Peatlands Proximal soil sensing Ground-penetrating radar Drone Full-wave inversion Soil moisture Peatland restoration GPR, Ground-penetrating radar; VWC, volumetric water content; NDWI, Normalized Difference Water Index; TWI, Topographic Wetness Index
Abstract :
[en] Peatlands are important ecosystems, providing essential ecological services, such as carbon storage and biodiversity support. However, they are endangered by degradation due to land use and climate change. Their moisture status is a key factor, as it substantially impacts carbon storage and decomposition. Therefore, it is essential to accurately characterize, map, and monitor peatland moisture. This study assessed the potential of drone-borne Ground-penetrating radar (GPR), combined with full-wave inversion, to study peatland moisture. We applied this technique to a peatland in the Belgian Hautes Fagnes previously degraded by reforestation. We conducted GPR measurements over 4.5 ha for one and a half years, producing 19 different peatland root-zone moisture maps at a 5 m resolution. Our results demonstrate that this method can track moisture changes over the study site, with an overall temporal correlation of 0.71 with ground-based moisture sensors, but is less reliable in nearly saturated areas. The spatial correlation with ground-based probes is lower (0.23), due to the high micro-variability of moisture and the use of kriging interpolation to generate maps, resulting in a spatial mismatch as GPR measurements were not collected directly above the probes. We applied statistical clustering techniques on the moisture maps to delineate homogeneous moisture classes that align well with other specific site characteristics (peat depth, vegetation types, Normalized Difference Water Index and surface temperature). This technique shows potential for planning and monitoring peatland restoration efforts and provides a new and valuable approach for peatland moisture studies to complement existing satellite-and other drone-based methods.
Henrion, Maud ; Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium ; Corresponding author. Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Li, Yanfei; Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Wu, Kaijun; Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Jonard, François ; Université de Liège - ULiège > Département de géographie ; Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Département de géographie > Earth Observation and Ecosystem Modelling (EOSystM Lab)
Opfergelt, Sophie; Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Vanacker, Veerle; Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Van Oost, Kristof; Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Lambot, Sébastien ; Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Language :
English
Title :
Drone-borne ground-penetrating radar reveals spatiotemporal moisture dynamics in peatland root zones
Agren, A.M., Hasselquist, E.M., Stendahl, J., Nilsson, M.B., Paul, S.S., 2022. Delineating the distribution of mineral and peat soils at the landscape scale in northern boreal regions. SOIL 8, 733-749. https://doi.org/10.5194/soil-8-733-2022
Agren, A.M., Lidberg, W., Stromgren, M., Ogilvie, J., Arp, P.A., 2014. Evaluating digital terrain indices for soil wetness mapping - a Swedish case study. Hydrol. Earth Syst. Sci. 18, 3623-3634. https://doi.org/10.5194/hess-18-3623-2014
Allan, J.M., Guene-Nanchen, M., Rochefort, L., Douglas, D.J.T., Axmacher, J.C., 2024. Meta-analysis reveals that enhanced practices accelerate vegetation recovery during peatland restoration. Restoration Ecology 32, e14015. https://doi.org/10.1111/rec.14015
Andersen, R., Farrell, C., Graf, M., Muller, F., Calvar, E., Frankard, P., Caporn, S., Anderson, P., 2017. An overview of the progress and challenges of peatland restoration in Western Europe. Restoration Ecology 25, 271-282. https://doi.org/10.1111/rec.12415
Asmuss, T., Bechtold, M., Tiemeyer, B., 2019. On the Potential of Sentinel-1 for High Resolution Monitoring of Water Table Dynamics in Grasslands on Organic Soils. Remote Sensing 11, 1659. https://doi.org/10.3390/rs11141659
Bechtold, M., Schlaffer, S., Tiemeyer, B., De Lannoy, G., 2018. Inferring Water Table Depth Dynamics from ENVISAT-ASAR C-Band Backscatter over a Range of Peatlands from Deeply-Drained to Natural Conditions. Remote Sensing 10, 536. https://doi.org/10.3390/rs10040536
Bettink, K., 2009. Sharp rush Juncus acutus: Draft strategic plan for the Swan NRM Region.
Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin hydrology / Un modele a base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin 24, 43-69. https://doi.org/10.1080/02626667909491834
Bourgault, M.-A., Larocque, M., Garneau, M., 2019. How do hydrogeological setting and meteorological conditions influence water table depth and fluctuations in ombrotrophic peatlands? Journal of Hydrology X 4. https://doi.org/10.1016/j.hydroa.2019.100032
Bragazza, L., 2006. A Decade of Plant Species Changes on a Mire in the Italian Alps: Vegetation-Controlled or Climate-Driven Mechanisms? Climatic Change 77, 415-429. https://doi.org/10.1007/s10584-005-9034-x
Bragazza, L., Bardgett, R.D., Mitchell, E.A.D., Buttler, A., 2015. Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytologist 205, 1175-1182. https://doi.org/10.1111/nph.13116
Brocca, L., Morbidelli, R., Melone, F., Moramarco, T., 2007. Soil moisture spatial variability in experimental areas of central Italy. Journal of Hydrology 333, 356-373. https://doi.org/10.1016/j.jhydrol.2006.09.004
Burdun, I., Bechtold, M., Aurela, M., De Lannoy, G., Desai, A.R., Humphreys, E., Kareksela, S., Komisarenko, V., Liimatainen, M., Marttila, H., Minkkinen, K., Nilsson, M.B., Ojanen, P., Salko, S.-S., Tuittila, E.-S., Uuemaa, E., Rautiainen, M., 2023. Hidden becomes clear: Optical remote sensing of vegetation reveals water table dynamics in northern peatlands. Remote Sensing of Environment 296, 113736. https://doi.org/10.1016/j.rse.2023.113736
Burdun, I., Bechtold, M., Sagris, V., Komisarenko, V., De Lannoy, G., Mander, U., 2020. A Comparison of Three Trapezoid Models Using Optical and Thermal Satellite Imagery for Water Table Depth Monitoring in Estonian Bogs. Remote Sensing 12, 1980. https://doi.org/10.3390/rs12121980
Cheng, M., Jiao, X., Liu, Y., Shao, M., Yu, X., Bai, Y., Wang, Z., Wang, S., Tuohuti, N., Liu, S., Shi, L., Yin, D., Huang, X., Nie, C., Jin, X., 2022. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agricultural Water Management 264, 107530. https://doi.org/10.1016/j.agwat.2022.107530
Cheng, Q., Su, Q., Binley, A., liu, J., Zhang, Z., Chen, X., 2023. Estimation of Surface Soil Moisture by a Multi-Elevation UAV-Based Ground Penetrating Radar. Water Resources Research 59. https://doi.org/10.1029/2022WR032621
de Lima, R.S., Li, K.-Y., Vain, A., Lang, M., Bergamo, T.F., Kokamagi, K., Burnside, N.G., Ward, R.D., Sepp, K., 2022. The Potential of Optical UAS Data for Predicting Surface Soil Moisture in a Peatland across Time and Sites. Remote Sensing 14, 2334. https://doi.org/10.3390/rs14102334
Ding, R., Jin, H., Xiang, D., Wang, Xiaocheng, Zhang, Y., Shen, D., Su, L., Hao, W., Tao, M., Wang, Xinbing, Zhou, C., 2023. Soil Moisture Sensing with UAV-Mounted IR-UWB Radar and Deep Learning. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7. https://doi.org/10.1145/3580867
European Commission, 2021. European Missions - A Soil Deal for Europe - Implementation Plan.
Frankard, P., 2004. Bilan de 12 annees de gestion conservatoire des tourbieres hautes dans la reserve naturelle domaniale des Hautes-Fagnes (Est de la Belgique). geocarrefour 79, 269-276. https://doi.org/10.4000/geocarrefour.795
Frankard, P., Ghiette, P., Hindryckx, M.-N., Schumaker, R., Wastiaux, C., 1998. Peatlands of Wallony (S-Belgium). Suo: Mires and Peat 49, 33-47.
