. Babic I. Hansez Interest of a joint use of two diagnostic tools of burnout: comparison between the Oldenburg burnout inventory and the early detection tool of burnout completed by physicians Int. J. Environ. Res. Public Health 18 19 10.3390/ijerph181910544
Nguyen Huynh, A. et al. Diagnostic performances of an occupational burnout detection method designed for healthcare professionals. Int. J. Environ. Res. Public Health; 18 (23), 2 (2021).
C. Blome M. Augustin Measuring change in quality of life: bias in prospective and retrospective evaluation Value Health 18 1 110 115 10.1016/j.jval.2014.10.007 25595241
Edú-Valsania, S, Laguía, A, Moriano, J. A. & Burnout A review of theory and measurement. Int. J. Environ. Res. Public Health; 19 (3), 10 (2022).
F. Chirico G. Nucera M. Leiter Measuring burnout syndrome requires reliable and standardized measures Hong Kong J. Emerg. Med. 29 102490792210969 10.1177/10249079221096920
A.R. Lyon et al. Determinants and functions of standardized assessment use among school mental health clinicians: A mixed methods evaluation Adm. Policy Ment. Health 43 1 122 134 10.1007/s10488-015-0626-0 25875325 4500742
K. Doulougeri K. Georganta A. Montgomery Diagnosing burnout among healthcare professionals: can we find consensus? Cogent Med. 3 1 1 10.1080/2331205X.2016.1237605
Y. Wang et al. A novel bayesian latent class model (BLCM) evaluates multiple continuous and binary tests: A case study for Brucella abortus in dairy cattle Prev. Vet. Med. 224 106115 2024dlfm.book...W 10.1016/j.prevetmed.2024.106115 38219433
W.B. Schaufeli M.P. Leiter C. Maslach Burnout: 35 years of research and practice Career Dev. Int. 14 3 204 220 10.1108/13620430910966406
I. Guseva Canu et al. Burnout syndrome in europe: towards a harmonized approach in occupational health practice and research Ind. Health 57 6 745 752 10.2486/indhealth.2018-0159 30814391 6885602
W.B. Schaufeli H. De Witte J.J. Hakanen J. Kaltiainen R. Kok How to assess severe burnout? Scand. J. Work. Environ. Health. 4 293 302 10.5271/sjweh.4093 Cutoff points for the Burnout Assessment Tool (BAT) based on three European samples
E. Demerouti A.B. Bakker F. Nachreiner W.B. Schaufeli The job demands-resources model of burnout J. Appl. Psychol. 86 3 499 1:STN:280:DC%2BD3MzlvFSltQ%3D%3D 10.1037/0021-9010.86.3.499 11419809
M. Power G. Fell M. Wright Principles for high-quality, high-value testing Evid. Based Med. 18 1 5 10.1136/eb-2012-100645 22740357 3585491
E. Demerouti E. Demerouti A.B. Bakker I. Vardakou A. Kantas The convergent validity of two burnout instruments Eur. J. Psychol. Assess. 19 1 12 23 10.1027//1015-5759.19.1.12
M.J. Denwood Runjags: an R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS J. Stat. Softw. 71 9 1 25 10.18637/jss.v071.i09
J. Campos P. Jordani M. Zucoloto F. Bonafé J. Maroco Burnout in dental students: effectiveness of different methods Revista De Odontologia Da UNESP 42 324 329 10.1590/S1807-25772013000500002
Chevrier, N. (ed) Adaptation québécoise de l’Oldenberg burnout inventory (OLBI) 2009.
P.M. Bossuyt et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies BMJ (Clinical Res. ed) 351 h5527
P. Kostoulas et al. STARD-BLCM: standards for the reporting of diagnostic accuracy studies that use bayesian latent class models Prev. Vet. Med. 138 37 47 10.1016/j.prevetmed.2017.01.006 28237234