Viral replication modulated by hallmark conformational ensembles: how AlphaFold-predicted features of RdRp folding dynamics combined with intrinsic disorder-mediated function enable RNA virus discovery
[en] The functions of RNA-dependent RNA polymerases (RdRps) in RNA viruses are demonstrably modulated by native substrates of dynamic and interconvertible conformational ensembles. Many of these are populated by essential flexible or intrinsically disordered regions (IDRs) that lack a stable three-dimensional (3D) structure and that make up nearly 16% of the conserved RdRp domains across Riboviria lineages. Typical structural models of RdRps are conversely generally agnostic of multiple conformations and their fluctuations, whether derived from protein structure predictors or from experimentally resolved structures from crystal states or dynamic conformer sets. In this review, we highlight how biophysics-inspired prediction tools combined with advanced deep learning algorithms, such as AlphaFold2 (AF2), can help efficiently infer the conformational heterogeneity and dynamics of RdRps. We discuss the use of AF2 for protein structure prediction, together with its limitations and impacts on RNA virus protein characterization, and specifically address its low-confidence prediction scores, which largely capture IDRs. Key examples illustrate how biophysical-encoded preferences of generic sequence–ensemble relationships can help estimate the global RdRp structural diversity and RNA virus discovery. The quantitative perception we present also highlights the challenging magnitude of the emergent sequence-to-conformations relationships of proteins and illustrates more robust and accurate annotations of novel or divergent RdRps. Finally, the coarse-grained IDR-based structural depiction of RdRp conformations offers concrete perspectives on an integrative framework to directly generate innovative avenues to better understand viral replication in the early disease stages and the protein–protein affinities through the folding dynamics of these viral proteins. Overall, tapping into the current knowledge of RdRp conformational heterogeneity will serve further RNA virus discovery as similarities in the global RdRp landscape emerge with more clarity.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Tahzima, Rachid; Laboratory of Plant Pathology, TERRA, Gembloux Agro-BioTech, University of Liège (ULg), Gembloux, Belgium ; Department of Plant Sciences, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Ghent, Belgium ; Interuniversity Institute of Bioinformatics in Brussels (ULB/VUB), Brussels, Belgium ; Artificial Intelligence Lab, Vrije Universiteit Brussel (VUB), Brussels, Belgium
Charon, Justine; Fruit Biology and Pathology Unit, National Research Institute for Agriculture, Food and Environment (INRAE), University of Bordeaux, Bordeaux, France
Diaz, Adrian; Interuniversity Institute of Bioinformatics in Brussels (ULB/VUB), Brussels, Belgium
De Jonghe, Kris; Department of Plant Sciences, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Ghent, Belgium
Massart, Sébastien ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Michon, Thierry; Fruit Biology and Pathology Unit, National Research Institute for Agriculture, Food and Environment (INRAE), University of Bordeaux, Bordeaux, France
Viral replication modulated by hallmark conformational ensembles: how AlphaFold-predicted features of RdRp folding dynamics combined with intrinsic disorder-mediated function enable RNA virus discovery
The author(s) declare financial support was received for the research and/or publication of this article. RT was funded by the Belgian Federal Public Service Health, Food Chain Safety and Environment through the contract GenoPREDICT (RF 22/635). JC and TM were supported by the ID4VISA grant from the French National Research Agency (ANR-21-CE35-0009). WV acknowledges the Research Foundation Flanders (FWO) G.0328.16N project grant and the International Research Infrastructure grant I000323N. Acknowledgments
Wolf YI Kazlauskas D Iranzo J Lucía-Sanz A Kuhn JH Krupovic M et al. Origins and evolution of the global RNA virome. MBio. (2018) 9:10–1128. doi: 10.1128/mBio.02329-18, PMID: 30482837
Shi M Lin XD Tian JH Chen LJ Chen X Li CX et al. Redefining the invertebrate RNA virosphere. Nature. (2016) 540:539–43. doi: 10.1038/nature20167, PMID: 27880757
Koonin EV Dolja VV Krupovic M Varsani A Wolf YI Yutin N et al. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. (2020) 84:10–1128. doi: 10.1128/MMBR.00061-19, PMID: 32132243
Neri U Wolf YI Roux S Camargo AP Lee B Kazlauskas D et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell. (2022) 185:4023–4037.e18. doi: 10.1016/j.cell.2022.08.023, PMID: 36174579
Zayed AA Wainaina JM Dominguez-Huerta G Pelletier E Guo J Mohssen M et al. Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome. Science. (2022) 376:156–62. doi: 10.1126/science.abm5847, PMID: 35389782
Charon J Buchmann JP Sadiq S Holmes EC. RdRp-scan: A bioinformatic resource to identify and annotate divergent RNA viruses in metagenomic sequence data. Virus Evol. (2022) 8:veac082. doi: 10.1093/ve/veac082, PMID: 36533143
Dominguez-Huerta G Wainaina JM Zayed AA Culley AI Kuhn JH Sullivan MB. The RNA virosphere: How big and diverse is it? Environ Microbiol. (2023) 25:209–15. doi: 10.1111/1462-2920.16312, PMID: 36511833
Shi M Lin XD Chen X Tian JH Chen LJ Li K et al. The evolutionary history of vertebrate RNA viruses. Nature. (2018) 556:197–202. doi: 10.1038/s41586-018-0012-7, PMID: 29618816
Chen YM Sadiq S Tian JH Chen X Lin XD Shen JJ et al. RNA viromes from terrestrial sites across China expand environmental viral diversity. Nat Microbiol. (2022) 7:1312–23. doi: 10.1038/s41564-022-01180-2, PMID: 35902778
Edgar RC Taylor B Lin V Altman T Barbera P Meleshko D et al. Petabase-scale sequence alignment catalyses viral discovery. Nature. (2022) 602:142–7. doi: 10.1038/s41586-021-04332-2, PMID: 35082445
Rivarez MPS Pecman A Bačnik K Maksimović O Vučurović A Seljak G et al. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. Microbiome. (2023) 11:60. doi: 10.1186/s40168-023-01500-6, PMID: 36973750
Yi B Deng Q Guo C Li X Wu Q Zha R et al. Evaluating the zoonotic potential of RNA viromes of rodents provides new insight into rodent-borne zoonotic pathogens in Guangdong, China. One Health (Amsterdam Netherlands). (2023) 17:100631. doi: 10.1016/j.onehlt.2023.100631, PMID: 38024253
Koonin EV. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol. (1991) 72:2197–206. doi: 10.1099/0022-1317-72-9-2197, PMID: 1895057
Mönenen HA Ravantti JJ Stuart DI Poranen MM. Automated structural comparisons clarify the phylogeny of the right-hand-shaped polymerases. Mol Biol Evol. (2014) 31:2741–52. doi: 10.1093/molbev/msu219, PMID: 25063440
