Melograna, Federico ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Bioinformatique
Ulm, Brittany
Bellenguez, Céline
Grenier-Boley, Benjamin
Duroux, Diane ; Université de Liège - ULiège > GIGA > GIGA Molecular & Computational Biology - Systems Genetics & Systems Medicine (BIO3)
Nevado, Alejo J
Holmans, Peter
Tijms, Betty M
Hulsman, Marc
Van Steen, Kristel ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Bioinformatique ; Université de Liège - ULiège > GIGA > GIGA Molecular & Computational Biology - Systems Genetics & Systems Medicine (BIO3)
Lambert J. C., Ramirez A., Grenier-Boley B., Bellenguez C. Step by step: towards a better understanding of the genetic architecture of Alzheimer’s disease. Mol. Psychiatry 1–12 (2023).
E. Baker V. Escott-Price Polygenic Risk Scores in Alzheimer’s Disease: Current Applications and Future Directions Front Digit Health 2 556191
R.M. Nelson M.E. Pettersson Ö. Carlborg A century after Fisher: time for a new paradigm in quantitative genetics Trends Genet. 29 669 676 1:CAS:528:DC%2BC3sXhs12ksrbP 24161664
Lewis C. M., Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 12 (2020)
Visscher P. M., et al. 10 Years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101 (2017).
C.C. Liu et al. Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer’s disease Nat. Immunol. 24 1854 1866 1:CAS:528:DC%2BB3sXitFKkt77E 37857825 11980647 24:11. 2023 Oct 19
Z. Yin et al. APOE4 impairs the microglial response in Alzheimer’s disease by inducing TGFβ-mediated checkpoints Nat. Immunol. 24 1839 1853 1:CAS:528:DC%2BB3sXhvFyms7jF 37749326 10863749
Y.T. Lin et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types Neuron 98 1141 1154.e7 1:CAS:528:DC%2BC1cXhtVKnsbfI 29861287 6023751
S. Emrani H.A. Arain C. DeMarshall T. Nuriel APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: a systematic review Alzheimer’s Res. Ther. 12 1 19
Y. Ma et al. Analysis of whole-exome sequencing data for Alzheimer disease stratified by APOE genotype JAMA Neurol. 76 1099 1108 31180460 6563544
M. Bracher-Smith et al. Whole genome analysis in APOE4 homozygotes identifies the DAB1-RELN pathway in Alzheimer’s disease pathogenesis Neurobiol. Aging 119 67 76 1:CAS:528:DC%2BB38XisVaht77I 35977442 9548409
G. Jun et al. A novel Alzheimer disease locus located near the gene encoding tau protein Mol. Psychiatry 21 108 117 1:CAS:528:DC%2BC2MXltVShsb4%3D 25778476
J.H. Park et al. Novel Alzheimer’s disease risk variants identified based on whole-genome sequencing of APOE ε4 carriers Transl. Psychiatry 11 1 12
V. Escott-Price K.M. Schmidt Pitfalls of predicting age-related traits by polygenic risk scores Ann. Hum. Genet 87 203 209 37416935 10952323
Y.L. Ishioka et al. Effects of the APOE epsilon 4 allele and education on cognitive function in Japanese centenarians Age 38 495 503 1:CAS:528:DC%2BC28XhsVant7nP 27558117 5266218
K.M. Hayden et al. Cognitive resilience among APOE ε4 carriers in the oldest old Int. J. Geriatr. Psychiatry 34 1833 31418472 7143252
A. Abdellaoui L. Yengo K.J.H. Verweij P.M. Visscher 15 years of GWAS discovery: realizing the promise Am. J. Hum. Genet. 110 179 194 1:CAS:528:DC%2BB3sXovVKiuw%3D%3D 36634672 9943775
Rowe T. W., et al. Machine learning for the life-time risk prediction of Alzheimer’s disease: a systematic review. Brain Commun. 3 (2021)
A.S. Alatrany A.J. Hussain J. Mustafina D. Al-Jumeily Machine learning approaches and applications in genome wide association study for Alzheimer’s disease: a systematic review IEEE Access 10 62831 62847
E. Christodoulou et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models J. Clin. Epidemiol. 110 12 22 30763612
M. Bracher-Smith K. Crawford V. Escott-Price Machine learning for genetic prediction of psychiatric disorders: a systematic review Mol. Psychiatry 26 70 79 32591634 7610853
I.E. Jansen et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk Nat. Genet 51 404 413 1:CAS:528:DC%2BC1MXlvFSit70%3D 30617256 6836675
C. Bellenguez et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias Nat. Genet. 54 412 436 1:CAS:528:DC%2BB38XptVShtrg%3D 35379992 9005347 https://www.nature.com/articles/s41588-022-01024-z54:4 [Internet]. [cited 24 Jan 2023]
S.J. Andrews B. Fulton-Howard A. Goate Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease Lancet Neurol. 19 326 335 31986256 8176461
D.P. Wightman et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease Nat. Genet. 53 1276 1282 1:CAS:528:DC%2BB3MXhvFyjtbbF 34493870 10243600 https://www.nature.com/articles/s41588-021-00921-z53:9 [Internet]. [cited 25 Nov 2021]
Van Steen K. Travelling the world of gene–gene interactions. Brief Bioinform [Internet]. 2012 Jan 1 [cited 28 Feb 2025];13:1–19. Available from: https://doi.org/10.1093/bib/bbr012.