Galagedara, L.W., Parkin, G.W., Redman, J.D., 2003. An analysis of the ground-penetrating radar direct ground wave method for soil water content measurement. Hydrological Processes 17, 3615-3628. https://doi.org/10.1002/hyp.1351
Gatis, N., Luscombe, D.J., Grand-Clement, E., Hartley, I.P., Anderson, K., Smith, D., Brazier, R.E., 2016. The effect of drainage ditches on vegetation diversity and CO2 fluxes in a Molinia caerulea -dominated peatland. Ecohydrology 9, 407-420. https://doi.org/10.1002/eco.1643
Ghazaryan, G., Krupp, L., Seyfried, S., Landgraf, N., Nendel, C., 2024. Enhancing peatland monitoring through multisource remote sensing: optical and radar data applications. International Journal of Remote Sensing 45, 6372-6394. https://doi.org/10.1080/01431161.2024.2387133
Goemaere, E., Demarque, S., Dreesen, R., Declercq, P.-Y., 2016. The Geological and Cultural Heritage of the Caledonian Stavelot-Venn Massif, Belgium. Geoheritage 8, 211-233. https://doi.org/10.1007/s12371-015-0155-y
Goetz, S.J., 1997. Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing 18, 71-94. https://doi.org/10.1080/014311697219286
Gonzalez, E., Rochefort, L., Boudreau, S., Poulin, M., 2014. Combining indicator species and key environmental and management factors to predict restoration success of degraded ecosystems. Ecological Indicators 46, 156-166. https://doi.org/10.1016/j.ecolind.2014.06.016
Gorham, E., Rochefort, L., 2003. Peatland restoration: A brief assessment with special reference to Sphagnum bogs. Wetlands Ecology and Management 11, 109-119.
Gu, Y., Hunt, E., Wardlow, B., Basara, J.B., Brown, J.F., Verdin, J.P., 2008. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters 35. https://doi.org/10.1029/2008GL035772
Hasan, A., Pilesjo, P., Persson, A., 2012. On generating digital elevation models from Lidar data - Resolution versus accuracy and topographic wetness indices in northern peatlands. Geodesy and Cartography 38, 57-69. https://doi.org/10.3846/20296991.2012.702983
Henrion, M., Li, Y., Koganti, T., Bechtold, M., Jonard, F., Opfergelt, S., Vanacker, V., Van Oost, K., Lambot, S., 2024. Mapping and monitoring peatlands in the Belgian Hautes Fagnes: Insights from Ground-penetrating radar and Electromagnetic induction characterization. Geoderma Regional 37. https://doi.org/10.1016/j.geodrs.2024.e00795
Holden, J., 2006. Chapter 14 Peatland hydrology, in: Peatlands: Evolution and Records of Environmental and Climate Changes, Developments in Earth Surface Processes. Elsevier, pp. 319-346. https://doi.org/10.1016/S0928-2025(06)09014-6
Holden, J., Chapman, P.J., Labadz, J.C., 2004. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography 28, 95-123. https://doi.org/10.1191/0309133304pp403ra
Hrysiewicz, A., Holohan, E.P., Donohue, S., Cushnan, H., 2023. SAR and InSAR data linked to soil moisture changes on a temperate raised peatland subjected to a wildfire. Remote Sensing of Environment 291, 113516. https://doi.org/10.1016/j.rse.2023.113516
Huisman, J.A., Hubbard, S.S., Redman, J.D., Annan, A.P., 2003. Measuring Soil Water Content with Ground Penetrating Radar: A Review. Vadose Zone Journal 2, 476-491.