Iyer LM Koonin EV Aravind L. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol. (2003) 3:1. doi: 10.1186/1472-6807-3-1, PMID: 12553882
Appel N Schaller T Penin F Bartenschlager R. From structure to function: new insights into hepatitis C virus RNA replication. J Biol Chem. (2006) 281:9833–6. doi: 10.1074/jbc.r500026200, PMID: 16407182
Mercorelli B Palù G Loregian A. Drug Repurposing for Viral Infectious Diseases: How Far Are We? Trends Microbiol. (2018) 26:865–76. doi: 10.1016/j.tim.2018.04.004, PMID: 29759926
Gao Y Yan L Huang Y Liu F Zhao Y Cao L et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. (2020) 368:779–82. doi: 10.1126/science.abb7498, PMID: 32277040
Peng R Xu X Jing J Wang M Peng Q Liu S et al. Structural insight into arenavirus replication machinery. Nature. (2020) 579:615–9. doi: 10.1038/s41586-020-2114-2, PMID: 32214249
Watkins CL Kempf BJ Beaucourt S Barton DJ Peersen OB. Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases. J Biol Chem. (2020) 295:10624–37. doi: 10.1074/jbc.RA120.013906, PMID: 32493771
Hillen HS Kokic G Farnung L Dienemann C Tegunov D Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature. (2020) 584:154–6. doi: 10.1038/s41586-020-2368-8, PMID: 32438371
Campagnola G Govindarajan V Pelletier A Canard B Peersen OB. The SARS-coV nsp12 polymerase active site is tuned for large-genome replication. J Virol. (2022) 96:e0067122. doi: 10.1128/jvi.00671-22, PMID: 35924919
Perez JT Varble A Sachidanandam R Zlatev I Manoharan M García-Sastre A et al. Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proc Natl Acad Sci. (2010) 107:11525–30. doi: 10.1073/pnas.1001984107, PMID: 20534471
Liu W Shi X Gong P. A unique intra-molecular fidelity-modulating mechanism identified in a viral RNA-dependent RNA polymerase. Nucleic Acids Res. (2018) 46:10840–54. doi: 10.1093/nar/gky848, PMID: 30239956
Beerens N Selisko B Ricagno S Imbert I van der Zanden L Snijder EJ et al. De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol. (2007) 81:8384–95. doi: 10.1128/jvi.00564-07, PMID: 17537850
Appleby TC Perry JK Murakami E Barauskas O Feng J Cho A et al. Structural basis for RNA replication by the hepatitis C virus polymerase. Science. (2015) 347:771–5. doi: 10.1126/science.1259210, PMID: 25678663
Wu R Davison MR Gao Y Nicora CD Mcdermott JE Burnum-Johnson KE et al. Moisture modulates soil reservoirs of active DNA and RNA viruses. Commun Biol. (2021) 4:.992. doi: 10.1038/s42003-021-02514-2, PMID: 34446837
Choi KH Groarke JM Young DC Kuhn RJ Smith JL Pevear DC et al. The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Proc Natl Acad Sci. (2004) 101:4425–30. doi: 10.1073/pnas.0400660101, PMID: 15070734
Ferrer-Orta C Arias A Perez-Luque R Escarmis C Domingo E Verdaguer N. Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem. (2004) 279:47212–21. doi: 10.1074/jbc.M405465200, PMID: 15294895
Hengrung N El Omari K Serna Martin I Vreede FT Cusack S Rambo RP et al. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature. (2015) 527:114–7. doi: 10.1038/nature15525, PMID: 26503046
Gong P Peersen OB. Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci. (2010) 107:22505–10. doi: 10.1073/pnas.1007626107, PMID: 21148772
Gerlach P Malet H Cusack S Reguera J. Structural insights into bunyavirus replication and its regulation by the vRNA promoter. Cell. (2015) 161:1267–79. doi: 10.1016/j.cell.2015.05.006, PMID: 26004069
Fan H Walker AP Carrique L Keown JR Serna Martin I Karia D et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature. (2019) 573:287–90. doi: 10.1038/s41586-019-1530-7, PMID: 31485076
Puustinen P Mäkinen K. Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg. J Biol Chem. (2004) 279:38103–10. doi: 10.1074/jbc.M402910200, PMID: 15218030
Lauber C Zhang X Vaas J Klingler F Mutz P Dubin A et al. Deep mining of the Sequence Read Archive reveals major genetic innovations in coronaviruses and other nidoviruses of aquatic vertebrates. PloS Pathog. (2024) 20:e1012163. doi: 10.1371/journal.ppat.1012163, PMID: 38648214
Soh YS Moncla LH Eguia R Bedford T Bloom JD. Comprehensive mapping of adaptation of the avian influenza polymerase protein PB2 to humans. eLife. (2019) 8:e45079. doi: 10.7554/eLife.45079, PMID: 31038123
Tan CCS van Dorp L Balloux F. The evolutionary drivers and correlates of viral host jumps. Nat Ecol Evol. (2024) 8(5):960–71. doi: 10.1038/s41559-024-02353-4, PMID: 38528191
Yin W Mao C Luan X Shen DD Shen Q Su H et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science. (2020) 368:1499–504. doi: 10.1126/science.abc1560, PMID: 32358203
Yang X Smidansky ED Maksimchuk KR Lum D Welch JL Arnold JJ et al. Motif D of viral RNA-dependent RNA polymerases determines efficiency and fidelity of nucleotide addition. Structure (London England: 1993). (2012) 20:1519–27. doi: 10.1016/j.str.2012.06.012, PMID: 22819218
Gunawardene CD Donaldson LW White KA. Tombusvirus polymerase: Structure and function. Virus Res. (2017) 234:74–86. doi: 10.1016/j.virusres.2017.01.012, PMID: 28111194
Ago H Adachi T Yoshida A Yamamoto M Habuka N Yatsunami K et al. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure. (1999) 7:1417–26. doi: 10.1016/s0969-2126(00)80031-3, PMID: 10574802
Peng Q Liu Y Peng R Wang M Yang W Song H et al. Structural insight into RNA synthesis by influenza D polymerase. Nat Microbiol. (2019) 4:1750–9. doi: 10.1038/s41564-019-0487-5, PMID: 31209309
Wang M Li R Shu B Jing X Ye HQ Gong P. Stringent control of the RNA-dependent RNA polymerase translocation revealed by multiple intermediate structures. Nat Commun. (2020) 11:2605. doi: 10.1038/s41467-020-16234-4, PMID: 32451382
Malone B Urakova N Snijder EJ Campbell EA. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol. (2022) 23:21–39. doi: 10.1038/s41580-021-00432-z, PMID: 34824452
Jia H Gong P. A structure-function diversity survey of the RNA-dependent RNA polymerases from the positive-strand RNA viruses. Front Microbiol. (2019) 10:1945. doi: 10.3389/fmicb.2019.01945, PMID: 31507560
Emenecker RJ Griffith D Holehouse AS. Metapredict: a fast, accurate, and easy-to-use predictor of consensus disorder and structure. Biophys J. (2021) 120:4312–9. doi: 10.1016/j.bpj.2021.08.039, PMID: 34480923
Grau I Nowé A Vranken W. Interpreting a black box predictor to gain insights into early folding mechanisms. Comput Struct Biotechnol J. (2021) 19:4919–30. doi: 10.1016/j.csbj.2021.08.041, PMID: 34527196
Babaian A Edgar R. Ribovirus classification by a polymerase barcode sequence. PeerJ. (2022) 10:e14055. doi: 10.7717/peerj.14055, PMID: 36258794
Schrödinger LLC. The PyMOL Molecular Graphics System, Version 2.3.0. (2015).
