Ayilara M. S. Babalola O. O. (2023). Bioremediation of environmental wastes: the role of microorganisms. Front. Agron. 5. 10.3389/fagro.2023.1183691
Braga R. M. Dourado M. N. Araújo W. L. (2016). Microbial interactions: ecology in a molecular perspective. Braz J. Microbiol. 47(Suppl. 1):86–98. 10.1016/j.bjm.2016.10.005
Chen W. C. Yuan J. S. Xing Y. Mitchell A. Mbong N. Popescu A. C. et al. (2016). An integrated analysis of heterogeneous drug responses in acute myeloid leukemia that enables the discovery of predictive biomarkers. Cancer Res. 76 (5), 1214–1224. 10.1158/0008-5472.CAN-15-2743
Chiu Y.-C. Chen H.-I. H. Zhang T. Zhang S. Gorthi A. Wang L.-J. et al. (2018). Predicting drug response of tumors from integrated genomic profiles by deep neural networks. arXiv. 10.1186/s12920-018-0460-9
Dinan T. G. Stilling R. M. Stanton C. Cryan J. F. (2015). Collective unconscious: how gut microbes shape human behavior. J. Psychiatr. Res. 63, 1–9. 10.1016/j.jpsychires.2015.02.021
Gomez-Cabrero D. Abugessaisa I. Maier D. Teschendorff A. Merkenschlager M. Gisel A. et al. (2014). Data integration in the era of omics: current and future challenges. BMC Syst. Biol. 8 (Suppl. 2), I1. 10.1186/1752-0509-8-S2-I1
Gupta S. Ray S. Khan A. China A. Das D. Mallick A. I. (2021). The cost of bacterial predation via type VI secretion system leads to predator extinction under environmental stress. iScience 24 (12), 103507. 10.1016/j.isci.2021.103507
He F. Q. Sauermann U. Beer C. Winkelmann S. Yu Z. Sopper S. et al. (2014). Identification of molecular sub-networks associated with cell survival in a chronically SIVmac-infected human CD4+ T cell line. Virol. J. 11, 152. 10.1186/1743-422X-11-152
Iorio F. Shrestha R. L. Levin N. Boilot V. Garnett M. J. Saez-Rodriguez J. et al. (2015). A semi-supervised approach for refining transcriptional signatures of drug response and repositioning predictions. PLoS ONE 10 (10), e0139446. 10.1371/journal.pone.0139446
Lapatas V. Stefanidakis M. Jimenez R. C. Via A. Schneider M. V. (2015). Data integration in biological research: an overview. J. Biol. Res. Thessal. 22 (1), 9. 10.1186/s40709-015-0032-5
Li L. Lin Q. Li X. Li T. He X. Li D. et al. (2019b). Dynamics and potential roles of abundant and rare subcommunities in the bioremediation of cadmium-contaminated paddy soil by Pseudomonas chenduensis. Appl. Microbiol. Biotechnol. 103, 8203–8214. 10.1007/s00253-019-10059-y
Li X. Liu Z. Mi M. Zhang C. Xiao Y. Liu X. et al. (2019a). Identification of hub genes and key pathways associated with angioimmunoblastic T-cell lymphoma using weighted gene co-expression network analysis. Cancer Manag. Res. 11, 5209–5220. 10.2147/CMAR.S185030
Lightbody G. Haberland V. Browne F. Taggart L. Zheng H. Parkes E. et al. (2019). Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application. Brief. Bioinforma. 20 (5), 1795–1811. 10.1093/bib/bby051
Meng C. Zeleznik O. A. Thallinger G. G. Kuster B. Gholami A. M. Culhane A. C. (2016). Dimension reduction techniques for the integrative analysis of multi-omics data. Brief. Bioinforma. 17 (4), 628–641. 10.1093/bib/bbv108
Picard M. Scott-Boyer M.-P. Bodein A. Périn O. Droit A. (2021). Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 19, 3735–3746. 10.1016/j.csbj.2021.06.030
Reuter J. A. Spacek D. V. Snyder M. P. (2015). High-throughput sequencing technologies. Mol. Cell 58 (4), 586–597. 10.1016/j.molcel.2015.05.004
Rohart F. Gautier B. Singh A. Lê Cao K.-A. (2017). mixOmics: an R package for ’omics feature selection and multiple data integration. PLoS Comput. Biol. 13 (11), e1005752. 10.1371/journal.pcbi.1005752
Ruffalo M. Koyutürk M. Sharan R. (2015). Network-based integration of disparate omic data to identify “Silent Players” in cancer. PLoS Comput. Biol. 11 (12), e1004595. 10.1371/journal.pcbi.1004595
Sudhakar P. Andrighetti T. Verstockt S. Caenepeel C. Ferrante M. Sabino J. et al. (2022). Integrated analysis of microbe-host interactions in Crohn’s disease reveals potential mechanisms of microbial proteins on host gene expression. iScience 25 (5), 103963. 10.1016/j.isci.2022.103963
Sudhakar P. Verstockt B. Cremer J. Verstockt S. Sabino J. Ferrante M. et al. (2021). Understanding the molecular drivers of disease heterogeneity in Crohn’s disease using multi-omic data integration and network analysis. Inflamm. Bowel Dis. 27 (6), 870–886. 10.1093/ibd/izaa281
Vannier N. Agler M. Hacquard S. (2019). Microbiota-mediated disease resistance in plants. PLoS Pathog. 15 (6), e1007740. 10.1371/journal.ppat.1007740
Yu K. Pieterse C. M. J. Bakker PAHM Berendsen R. L. (2019). Beneficial microbes going underground of root immunity. Plant Cell Environ. 42 (10), 2860–2870. 10.1111/pce.13632
Zeng T. Zhang W. Yu X. Liu X. Li M. Chen L. (2016). Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals. Brief. Bioinforma. 17 (4), 576–592. 10.1093/bib/bbv078