Ikkala, L., Ronkanen, A.-K., Ilmonen, J., Simila, M., Rehell, S., Kumpula, T., Pakkila, L., Klove, B., Marttila, H., 2022. Unmanned Aircraft System (UAS) Structure-From-Motion (SfM) for Monitoring the Changed Flow Paths and Wetness in Minerotrophic Peatland Restoration. Remote Sensing 14, 3169. https://doi.org/10.3390/rs14133169
Isoaho, A., Ikkala, L., Marttila, H., Hjort, J., Kumpula, T., Korpelainen, P., Rasanen, A., 2023. Spatial water table level modelling with multi-sensor unmanned aerial vehicle data in boreal aapa mires. Remote Sensing Applications: Society and Environment 32, 101059. https://doi.org/10.1016/j.rsase.2023.101059
Isoaho, A., Ikkala, L., Pakkila, L., Marttila, H., Kareksela, S., Rasanen, A., 2024. Multi-sensor satellite imagery reveals spatiotemporal changes in peatland water table after restoration. Remote Sensing of Environment 306, 114144. https://doi.org/10.1016/j.rse.2024.114144
Jacome, A., Bernier, M., Chokmani, K., Gauthier, Y., Poulin, J., De Seve, D., 2013. Monitoring Volumetric Surface Soil Moisture Content at the La Grande Basin Boreal Wetland by Radar Multi Polarization Data. Remote Sensing 5, 4919-4941. https://doi.org/10.3390/rs5104919
Jonard, F., Andre, F., Pinel, N., Warren, C., Vereecken, H., Lambot, S., 2019. Modeling of Multilayered Media Green’s Functions With Rough Interfaces. IEEE Trans. Geosci. Remote Sensing 57, 7671-7681. https://doi.org/10.1109/TGRS.2019.2915676
Jonard, F., Weihermuller, L., Vereecken, H., Lambot, S., 2012. Accounting for soil surface roughness in the inversion of ultrawideband off-ground GPR signal for soil moisture retrieval. GEOPHYSICS 77, H1-H7. https://doi.org/10.1190/geo2011-0054.1
Kalacska, M., Arroyo-Mora, J.P., Soffer, R.J., Roulet, N.T., Moore, T.R., Humphreys, E., Leblanc, G., Lucanus, O., Inamdar, D., 2018. Estimating Peatland Water Table Depth and Net Ecosystem Exchange: A Comparison between Satellite and Airborne Imagery. Remote Sensing 10, 687. https://doi.org/10.3390/rs10050687
Kameoka, T., Kozan, O., Hadi, S., Asnawi, Hasrullah, 2021. Monitoring the groundwater level in tropical peatland through UAV mapping of soil surface temperature: a pilot study in Tanjung Leban, Indonesia. Remote Sensing Letters 12, 542-552. https://doi.org/10.1080/2150704X.2021.1906974
Kechavarzi, C., Dawson, Q., Bartlett, M., Leeds-Harrison, P.B., 2010. The role of soil moisture, temperature and nutrient amendment on CO2 efflux from agricultural peat soil microcosms. Geoderma 154, 203-210. https://doi.org/10.1016/j.geoderma.2009.02.018
Kelleners, T.J., Seyfried, M.S., Blonquist, J.M., Bilskie, J., Chandler, D.G., 2005. Improved Interpretation of Water Content Reflectometer Measurements in Soils. Soil Science Soc of Amer J 69, 1684-1690. https://doi.org/10.2136/sssaj2005.0023
Kellner, E., Lundin, L.-C., 2001. Calibration of Time Domain Reflectometry for Water Content in Peat Soil. Nordic Hydrology 32, 315-332. https://doi.org/10.2166/nh.2001.0018
Klinke, R., Kuechly, H., Frick, A., Forster, M., Schmidt, T., Holtgrave, A.-K., Kleinschmit, B., Spengler, D., Neumann, C., 2018. Indicator-Based Soil Moisture Monitoring of Wetlands by Utilizing Sentinel and Landsat Remote Sensing Data. PFG 86, 71-84. https://doi.org/10.1007/s41064-018-0044-5
Klotzsche, A., Jonard, F., Looms, M.C., van der Kruk, J., Huisman, J.A., 2018. Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zone Journal 17, 180052. https://doi.org/10.2136/vzj2018.03.0052