Bruenn JA. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res. (2003) 31:1821–9. doi: 10.1093/nar/gkg277, PMID: 12654997
Ferrero DS Buxaderas M Rodríguez JF Verdaguer N. The structure of the RNA-dependent RNA polymerase of a permutotetravirus suggests a link between primer-dependent and primer-independent polymerases. PloS Pathog. (2015) 11:e1005265. doi: 10.1371/journal.ppat.1005265, PMID: 26625123
Te Velthuis AJ Arnold JJ Cameron CE Van Den Worm SH Snijder EJ. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res. (2010) 38:203–14. doi: 10.1093/nar/gkp904, PMID: 19875418
Te Velthuis AJ. Common and unique features of viral RNA-dependent polymerases. Cell Mol Life Sci. (2014) 71:4403–20. doi: 10.1007/s00018-014-1695-z, PMID: 25080879
Te Velthuis AJ Oymans J. Initiation, elongation, and realignment during influenza virus mRNA synthesis. J Virol. (2018) 92:10–1128. doi: 10.1128/JVI.01775-17, PMID: 29142123
Gorbalenya AE Koonin EV Donchenko AP Blinov VM. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. (1989) 17:4847–61. doi: 10.1093/nar/17.12.4847, PMID: 2526320
Gorbalenya AE Pringle FM Zeddam JL Luke BT Cameron CE Kalmakoff J et al. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J Mol Biol. (2002) 324:47–62. doi: 10.1016/s0022-2836(02)01033-1, PMID: 12421558
Pan J Vakharia VN Tao YJ. The structure of a birnavirus polymerase reveals a distinct active site topology. PNAS. (2007) 104:7385–90. doi: 10.1073/pnas.0611599104, PMID: 17456597
Shu B Gong P. Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. PNAS. (2016) 113:E4005–14. doi: 10.1073/pnas.1602591113, PMID: 27339134
Sabanadzovic S Ghanem-Sabanadzovic NA Gorbalenya AE. Permutation of the active site of putative RNA-dependent RNA polymerase in a newly identified species of plant alpha-like virus. Virology. (2009) 394:1–7. doi: 10.1016/j.virol.2009.08.006, PMID: 19793602
Tian Z Hu T Holmes EC Ji J Shi W. Analysis of the genetic diversity in RNA-directed RNA polymerase sequences: implications for an automated RNA virus classification system. Virus Evol. (2024) 10:veae059. doi: 10.1093/ve/veae059, PMID: 39119135
Gibbs EB Lu F Portz B Fisher MJ Medellin BP Laremore TN et al. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain. Nat Commun. (2017) 8:15233. doi: 10.1038/ncomms15233, PMID: 28497798
Peersen OB. A comprehensive superposition of viral polymerase structures. Viruses. (2019) 11:745. doi: 10.3390/v11080745, PMID: 31412589
Imbert I Guillemot JC Bourhis JM Bussetta C Coutard B Egloff MP et al. A second, non-canonical RNA-dependent RNA polymerase in SARS Coronavirus. EMBO J. (2006) 25:4933–42. doi: 10.1038/sj.emboj.7601368, PMID: 17024178
Morin B Kranzusch PJ Rahmeh AA Whelan SP. The polymerase of negative-stranded RNA viruses. Curr Opin Virol. (2013) 3:103–10. doi: 10.1016/j.coviro.2013.03.008, PMID: 23602472
Bi P Shu B Gong P. Crystal structure of the coxsackievirus A16 RNA-dependent RNA polymerase elongation complex reveals novel features in motif A dynamics. Virologica Sin. (2017) 32:548–52. doi: 10.1007/s12250-017-4066-8, PMID: 29164396
Wright PE Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol. (1999) 293:321–31. doi: 10.1006/jmbi.1999.3110, PMID: 10550212
Tokuriki N Oldfield CJ Uversky VN Berezovsky IN Tawfik DS. Do viral proteins possess unique biophysical features? Trends Biochem Sci. (2009) 34:53–9. doi: 10.1016/j.tibs.2008.10.009, PMID: 19062293
Jiang Y Yin W Xu HE. RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. Biochem Biophys Res Commun. (2021) 538:47–53. doi: 10.1016/j.bbrc.2020.08.116, PMID: 32943188
Salmon L Nodet G Ozenne V Yin G Jensen MR Zweckstetter M et al. NMR characterization of long-range order in intrinsically disordered proteins. J Am Chem Soc. (2010) 132:8407–18. doi: 10.1021/ja101645g, PMID: 20499903
Parigi G Rezaei-Ghaleh N Giachetti A Becker S Fernandez C Blackledge M et al. Long-range correlated dynamics in intrinsically disordered proteins. J Am Chem Soc. (2014) 136:16201–9. doi: 10.1021/ja506820r, PMID: 25331250
Holehouse AS Kragelund BB. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol. (2024) 25:187–211. doi: 10.1038/s41580-023-00673-0, PMID: 37957331
Dunker AK Lawson JD Brown CJ Williams RM Romero P Oh JS et al. Intrinsically disordered protein. J Mol Graphics Model. (2001) 19:26–59. doi: 10.1016/s1093-3263(00)00138-8, PMID: 11381529
Dunker AK Brown CJ Lawson JD Iakoucheva LM Obradović Z. Intrinsic disorder and protein function. Biochemistry. (2002) 41:6573–82. doi: 10.1021/bi012159+, PMID: 12022860
Lemke EA Babu MM Kriwacki RW Mittag T Pappu RV Wright PE et al. Intrinsic disorder: A term to define the specific physicochemical characteristic of protein conformational heterogeneity. Mol Cell. (2024) 84:1188–90. doi: 10.1016/j.molcel.2024.02.024, PMID: 38579677
Necci M Piovesan D Tosatto SC. Critical assessment of protein intrinsic disorder prediction. Nat Methods. (2021) 18:472–81. doi: 10.1038/s41592-021-01117-3, PMID: 33875885
González-Foutel NS Glavina J Borcherds WM Safranchik M Barrera-Vilarmau S Sagar A et al. Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat Struct Mol Biol. (2022) 29:781–90. doi: 10.1038/s41594-022-00811-w, PMID: 35948766
Tesei G Trolle AI Jonsson N Betz J Knudsen FE Pesce F et al. Conformational ensembles of the human intrinsically disordered proteome. Nature. (2024) 626:897–904. doi: 10.1038/s41586-023-07004-5, PMID: 38297118
Tahzima R Haegeman A Massart S Hébrard E. Flexible spandrels of the global plant virome – IPD at the virus host vector interplay. In: Dancing protein clouds, Chapter 11. The Netherlands. Amsterdam: Academic Press (2021). p. 166. Prog. Mol. Biol. Transl. Sci. doi: 10.1016/bs.pmbts.2021.06.007, PMID: 34656333
De Farias ST Dos Santos Junior AP Rêgo TG José MV. Origin and evolution of RNA-dependent RNA polymerase. Front Genet. (2017) 8:125. doi: 10.3389/fgene.2017.00125, PMID: 28979293
Olendraite I Brown K Firth AE. Identification of RNA virus-derived rdRp sequences in publicly available transcriptomic data sets. Mol Biol Evol. (2023) 40:msad060. doi: 10.1093/molbev/msad060, PMID: 37014783
Suzek BE Huang H McGarvey P Mazumder R Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. (2007) 23:1282–8. doi: 10.1093/bioinformatics/btm098, PMID: 17379688
UniProt Consortium. The UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. (2021) 49:D480–9. doi: 10.1093/nar/gkaa1100, PMID: 33237286
Hou X He Y Fang P Mei SQ Xu Z Wu WC et al. Using artificial intelligence to document the hidden RNA virosphere. Cell. (2024) 187:6929–6942.e16. doi: 10.1016/j.cell.2024.09.027, PMID: 39389057
Jumper J Evans R Pritzel A Green T Figurnov M Ronneberger O et al. Highly accurate protein structure prediction with AlphaFold. Nature. (2021) 596:583–9. doi: 10.1038/s41586-021-03819-2, PMID: 34265844
Mirdita M Schütze K Moriwaki Y Heo L Ovchinnikov S Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. (2022) 19:679–82. doi: 10.1038/s41592-022-01488-1, PMID: 35637307
Lin Z Akin H Rao R Hie B Zhu Z Lu W et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. (2023) 379:1123–30. doi: 10.1126/science.ade2574, PMID: 36927031
Abramson J Adler J Dunger J Evans R Green T Pritzel A et al. Accurate structure prediction of biomolecular interactions with AlphaFold-3. Nat. (2024) 630(8016):493–500. doi: 10.1038/s41586-024-07487-w, PMID: 38718835
DeLano WL. The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific (2002). Available online at: http://www.pymol.org/ (Accessed September 2024).