G. Leonenko et al. Identifying individuals with high risk of Alzheimer’s disease using polygenic risk scores Nat. Commun. 12 1 10 4309144 https://www.nature.com/articles/s41467-021-24082-z12:1 [Internet]. [cited 6 Sep 2021]
X. Zhou et al. Deep learning-based polygenic risk analysis for Alzheimer’s disease prediction Commun. Med.;3 1 20 3:1. 2023 Apr 6
D. Schlam et al. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nature Nat. Commun. 6 1 12 https://www.nature.com/articles/ncomms96236:1 [Internet] [cited 28 Feb 2025]
R. Csépányi-Kömi G. Sirokmány M. Geiszt E. Ligeti ARHGAP25, a novel Rac GTPase-activating protein, regulates phagocytosis in human neutrophilic granulocytes Blood [Internet]. 119 573 582 22096251 [cited 28 Feb 2025]
M. Wu C.Z. Liu E.A. Barrall R.A. Rissman W.J. Joiner Unbalanced regulation of α7 nAChRs by Ly6h and NACHO contributes to neurotoxicity in Alzheimer’s disease J. Neurosci. [Internet]. 41 8461 1:CAS:528:DC%2BB3MXitlyjurnF 34446574 8513707 https://pmc.ncbi.nlm.nih.gov/articles/PMC8513707/Oct 13 [cited 28 Feb 2025]
X. Wu et al. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder Nat. Med. 10 518 523 1:CAS:528:DC%2BD2cXjsF2jtLk%3D 15107842 https://www.nature.com/articles/nm104110:5 [Internet]. 2004 Apr 25 [cited 28 Feb 2025]
Haukedal H., Freude K. K. Implications of glycosylation in Alzheimer’s disease. Front. Neurosci. [Internet]. Jan 13 [cited 28 Feb 2025];14. Available from: https://pubmed.ncbi.nlm.nih.gov/33519371/ (2021).
Burgos P. V., et al. Sorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complex. Dev Cell [Internet]. 2010 Mar 16 [cited 28 Feb 2025];18:425. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC2841041/.
GTEX. rs4690324 in DGKQ linked to IDUA through sQTLs Internet]. [cited 2024 Apr 18]. Available from: https://www.gtexportal.org/home/snp/rs4690324.
Fabregat A., et al. Reactome. [cited 16 Apr 2024]. IDUA [lysosomal lumen]. Available from: https://reactome.org/content/detail/R-HSA-1678661 (2017).
M.A. Nalls et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease Nat. Genet. 46 989 993 1:CAS:528:DC%2BC2cXht1ait7%2FP 25064009 4146673 https://www.nature.com/articles/ng.304346:9 [Internet]. 2014 Sep 1 [cited 28 Feb 2025]
Grasby K. L, et al. The genetic architecture of the human cerebral cortex. Science [Internet]. Mar 20 [cited 2025 Feb 28];367. Available from: https://pubmed.ncbi.nlm.nih.gov/32193296/ (2020).
Lind L. Genetic determinants of clustering of cardiometabolic risk factors in U.K. biobank. Metab. Syndr. Relat. Disord. [Internet]2020 [cited 28 Feb 2025];18:121–127. Available from: https://pubmed.ncbi.nlm.nih.gov/31928498/.