Kreyling, J., Tanneberger, F., Jansen, F., van der Linden, S., Aggenbach, C., Bluml, V., Couwenberg, J., Emsens, W.-J., Joosten, H., Klimkowska, A., Kotowski, W., Kozub, L., Lennartz, B., Liczner, Y., Liu, H., Michaelis, D., Oehmke, C., Parakenings, K., Pleyl, E., Poyda, A., Raabe, S., Rohl, M., Rucker, K., Schneider, A., Schrautzer, J., Schroder, C., Schug, F., Seeber, E., Thiel, F., Thiele, S., Tiemeyer, B., Timmermann, T., Urich, T., van Diggelen, R., Vegelin, K., Verbruggen, E., Wilmking, M., Wrage-Monnig, N., Wolejko, L., Zak, D., Jurasinski, G., 2021. Rewetting does not return drained fen peatlands to their old selves. Nat Commun 12, 5693. https://doi.org/10.1038/s41467-021-25619-y
Lambot, S., Andre, F., 2014. Full-Wave Modeling of Near-Field Radar Data for Planar Layered Media Reconstruction. IEEE Trans. Geosci. Remote Sensing 52, 2295-2303. https://doi.org/10.1109/TGRS.2013.2259243
Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B., Scheers, B., Vanclooster, M., 2004a. Estimating soil electric properties from monostatic ground-penetrating radar signal inversion in the frequency domain. Water Resources Research 40, 2003WR002095. https://doi.org/10.1029/2003WR002095
Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B., Vanclooster, M., 2004b. Modeling of ground-penetrating Radar for accurate characterization of subsurface electric properties. IEEE Trans. Geosci. Remote Sensing 42, 2555-2568. https://doi.org/10.1109/TGRS.2004.834800
Lambot, S., Weihermuller, L., Huisman, J.A., Vereecken, H., Vanclooster, M., Slob, E.C., 2006. Analysis of air-launched ground-penetrating radar techniques to measure the soil surface water content. Water Resour. Res. 42, W11403. https://doi.org/10.1029/2006WR005097
Langhammer, J., Lendzioch, T., Vlcek, L., 2024. Montane peatland response to drought: Evidence from multispectral and thermal UAS monitoring. Ecological Indicators 167, 112587. https://doi.org/10.1016/j.ecolind.2024.112587
Lees, K.J., Artz, R.R.E., Chandler, D., Aspinall, T., Boulton, C.A., Buxton, J., Cowie, N.R., Lenton, T.M., 2021. Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery. Science of The Total Environment 761. https://doi.org/10.1016/j.scitotenv.2020.143312
Lees, K.J., Artz, R.R.E., Khomik, M., Clark, J.M., Ritson, J., Hancock, M.H., Cowie, N.R., Quaife, T., 2020. Using Spectral Indices to Estimate Water Content and GPP in Sphagnum Moss and Other Peatland Vegetation. IEEE Trans. Geosci. Remote Sensing 58, 4547-4557. https://doi.org/10.1109/TGRS.2019.2961479
Lendzioch, T., Langhammer, J., Vlcek, L., Minarik, R., 2021. Mapping the Groundwater Level and Soil Moisture of a Montane Peat Bog Using UAV Monitoring and Machine Learning. Remote Sensing 13. https://doi.org/10.3390/rs13050907
Li, Y., Henrion, M., Moore, A., Lambot, S., Opfergelt, S., Vanacker, V., Jonard, F., Van Oost, K., 2025. Hotspots, hot moments, and spatiotemporal drivers of soil CO2 flux in temperate peatlands using UAV remote sensing. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2025-1595
Li, Y., Henrion, M., Moore, A., Lambot, S., Opfergelt, S., Vanacker, V., Jonard, F., Van Oost, K., 2024. Factors controlling peat soil thickness and carbon storage in temperate peatlands based on UAV high-resolution remote sensing. Geoderma 449, 117009. https://doi.org/10.1016/j.geoderma.2024.117009
Linkeviciene, R., Simanauskiene, R., Kibirkstis, G., Grigaite, O., Taminskas, J., 2023. Hydrological and botanical diversity of a raised bog and its evaluation using in situ and remote sensing methods. Journal of Hydrology 617, 129119. https://doi.org/10.1016/j.jhydrol.2023.129119
McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17, 1425-1432. https://doi.org/10.1080/01431169608948714