Goddard TD Huang CC Meng EC Pettersen EF Couch GS Morris JH et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. (2018) 27:14–25. doi: 10.1002/pro.3235, PMID: 28710774
Zhang Y Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. (2005) 33:2302–9. doi: 10.1093/nar/gki524, PMID: 15849316
Kagami LP Orlando G Raimondi D Ancien F Dixit B Gavaldá-García J et al. b2bTools: online predictions for protein biophysical features and their conservation. Nucleic Acids Res. (2021) 49:W52–9. doi: 10.1093/nar/gkab425, PMID: 34057475
Gavalda-Garcia J Dixit B Díaz A Ghysels A Vranken W. Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics. J Mol Biol. (2024) 437(2):168900. doi: 10.1016/j.jmb.2024.168900, PMID: 39647695
Cilia E Pancsa R Tompa P Lenaerts T Vranken WF. From protein sequence to dynamics and disorder with DynaMine. Nat Commun. (2013) 4:2741. doi: 10.1038/ncomms3741, PMID: 24225580
Orlando G Raimondi D Kagami LP Vranken WF. ShiCrypt: a web server to understand and biophysically align proteins through their NMR chemical shift values. Nucleic Acids Res. (2020) 48:W36–40. doi: 10.1093/nar/gkaa391, PMID: 32459331
Raimondi D Orlando G Pancsa R Khan T Vranken WF. Exploring the sequence-based prediction of folding initiation sites in proteins. Sci Rep. (2017) 7:8826. doi: 10.1038/s41598-017-08366-3, PMID: 28821744
Piovesan D Monzon AM Tosatto SC. Intrinsic protein disorder and conditional folding in AlphaFoldDB. Protein Sci. (2022) 31:e4466. doi: 10.1002/pro.4466, PMID: 36210722
Gavalda-Garcia J Dixit B Díaz A Ghysels A Vranken W. Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics. J Mol Biol. (2025) 437:168900. doi: 10.1016/j.jmb.2024.168900, PMID: 39647695
Lotthammer JM Ginell GM Griffith D Emenecker R Holehouse AS. Direct prediction of intrinsically disordered protein conformational properties from sequence. Biophys J. (2024) 123:43a. doi: 10.1038/s41592-023-02159-5, PMID: 38297184
Alderson TR Pritisanac I Kolaric D Moses AM Forman-Kay JD. Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2 Proceedings. Natl Acad Sci. (2023) 120:e2304302120. doi: 10.1073/pnas.2304302120, PMID: 37878721
Del Conte A Bouhraoua A Mehdiabadi M Clementel D Monzon AM CAID predictorset al. CAID prediction portal: a comprehensive service for predicting intrinsic disorder and binding regions in proteins. Nucleic Acids Res. (2023) 51:W62–9. doi: 10.1093/nar/gkad430, PMID: 37246642
Wang K Hu G Basu S Kurgan L. flDPnn2: accurate and fast predictor of intrinsic disorder in proteins. J Mol Biol. (2024) 436:168605. doi: 10.1016/j.jmb.2024.168605, PMID: 39237195
Han KS Song SR Pak MH Kim CS Ri CP Del Conte A et al. PredIDR: Accurate prediction of protein intrinsic disorder regions using deep convolutional neural network. Int J Biol macromolecules. (2025) 284:137665. doi: 10.1016/j.ijbiomac.2024.137665, PMID: 39571839
Guo HB Perminov A Bekele S Kedziora G Farajollahi S Varaljay V et al. AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Sci Rep. (2022) 12:10696. doi: 10.1038/s41598-022-14382-9, PMID: 35739160
Sakaguchi S Urayama SI Takaki Y Hirosuna K Wu H Suzuki Y et al. NeoRdRp: A comprehensive dataset for identifying RNA-dependent RNA polymerases of various RNA viruses from metatranscriptomic data. Microbes environments. (2022), 37:ME22001. doi: 10.1264/jsme2.ME22001, PMID: 36002304
Fontdevila Pareta N Khalili M Maachi A Rivarez MPS Rollin J Salavert F et al. Managing the deluge of newly discovered plant viruses and viroids: an optimized scientific and regulatory framework for their characterization and risk analysis. Front Microbiol. (2023) 14:1181562. doi: 10.3389/fmicb.2023.1181562, PMID: 37323908
Nakagawa S Sakaguchi S Ogura A Mineta K Endo T Suzuki Y et al. Current trends in RNA virus detection through metatranscriptome sequencing data. FEBS Open Bio. (2023) 13:992–1000. doi: 10.1002/2211-5463.13626, PMID: 37163224
Petrone ME Parry R Mifsud JCO Van Brussel K Vorhees IEH Richards ZT et al. Evidence for an ancient aquatic origin of the RNA viral order Articulavirales. Proc Natl Acad Sci United States America. (2023) 120:e2310529120. doi: 10.1073/pnas.2310529120, PMID: 37906647
Roca-Martinez J Lazar T Gavalda-Garcia J Bickel D Pancsa R Dixit B et al. Challenges in describing the conformation and dynamics of proteins with ambiguous behavior. Front Mol Biosci. (2022) 9:959956. doi: 10.3389/fmolb.2022.959956, PMID: 35992270
Altschul SF Madden TL Schäffer AA Zhang J Zhang Z Miller W et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. (1997) 25:3389–402. doi: 10.1093/nar/25.17.3389, PMID: 9254694
Altschul SF Bundschuh R Olsen R Hwa T. The estimation of statistical parameters for local alignment score distributions. Nucleic Acids Res. (2001) 29:351–61. doi: 10.1093/nar/29.2.351, PMID: 11139604
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. (2010) 26:2460–1. doi: 10.1093/bioinformatics/btq461, PMID: 20709691
Krogh A Brown M Mian IS Sjölander K Haussler D. Hidden Markov models in computational biology: Applications to protein modeling. J Mol Biol. (1994) 235:1501–31. doi: 10.1006/jmbi.1994.1104, PMID: 8107089
Skewes-Cox P Sharpton TJ Pollard KS DeRisi JL. Profile hidden Markov models for the detection of viruses within metagenomic sequence data. PloS One. (2014) 9:e105067. doi: 10.1371/journal.pone.0105067, PMID: 25140992
Oliveira LS Gruber A. Rational design of profile hidden markov models for viral classification and discovery. In: Helder N, editor. Bioinformatics. Brisbane (AU): Exon Publications (2021). doi: 10.36255/exonpublications.bioinformatics.2021.ch9, PMID: 33877768
Tan YB Lello LS Liu X Law YS Kang C Lescar J et al. Crystal structures of alphavirus nonstructural protein 4 (nsP4) reveal an intrinsically dynamic RNA-dependent RNA polymerase fold. Nucleic Acids Res. (2022) 50:1000–16. doi: 10.1093/nar/gkab1302, PMID: 35037043
Mao AH Lyle N Pappu RV. Describing sequence–ensemble relationships for intrinsically disordered proteins. Biochem J. (2013) 449:307–18. doi: 10.1042/BJ20121346, PMID: 23240611
Das RK Ruff KM Pappu RV. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr Opin Struct Biol. (2015) 32:102–12. doi: 10.1016/j.sbi.2015.03.008, PMID: 25863585