Y. Li C. Ma Y. Wei Relationship between superoxide dismutase 1 and patients with Alzheimer’s disease Int J. Clin. Exp. Pathol. 10 3517 3522 1:CAS:528:DC%2BC1cXhs1Cjt77P
K. Spisak et al. rs2070424 of the SOD1 gene is associated with risk of Alzheimer’s disease Neurol. Neurochir. Pol. 48 342 345 25440013
D. Gola J. Erdmann B. Müller-Myhsok H. Schunkert I.R. König Polygenic risk scores outperform machine learning methods in predicting coronary artery disease status Genet Epidemiol. 44 125 138 31922285
K. Blanco et al. Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer’s disease Alzheimers Res. Ther. 15 1 16
N.R. Wray J. Yang M.E. Goddard P.M. Visscher The genetic interpretation of area under the roc curve in genomic profiling PLoS Genet 6 e1000864 20195508 2829056
B.W. Kunkle et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing Nat. Genet. 51 414 430 1:CAS:528:DC%2BC1MXnslOks7o%3D 30820047 6463297 https://www.nature.com/articles/s41588-019-0358-251:3 [Internet]. 2019 Feb 28 [cited 26 Jul 2021]
L.A. Farrer et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis JAMA 278 1349 1356 1:STN:280:DyaK1c%2FgtFKgsA%3D%3D 9343467
V. Escott-Price A.J. Myers M. Huentelman J. Hardy Polygenic risk score analysis of pathologically confirmed Alzheimer’s disease Ann. Neurol. 82 311 28727176 5599118
C.J. Weber et al. The worldwide Alzheimer’s disease neuroimaging initiative: ADNI-3 updates and global perspectives Alzheimer’s Dement. 7 e12226
G. Leonenko et al. Genetic risk for alzheimer disease is distinct from genetic risk for amyloid deposition Ann. Neurol. 86 427 435 1:CAS:528:DC%2BC1MXhsF2rsL3E 31199530 6771864
E. Bellou et al. Age-dependent effect of APOE and polygenic component on Alzheimer’s disease Neurobiol. Aging 93 69 77 1:CAS:528:DC%2BB3cXpslSlu7k%3D 32464432 7308803
Y. Ding et al. Large uncertainty in individual polygenic risk score estimation impacts PRS-based risk stratification Nat. Genet. 54 30 39 34931067 8758557 https://www.nature.com/articles/s41588-021-00961-554:1 [Internet]. 2021 Dec 20 [cited 22 Jan 2024]
H. Zhu J. Xu S. Liu Y. Jin Federated learning on non-IID data: a survey Neurocomputing 465 371 390
M. Joiret J.M. Mahachie John E.S. Gusareva K. Van Steen Confounding of linkage disequilibrium patterns in large scale DNA based gene-gene interaction studies BioData Min. 12 1 23
Chen T., Guestrin C. XGBoost. In: Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16. New York, New York, USA. p. 785–794. (ACM Press, 2016).
Rocklin M. Dask: parallel computation with blocked algorithms and task scheduling. In: Proc. 14th Python in Science Conference (2015);
Lundberg S. M., Allen P. G., Lee S. I. A Unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 30 (2017)
S.M. Lundberg et al. From local explanations to global understanding with explainable AI for trees Nat. Mach. Intell. 2 56 67 32607472 7326367
A. van Hilten et al. GenNet framework: interpretable deep learning for predicting phenotypes from genetic data Commun. Biol. 4 1 9 4:1. 2021 Sep 17
K. Wang M. Li H. Hakonarson ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data Nucleic Acids Res. 38 e164 e164 20601685 2938201
T. Cattaert et al. Model-based multifactor dimensionality reduction for detecting epistasis in case–control data in the presence of noise Ann. Hum. Genet. 75 78 89 21158747
J.M. Mahachie John F. Van Lishout K. Van Steen Model-based multifactor dimensionality reduction to detect epistasis for quantitative traits in the presence of error-free and noisy data Eur. J. Hum. Genet. 19 696 703 1:CAS:528:DC%2BC3MXmtlegs7c%3D 21407267 3110049
Lishout F. et al. K Van. gammaMAXT: a fast multiple-testing correction algorithm. BioData Min. 8 (2015)
D. Gola I.R. König Empowering individual trait prediction using interactions for precision medicine BMC Bioinforma. 22 74
Verhaeghe J., Van Der Donckt J., Ongenae F., Van Hoecke S. Powershap: a power-full shapley feature selection method. 71–87 (2022).
C.C. Chang et al. Second-generation PLINK: rising to the challenge of larger and richer datasets Gigascience 4 25722852 4342193 7
M.B. Kursa W.R. Rudnicki Feature selection with the boruta package J. Stat. Softw. 36 1 13
S.T. Sherry et al. dbSNP: the NCBI database of genetic variation Nucleic Acids Res. 29 308 311 1:CAS:528:DC%2BD3MXjtlWmtb0%3D 11125122 29783
E. Mountjoy et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci Nat. Genet. 53 1527 1533 1:CAS:528:DC%2BB3MXitlOlurbE 34711957 7611956 53:11. 2021 Oct 28
D. Szklarczyk et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest Nucleic Acids Res. 51 D638 D646 1:CAS:528:DC%2BB3sXht1entL3K 36370105
D. Gosselin et al. An environment-dependent transcriptional network specifies human microglia identity Science 356 1248 1259 2017
Endo F., et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science. 2022;378 (1979)
F. Koopmans et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse Neuron 103 217 234.e4 1:CAS:528:DC%2BC1MXhtV2iurbM 31171447 6764089
Seabold S., Perktold J. Statsmodels: econometric and statistical modeling with Python. SciPy. 92–96 (2010).
J.D. Hunter Matplotlib Comput Sci. Eng. 9 90 95
M.L. Waskom seaborn: statistical data visualization J. Open Source Softw. 6 3021
Bracher-Smith M. Machine learning in Alzheimer’s disease genetics (2025).