Meingast, K.M., Falkowski, M.J., Kane, E.S., Potvin, L.R., Benscoter, B.W., Smith, A.M.S., Bourgeau-Chavez, L.L., Miller, M.E., 2014. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems. Remote Sensing of Environment 152, 536-546. https://doi.org/10.1016/j.rse.2014.07.014
Menberu, M.W., Tahvanainen, T., Marttila, H., Irannezhad, M., Ronkanen, A., Penttinen, J., Kloeve, B., 2016. Water-table-dependent hydrological changes following peatland forestry drainage and restoration: Analysis of restoration success. Water Resources Research 52, 3742-3760. https://doi.org/10.1002/2015WR018578
Minasny, B., Adetsu, D.V., Aitkenhead, M., Artz, R.R.E., Baggaley, N., Barthelmes, A., Beucher, A., Caron, J., Conchedda, G., Connolly, J., Deragon, R., Evans, C., Fadnes, K., Fiantis, D., Gagkas, Z., Gilet, L., Gimona, A., Glatzel, S., Greve, M.H., Habib, W., Hergoualc’h, K., Hermansen, C., Kidd, D.B., Koganti, T., Kopansky, D., Large, D.J., Larmola, T., Lilly, A., Liu, H., Marcus, M., Middleton, M., Morrison, K., Petersen, R.J., Quaife, T., Rochefort, L., Rudiyanto, Toca, L., Tubiello, F.N., Weber, P.L., Weldon, S., Widyatmanti, W., Williamson, J., Zak, D., 2023. Mapping and monitoring peatland conditions from global to field scale. Biogeochemistry. https://doi.org/10.1007/s10533-023-01084-1
Minet, J., Bogaert, P., Vanclooster, M., Lambot, S., 2012. Validation of ground penetrating radar full-waveform inversion for field scale soil moisture mapping. Journal of Hydrology 424-425, 112-123.
Noviello, C., Gennarelli, G., Esposito, G., Ludeno, G., Fasano, G., Capozzoli, L., Soldovieri, F., Catapano, I., 2022. An Overview on Down-Looking UAV-Based GPR Systems. Remote Sensing 14. https://doi.org/10.3390/rs14143245
Pathirana, S., Lambot, S., Krishnapillai, M., Cheema, M., Smeaton, C., Galagedara, L., 2023. Ground-Penetrating Radar and Electromagnetic Induction: Challenges and Opportunities in Agriculture. Remote Sensing 15, 2932. https://doi.org/10.3390/rs15112932
Pepin, S., Plamondon, A., Stein, J., 1992. Peat water content measurement using time domain reflectometry. Canadian Journal of Forest Research 22, 534-540.
Petrone, R.M., Price, J.S., Carey, S.K., Waddington, J.M., 2004. Statistical characterization of the spatial variability of soil moisture in a cutover peatland. Hydrological Processes 18, 41-52. https://doi.org/10.1002/hyp.1309
Pramudita, A.A., Wahyu, Y., Rizal, S., Prasetio, M.D., Jati, A.N., Wulansari, R., Ryanu, H.H., 2022. Soil Water Content Estimation With the Presence of Vegetation Using Ultra Wideband Radar-Drone. IEEE Access 10, 85213-85227. https://doi.org/10.1109/ACCESS.2022.3197636
Price, J., 1997. Soil moisture, water tension, and water table relationships in a managed cutover bog. Journal of Hydrology 202, 21-32. https://doi.org/10.1016/S0022-1694(97)00037-1
Rasanen, A., Virtanen, T., 2019. Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes. Remote Sensing of Environment 230, 111207. https://doi.org/10.1016/j.rse.2019.05.026
Reiniger, P., Seguin, B., 1986. Surface temperature as an indicator of evapotranspiration and soil moisture. Remote Sensing Reviews 1, 277-310. https://doi.org/10.1080/02757258609532071
Rosenbaum, U., Bogena, H.R., Herbst, M., Huisman, J.A., Peterson, T.J., Weuthen, A., Western, A.W., Vereecken, H., 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resources Research 48. https://doi.org/10.1029/2011wr011518
Saarikoski, H., Mustajoki, J., Hjerppe, T., Aapala, K., 2019. Participatory multi-criteria decision analysis in valuing peatland ecosystem services-Trade-offs related to peat extraction vs. pristine peatlands in Southern Finland. Ecological Economics 162, 17-28. https://doi.org/10.1016/j.ecolecon.2019.04.010