Zarin T Strome B Nguyen Ba AN Alberti S Forman-Kay JD Moses AM. Proteome-wide signatures of function in highly diverged intrinsically disordered regions. Elife. (2019) 8:e46883. doi: 10.7554/eLife.46883, PMID: 31264965
Davey NE. The functional importance of structure in unstructured protein regions. Curr Opin Struct Biol. (2019) 56:155–63. doi: 10.1016/j.sbi.2019.03.009, PMID: 31003202
Gavalda-Garcia J Bickel D Roca-Martinez J Raimondi D Orlando G Vranken W. Data-driven probabilistic definition of the low energy conformational states of protein residues. NAR Genomics Bioinf. (2024) 6:lqae082. doi: 10.1093/nargab/lqae082, PMID: 38984065
Mao AH Crick SL Vitalis A Chicoine CL Pappu RV. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc Natl Acad Sci. (2010) 107:8183–8. doi: 10.1073/pnas.0911107107, PMID: 20404210
Lyle N Das RK Pappu RV. A quantitative measure for protein conformational heterogeneity. J Chem Phys. (2013) 139(12):121907. doi: 10.1063/1.4812791, PMID: 24089719
Cohan MC Shinn MK Lalmansingh JM Pappu RV. Uncovering Non-random Binary Patterns Within Sequences of Intrinsically Disordered Proteins. J Mol Biol. (2022) 434:167373. doi: 10.1016/j.jmb.2021.167373, PMID: 34863777
Song J Li J Chan HS. Small-angle X-ray scattering signatures of conformational heterogeneity and homogeneity of disordered protein ensembles. J Phys Chem B. (2021) 125:6451–78. doi: 10.1021/acs.jpcb.1c02453, PMID: 34115515
Xue B Blocquel D Habchi J Uversky AV Kurgan L Uversky VN et al. Structural disorder in viral proteins. Chem Rev. (2014) 114:6880–911. doi: 10.1021/cr4005692, PMID: 24823319
Fuxreiter M Simon I Friedrich P Tompa P. Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol. (2004) 338:1015–26. doi: 10.1016/j.jmb.2004.03.017, PMID: 15111064
Gunasekaran K Nussinov R. How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding. J Mol Biol. (2007) 365:257–73. doi: 10.1016/j.jmb.2006.09.062, PMID: 17059826
Lindorff-Larsen K Kragelund BB. On the potential of machine learning to examine the relationship between sequence, structure, dynamics and function of intrinsically disordered proteins. J Mol Biol. (2021) 433:167196. doi: 10.1016/j.jmb.2021.167196, PMID: 34390736
Marsh JA Forman-Kay JD. Sequence determinants of compaction in intrinsically disordered proteins. Biophys J. (2010) 98:2383–90. doi: 10.1016/j.bpj.2010.02.006, PMID: 20483348
Bowman MA Riback JA Rodriguez A Guo H Li J Sosnick TR et al. Properties of protein unfolded states suggest broad selection for expanded conformational ensembles. Proc Natl Acad Sci. (2020) 117:23356–64. doi: 10.1073/pnas.2003773117, PMID: 32879005
Martin EW Holehouse AS Peran I Farag M Incicco JJ Bremer A et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science. (2020) 367:694–9. doi: 10.1126/science.aaw8653, PMID: 32029630
Hadarovich A Chakravarty D Tuzikov AV Ben-Tal N Kundrotas PJ Vakser IA. Structural motifs in protein cores and at protein–protein interfaces are different. Protein Sci. (2021) 30:381–90. doi: 10.1002/pro.3996, PMID: 33166001
Mittag T Forman-Kay JD. Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol. (2007) 17:3–14. doi: 10.1016/j.sbi.2007.01.009, PMID: 17250999
Tzavella K Diaz A Olsen C Vranken WF. Combining evolution and protein language models for an interpretab le cancer driver mutation prediction with D2Deep. bioRxiv. (2023) 26(1):bbae664. doi: 10.1093/bib/bbae664, PMID: 39708841
Peng Z Oldfield CJ Xue B Mizianty MJ Dunker AK Kurgan L et al. A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cell Mol Life sciences: CMLS. (2014) 71:1477–504. doi: 10.1007/s00018-013-1446-6, PMID: 23942625
Katuwawala A Oldfield CJ Kurgan L. Accuracy of protein-level disorder predictions. Briefings Bioinf. (2020) 21:1509–22. doi: 10.1093/bib/bbz100, PMID: 31616935
Hatos A Hajdu-Soltész B Monzon AM Palopoli N Álvarez L Aykac-Fas B et al. DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids. (2020) 48:D269–76. doi: 10.1093/nar/gkz975, PMID: 31713636
Dayhoff GW 2ndUversky VN. Rapid prediction and analysis of protein intrinsic disorder. Protein science: Publ Protein Soc. (2022) 31:e4496. doi: 10.1002/pro.4496, PMID: 36334049
Borgia A Borgia MB Bugge K Kissling VM Heidarsson PO Fernandes CB et al. Extreme disorder in an ultrahigh-affinity protein complex. Nature. (2018) 555:61–6. doi: 10.1038/nature25762, PMID: 29466338
Moses D Yu F Ginell GM Shamoon NM Koenig PS Holehouse AS et al. Revealing the hidden sensitivity of intrinsically disordered proteins to their chemical environment. J Phys Chem Lett. (2020) 11:10131–6. doi: 10.1021/acs.jpclett.0c02822, PMID: 33191750
Chu X Sun T Li Q Xu Y Zhang Z Lai L et al. Prediction of liquid-liquid phase separating proteins using machine learning. BMC Bioinf. (2022) 23:72. doi: 10.1186/s12859-022-04599-w, PMID: 35168563
Hardenberg M Horvath A Ambrus V Fuxreiter M Vendruscolo M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci United States America. (2020) 117:33254–62. doi: 10.1073/pnas.2007670117, PMID: 33318217
Hu W Kan ZY Mayne L Englander SW. Cytochrome c folds through foldon-dependent native-like intermediates in an ordered pathway. Proc Natl Acad Sci. (2016) 113:3809–14. doi: 10.1073/pnas.1522674113, PMID: 26966231
Černý J Černá Bolfíková B Valdés JJ Grubhoffer L Růžek D. Evolution of tertiary structure of viral RNA dependent polymerases. PloS One. (2014) 9:e96070. doi: 10.1371/journal.pone.0096070, PMID: 24816789
Pancsa R Raimondi D Cilia E Vranken WF. Early folding events, local interactions, and conservation of protein backbone rigidity. Biophys J. (2016) 110:572–83. doi: 10.1016/j.bpj.2015.12.028, PMID: 26840723
Stevens AO He Y. Benchmarking the accuracy of AlphaFold 2 in loop structure prediction. Biomolecules. (2022) 12:985. doi: 10.3390/biom12070985, PMID: 35883541
Tompa P. Multisteric regulation by structural disorder in modular signaling proteins: an extension of the concept of allostery. Chem Rev. (2014) 114:6715–32. doi: 10.1021/cr4005082, PMID: 24533462
Tompa P. The principle of conformational signaling. Chem Soc Rev. (2016) 45:4252–84. doi: 10.1039/c6cs00011h, PMID: 27242242
Uversky VN. Protein intrinsic disorder and structure-function continuum. Prog Mol Biol Trans Sci. (2019) 166:1–17. doi: 10.1016/bs.pmbts.2019.05.003, PMID: 31521229
Nussinov R. Introduction to protein ensembles and allostery. Chem Rev. (2016) 116:6263–6. doi: 10.1021/acs.chemrev.6b00283, PMID: 27268255
Del Conte A Mehdiabadi M Bouhraoua A Miguel Monzon A Tosatto SCE Piovesan D. Critical assessment of protein intrinsic disorder prediction (CAID) - Results of round 2. Proteins. (2023) 91:1925–34. doi: 10.1002/prot.26582, PMID: 37621223
Britt HM Cragnolini T Thalassinos K. Integration of mass spectrometry data for structural biology. Chem Rev. (2021) 122:7952–86. doi: 10.1021/acs.chemrev.1c00356, PMID: 34506113
Cozzeno D Jones DT. The contribution of intrinsic disorder prediction to the elucidation of protein function. Curr Opin Struct Biol. (2013) 23:467–72. doi: 10.1016/j.sbi.2013.02.001, PMID: 23466039
Aspromonte MC Nugnes MV Quaglia F Bouharoua A Consortium D Tosatto SCE et al. DisProt in 2024: improving function annotation of intrinsically disordered proteins. Nucleic Acids Res. (2024) 52:D434–41. doi: 10.1093/nar/gkad928, PMID: 37904585
Quaglia F Chasapi A Nugnes MV Aspromonte MC Leonardi E Piovesan D et al. Best practices for the manual curation of intrinsically disordered proteins in DisProt. Database: J Biol Database Curation. (2024), 2024:baae009. doi: 10.1093/database/baae009, PMID: 38507044
Service RF. ‘The game has changed.’ AI triumphs at protein folding. Science (USA, New York, N.Y.) (2020). doi: 10.1126/science.370.6521.1144., PMID: 33273077
Senior AW Evans R Jumper J Kirkpatrick J Sifre L Green T et al. Improved protein structure prediction using potentials from deep learning. Nature. (2020) 577:706–10. doi: 10.1038/s41586-019-1923-7, PMID: 31942072
Pearce R Zhang Y. Deep learning techniques have significantly impacted protein structure prediction and protein design. Curr Opin Struct Biol. (2021) 68:194–207. doi: 10.1016/j.sbi.2021.01.007, PMID: 33639355
Tunyasuvunakool K Adler J Wu Z Green T Zielinski M Žídek A et al. Highly accurate protein structure prediction for the human proteome. Nature. (2021) 596:590–6. doi: 10.1038/s41586-021-03828-1, PMID: 34293799
Vaswani A Shazeer N Parmar N Uszkoreit J Jones L Gomez AN et al. Attention is all you need. In: Advances in neural information processing systems Cornell University,. (2017). p. 30. Available online at: https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
Fersht AR. AlphaFold - A Personal Perspective on the Impact of Machine Learning. J Mol Biol. (2021) 433:167088. doi: 10.1016/j.jmb.2021.167088, PMID: 34087198
AlQuraishi M. Machine learning in protein structure prediction. Curr Opin Chem Biol. (2021) 65:1–8. doi: 10.1016/j.cbpa.2021.04.005, PMID: 34015749
Alley EC Khimulya G Biswas S AlQuraishi M Church GM. Unified rational protein engineering with sequence-based deep representation learning. Nat Methods. (2019) 16:1315–22. doi: 10.1038/s41592-019-0598-1, PMID: 31636460
Chowdhury R Bouatta N Biswas S Floristean C Kharkar A Roy K et al. Single-sequence protein structure prediction using a language model and deep learning. Nat Biotechnol. (2022) 40:1617–23. doi: 10.1038/s41587-022-01432-w, PMID: 36192636
Ruff KM Pappu RV. AlphaFold and implications for intrinsically disordered proteins. J Mol Biol. (2021) 433:167208. doi: 10.1016/j.jmb.2021.167208, PMID: 34418423
Buel GR Walters KJ. Can AlphaFold2 predict the impact of missense mutations on structure? Nat Struct Mol Biol. (2022) 29:1–2. doi: 10.1038/s41594-021-00714-2, PMID: 35046575
Bouatta N AlQuraishi M. Structural biology at the scale of proteomes. Nat Struct Mol Biol. (2023) 30:129–30. doi: 10.1038/s41594-023-00924-w, PMID: 36797377
Clark JJ Benson ML Smith RD Carlson HA. Inherent versus induced protein flexibility: comparisons within and between apo and holo structures. PloS Comput Biol. (2019) 15:e1006705. doi: 10.1371/journal.pcbi.1006705, PMID: 30699115
Varadi M Bertoni D Magana P Paramval U Pidruchna I Radhakrishnan M et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. (2024) 52:D368–75. doi: 10.1093/nar/gkad1011, PMID: 37933859
Perrakis A Sixma TK. AI revolutions in biology: The joys and perils of AlphaFold. EMBO Rep. (2021) 22:e54046. doi: 10.15252/embr.202154046, PMID: 34668287
Meng EC Goddard TD Pettersen EF Couch GS Pearson ZJ Morris JH et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. (2023) 32:e4792. doi: 10.1002/pro.4792, PMID: 37774136
Norn C Wicky BI Juergens D Liu S Kim D Tischer D et al. Protein sequence design by conformational landscape optimization. Proc Natl Acad Sci. (2021) 118:e2017228118. doi: 10.1073/pnas.2017228118, PMID: 33712545
Strodel B. Energy landscapes of protein aggregation and conformation switching in intrinsically disordered proteins. J Mol Biol. (2021) 433:167182. doi: 10.1016/j.jmb.2021.167182, PMID: 34358545
Koren G Meir S Holschuh L Mertens HD Ehm T Yahalom N et al. Intramolecular structural heterogeneity altered by long-range contacts in an intrinsically disordered protein. Proc Natl Acad Sci. (2023) 120:e2220180120. doi: 10.1073/pnas.2220180120, PMID: 37459524
Baek M DiMaio F Anishchenko I Dauparas J Ovchinnikov S Lee GR et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. (2021) 373:871–6. doi: 10.1126/science.abj8754, PMID: 34282049
Ahdritz G Bouatta N Floristean C Kadyan S Xia Q Gerecke W et al. OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. Nat Methods. (2024) 21(8):1514–24. doi: 10.1038/s41592-024-02272-z, PMID: 38744917
Oda T. Improving protein structure prediction with extended sequence similarity searches and deep-learning based refinement in CASP15. Proteins. (2023) 91:1712–23. doi: 10.1002/prot.26551, PMID: 37485822
Zheng W Wuyun Q Freddolino L Zhang Y. Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15. Proteins. (2023) 91:1684–703. doi: 10.1002/prot.26585, PMID: 37650367