Sadeghi, M., Babaeian, E., Tuller, M., Jones, S.B., 2017. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sensing of Environment 198, 52-68. https://doi.org/10.1016/j.rse.2017.05.041
Sandholt, I., Rasmussen, K., Andersen, J., 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment 79, 213-224. https://doi.org/10.1016/S0034-4257(01)00274-7
Simanauskiene, R., Linkeviciene, R., Bartold, M., Dabrowska-Zielinska, K., Slavinskiene, G., Veteikis, D., Taminskas, J., 2019. Peatland degradation: The relationship between raised bog hydrology and normalized difference vegetation index. Ecohydrology 12, e2159. https://doi.org/10.1002/eco.2159
Sun, J., Gallego-Sala, A., Yu, Z., 2023. Topographic and climatic controls of peatland distribution on the Tibetan Plateau. Sci Rep 13, 14811. https://doi.org/10.1038/s41598-023-39699-x
Topp, G.C., Davis, J.L., 1985. Measurement of Soil Water Content using Time-domain Reflectrometry (TDR): A Field Evaluation. Soil Science Soc of Amer J 49, 19-24. https://doi.org/10.2136/sssaj1985.03615995004900010003x
UNEP, 2022. Global Peatlands Assessment: The State of the World’s Peatlands - Evidence for Action toward the Conservation, Restoration, and Sustainable Management of Peatlands. United Nations Environment Programme. https://doi.org/10.59117/20.500.11822/41222
Wang, M., Liu, H., Lennartz, B., 2021. Small-scale spatial variability of hydro-physical properties of natural and degraded peat soils. Geoderma 399, 115123. https://doi.org/10.1016/j.geoderma.2021.115123
Wastiaux, C., 2008. Les tourbieres sont-elles des eponges regularisant l’ecoulement ? Bulletin de la Societe geographique de Liege 50, 57-66.
Western, A.W., Bloschl, G., 1999. On the spatial scaling of soil moisture. Journal of Hydrology 217, 203-224. https://doi.org/10.1016/S0022-1694(98)00232-7
Wigmore, O., Mark, B., McKenzie, J., Baraer, M., Lautz, L., 2019. Sub-metre mapping of surface soil moisture in proglacial valleys of the tropical Andes using a multispectral unmanned aerial vehicle. Remote Sensing of Environment 222, 104-118. https://doi.org/10.1016/j.rse.2018.12.024
Wijewardana, Y.G.N.S., Galagedara, L.W., 2010. Estimation of spatio-temporal variability of soil water content in agricultural fields with ground penetrating radar. Journal of Hydrology 391, 24-33. https://doi.org/10.1016/j.jhydrol.2010.06.036
Wu, K., Artois, J., Tourneur, D., Mareschal, M., Henrion, M., Pathirana, S., Galagedara, L., Limbourg, Q., Lambot, S., 2025. Drone-borne GPR reveals dynamic root-zone moisture patterns for optimized irrifation. Remote Sensing of Environment [preprint]. http://dx.doi.org/10.2139/ssrn.5148563
Wu, K., Lambot, S., 2022a. Effect of Radar Incident Angle on Full-Wave Inversion for the Retrieval of Medium Surface Permittivity for Drone-Borne Applications. IEEE Trans. Geosci. Remote Sensing 60, 4508710. https://doi.org/10.1109/TGRS.2022.3157370
Wu, K., Lambot, S., 2022b. Analysis of Low-Frequency Drone-Borne GPR for Root-Zone Soil Electrical Conductivity Characterization. IEEE Trans. Geosci. Remote Sensing 60, 2006213. https://doi.org/10.1109/TGRS.2022.3198431
Wu, K., Rodriguez, G.A., Zajc, M., Jacquemin, E., Clement, M., De Coster, A., Lambot, S., 2019. A new drone-borne GPR for soil moisture mapping. Remote Sensing of Environment 235, 111456. https://doi.org/10.1016/j.rse.2019.111456
Zhang, W., Lu, Q., Song, K., Qin, G., Wang, Y., Wang, X., Li, Hongxia, Li, J., Liu, G., Li, Hua, 2014. Remotely sensing the ecological influences of ditches in Zoige Peatland, eastern Tibetan Plateau. International Journal of Remote Sensing 35, 5186-5197. https://doi.org/10.1080/01431161.2014.939779