Lee JW Won JH Jeon S Choo Y Yeon Y Oh JS et al. DeepFold: enhancing protein structure prediction through optimized loss functions, improved template features, and re-optimized energy function. Bioinformatics. (2023) 39:btad712. doi: 10.1093/bioinformatics/btad712, PMID: 37995286
Michaud JM Madani A Fraser JS. A language model beats alphafold2 on orphans. Nat Biotechnol. (2022) 40:1576–7. doi: 10.1038/s41587-022-01466-0, PMID: 36192635
Bertoline LMF Lima AN Krieger JE Teixeira SK. Before and after AlphaFold2: An overview of protein structure prediction. Front Bioinf. (2023) 3:1120370. doi: 10.3389/fbinf.2023.1120370, PMID: 36926275
Van Der Lee R Buljan M Lang B Weatheritt RJ Daughdrill GW Dunker AK et al. Classification of intrinsically disordered regions and proteins. Chem Rev. (2014) 114:6589–631. doi: 10.1021/cr400525m, PMID: 24773235
Milles S Jensen MR Lazert C Guseva S Ivashchenko S Communie G et al. An ultraweak interaction in the intrinsically disordered replication machinery is essential for measles virus function. Sci Adv. (2018) 4:eaat7778. doi: 10.1126/sciadv.aat7778, PMID: 30140745
Wu J Wang X Liu Q Lu G Gong P. Structural basis of transition from initiation to elongation in de novo viral RNA-dependent RNA polymerases. Proc Natl Acad Sci United States America. (2023) 120:e2211425120. doi: 10.1073/pnas.2211425120, PMID: 36577062
Ben-Tal N Kolodny R. Homologues not needed: Structure prediction from a protein language model. Structure. (2022) 30:1047–9. doi: 10.1016/j.str.2022.07.002
Edgar RC. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun. (2022) 13:6968. doi: 10.1038/s41467-022-34630-w, PMID: 36379955
Bordin N Sillitoe I Nallapareddy V Rauer C Lam SD Waman VP et al. AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms. Commun Biol. (2023) 6:160. doi: 10.1038/s42003-023-04488-9, PMID: 36755055
van Kempen M Kim SS Tumescheit C Mirdita M Lee J Gilchrist CLM et al. Fast and accurate protein structure search with Foldseek. Nat Biotechnol. (2024) 42:243–6. doi: 10.1038/s41587-023-01773-0, PMID: 37156916
Ben-Tal N Kihara D Pandurangan AP. Computational approaches to study the impact of mutations on disease and drug resistance. Front Mol Biosci. (2021) 8:813552. doi: 10.3389/fmolb.2021.813552, PMID: 34957223
Fernandez-Leiro R Bhairosing-Kok D Kunetsky V Laffeber C Winterwerp HH Groothuizen F et al. The selection process of licensing a DNA mismatch for repair. Nat Struct Mol Biol. (2021) 28:373–81. doi: 10.1038/s41594-021-00577-7, PMID: 33820992
Casadevall G Duran C Osuna S. AlphaFold2 and deep learning for elucidating enzyme conformational flexibility and its application for design. JACS Au. (2023) 3:1554–62. doi: 10.1021/jacsau.3c00188, PMID: 37388680
Virtanen P Gommers R Oliphant TE Haberland M Reddy T Cournapeau D et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. (2020) 17:261–72. doi: 10.1038/s41592-019-0686-2, PMID: 32015543
Deryusheva E Nemashkalova E Galloux M Richard CA Eléouët JF Kovacs D et al. Does intrinsic disorder in proteins favor their interaction with lipids? Proteomics. (2019) 19:1800098. doi: 10.1002/pmic.201800098, PMID: 30592560
Zarin T Strome B Peng G Pritišanac I Forman-Kay JD Moses AM. Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. Elife. (2021) 10:e60220. doi: 10.7554/eLife.60220, PMID: 33616531
Huihui J Ghosh K. Intrachain interaction topology can identify functionally similar intrinsically disordered proteins. Biophys J. (2021) 120:1860–8. doi: 10.1016/j.bpj.2020.11.2282, PMID: 33865811
Mittal A Holehouse AS Cohan MC Pappu RV. Sequence-to-conformation relationships of disordered regions tethered to folded domains of proteins. J Mol Biol. (2018) 430:2403–21. doi: 10.1016/j.jmb.2018.05.012, PMID: 29763584
Zea JD Miguel Monzon A Fornasari MS Marino-Buslje C Parisi G. Protein conformational diversity correlates with evolutionary rate. Mol Biol Evol. (2013) 30:1500–3. doi: 10.1093/molbev/mst065, PMID: 23564939
Zea DJ Monzon AM Parisi G Marino-Buslje C. How is structural divergence related to evolutionary information? Mol Phylogenet Evol. (2018) 127:859–66. doi: 10.1016/j.ympev.06.033, PMID: 29953938
Ghafouri H Lazar T Del Conte A Tenorio Ku LG Tompa P Tosatto SC et al. PED in 2024: improving the community deposition of structural ensembles for intrinsically disordered proteins. Nucleic Acids Res. (2024) 52:D536–44. doi: 10.1093/nar/gkad947, PMID: 37904608
Lazar T Martínez-Pérez E Quaglia F Hatos A Chemes LB Iserte JA et al. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res. (2021) 49:D404–11. doi: 10.1093/nar/gkaa1021, PMID: 33305318
Smith EC Blanc H Surdel MC Vignuzzi M Denison MR. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PloS Pathog. (2013) 9:e1003565. doi: 10.1371/journal.ppat.1003565, PMID: 23966862
Gitlin L Hagai T LaBarbera A Solovey M Andino R. Rapid evolution of virus sequences in intrinsically disordered protein regions. PloS Pathog. (2014) 10:e1004529. doi: 10.1371/journal.ppat.1004529, PMID: 25502394
Wei G Xi W Nussinov R Ma B. Protein ensembles: how does nature harness thermodynamic fluctuations for life The diverse functional roles of conformational ensembles in the cell. Chem Rev. (2016) 116:6516–51. doi: 10.1021/acs.chemrev.5b00562, PMID: 26807783
Gerez JA Prymaczok NC Riek R. In-cell NMR of intrinsically disordered proteins in mammalian cells. Intrinsically Disordered Proteins: Methods Protoc. (2020) 2141:873–93. doi: 10.1007/978-1-0716-0524-0_45, PMID: 32696394
Bonucci A Palomino-Schätzlein M Malo de Molina P Arbe A Pierattelli R Rizzuti B et al. Crowding effects on the structure and dynamics of the intrinsically disordered nuclear chromatin protein NUPR1. Front Mol Biosci. (2021) 8:684622. doi: 10.3389/fmolb.2021.684622, PMID: 34291085
Kinch LN Pei J Kryshtafovych A Schaeffer RD Grishin NV. Topology evaluation of models for difficult targets in the 14th round of the critical assessment of protein structure prediction (CASP14). Proteins: Structure Function Bioinf. (2021) 89:1673–86. doi: 10.1002/prot.26172, PMID: 34240477
Marino-Buslje C Monzon AM Zea DJ Fornasari MS Parisi G. On the dynamical incompleteness of the Protein Data Bank. Briefings Bioinf. (2019) 20:356–9. doi: 10.1093/bib/bbx084, PMID: 28981583
Akdel M Pires DE Pardo EP Jänes J Zalevsky AO Mészáros B et al. A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol. (2022) 29:1056–67. doi: 10.1038/s41594-022-00849-w, PMID: 36344848
DeForte S Uversky VN. Resolving the ambiguity: Making sense of intrinsic disorder when PDB structures disagree. Protein Sci. (2016) 25:676–88. doi: 10.1002/pro.2864, PMID: 26683124
Daggett V Fersht AR. Is there a unifying mechanism for protein folding? Trends Biochem Sci. (2003) 28:18–25. doi: 10.1016/s0968-0004(02)00012-9, PMID: 12517448
Karplus M Kuriyan J. Molecular dynamics and protein function. Proc Natl Acad Sci. (2005) 102:6679–85. doi: 10.1073/pnas.0408930102, PMID: 15870208
Glazer DS Radmer RJ Altman RB. Improving structure-based function prediction using molecular dynamics. Structure. (2009) 17:919–29. doi: 10.1016/j.str.2009.05.010, PMID: 19604472
Huang YJ Zhang N Bersch B Fidelis K Inouye M Ishida Y et al. Assessment of prediction methods for protein structures determined by NMR in CASP14: Impact of AlphaFold2. Proteins: Structure Function Bioinf. (2021) 89:1959–76. doi: 10.1002/prot.26246, PMID: 34559429
Saldaño T Escobedo N Marchetti J Zea DJ Mac Donagh J Velez Rueda AJ et al. Impact of protein conformational diversity on AlphaFold predictions. Bioinformatics. (2022) 38:2742–8. doi: 10.1093/bioinformatics/btac202, PMID: 35561203
Chakravarty D Porter LL. AlphaFold2 fails to predict protein fold switching. Protein Sci. (2022) 1:e4353. doi: 10.1002/pro.4353, PMID: 35634782
Outeiral C Nissley DA Deane CM. Current structure predictors are not learning the physics of protein folding. Bioinformatics. (2022) 38:1881–7. doi: 10.1093/bioinformatics/btab881, PMID: 35099504
Liu S Wu K Chen C. Obtaining protein foldability information from computational models of AlphaFold2 and RoseTTAFold. Comput Struct Biotechnol J. (2022) 20:4481–9. doi: 10.1016/j.csbj.2022.08.034, PMID: 36051869
Wayment-Steele HK Ojoawo A Otten R Apitz JM Pitsawong W Hömberger M et al. Predicting multiple conformations via sequence clustering and AlphaFold2. Nature. (2024) 625:832–9. doi: 10.1038/s41586-023-06832-9, PMID: 37956700
Alderson TR Pritišanac I Kolarić Đ. Moses AM Forman-Kay JD. Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2. Proc Natl Acad Sci. (2023) 120:e2304302120. doi: 10.1101/2022.02.18.481080, PMID: 37878721
Hopf TA Ingraham JB Poelwijk FJ Schärfe CP Springer M Sander C et al. Mutation effects predicted from sequence co-variation. Nat Biotechnol. (2017) 35:128–35. doi: 10.1038/nbt.3769, PMID: 28092658
Bugge K Brakti I Fernandes CB Dreier JE Lundsgaard JE Olsen JG et al. Interactions by disorder–a matter of context. Front Mol Biosci. (2020) 7:110. doi: 10.3389/fmolb.2020.00110, PMID: 32613009
Thomasen FE Lindorff-Larsen K. Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochem Soc Trans. (2022) 50:541–54. doi: 10.1042/BST20210499, PMID: 35129612
Vu VL Gevaert K De Smet I. Protein language: post-translational modifications talking to each other. Trends Plant Sci. (2018) 23:1068–80. doi: 10.1016/j.tplants.2018.09.004, PMID: 30279071
Dixit B Vranken W Ghysels A. Conformational dynamics of α-1 acid glycoprotein (AGP) in cancer: A comparative study of glycosylated and unglycosylated AGP. Proteins: Structure Function Bioinf. (2024) 92:246–64. doi: 10.1002/prot.26607, PMID: 37837263
Monzon AM Zea DJ Fornasari MS Saldaño TE Fernandez-Alberti S Tosatto SC et al. Conformational diversity analysis reveals three functional mechanisms in proteins. PloS Comput Biol. (2017) 13(11):e1005398. doi: 10.1371/journal.pcbi.1005398, PMID: 28192432
Ruff KM. Predicting conformational properties of intrinsically disordered proteins from sequence. Intrinsically Disordered Proteins: Methods Protoc. (2020) 2141(2020):347–89. doi: 10.1007/978-1-0716-0524-0_18, PMID: 32696367
Wilson CJ Choy WY Karttunen M. AlphaFold2: a role for disordered protein/region prediction? Int J Mol Sci. (2022) 23:4591. doi: 10.3390/ijms23094591, PMID: 35562983
Das RK Pappu RV. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. PNAS. (2013) 110:13392–7. doi: 10.1073/pnas.1304749110, PMID: 23901099
Martin EW Holehouse AS Grace CR Hughes A Pappu RV Mittag T. Sequence determinants of the conformational properties of an intrinsically disordered protein prior to and upon multisite phosphorylation. J Am Chem Soc. (2016) 138:15323–35. doi: 10.1021/jacs.6b10272, PMID: 27807972
Sørensen CS Kjaergaard M. Effective concentrations enforced by intrinsically disordered linkers are governed by polymer physics. Proc Natl Acad Sci. (2019) 116:23124–31. doi: 10.1073/pnas.1904813116, PMID: 31659043
Zaharias S Zhang Z Davis K Fargason T Cashman D Yu T et al. Intrinsically disordered electronegative clusters improve stability and binding specificity of RNA-binding proteins. J Biol Chem. (2021) 297:100945. doi: 10.1016/j.jbc.2021.100945, PMID: 34246632
Urakova N Strive T Frese M. RNA-dependent RNA polymerases of both virulent and benign rabbit caliciviruses induce striking rearrangement of golgi membranes. PloS One. (2017) 12:e0169913. doi: 10.1371/journal.pone.0169913, PMID: 28072826
Smertina E Urakova N Strive T Frese M. Calicivirus RNA-dependent RNA polymerases: evolution, structure, protein dynamics, and function. Front Microbiol. (2019) 10:1280. doi: 10.3389/fmicb.2019.01280, PMID: 31244803
Bitard-Feildel T Lamiable A Mornon JP Callebaut I. Order in disorder as observed by the “hydrophobic cluster analysis” of protein sequences. Proteomics. (2018) 18:1800054. doi: 10.1002/pmic.201800054, PMID: 30299594
Lamiable A Bitard-Feildel T Rebehmed J Quintus F Schoentgen F Mornon JP et al. A topology-based investigation of protein interaction sites using hydrophobic cluster analysis. Biochimie. (2019) 167:68–80. doi: 10.1016/j.biochi.2019.09.009, PMID: 31525399
Bruley A Mornon JP Duprat E Callebaut I. Digging into the 3D Structure Predictions of AlphaFold2 with Low Confidence: Disorder and Beyond. Biomolecules. (2022) 12:1467. doi: 10.3390/biom12101467, PMID: 36291675
Perdigão N Heinrich J Stolte C Sabir KS Buckley MJ Tabor B et al. Unexpected features of the dark proteome. Proc Natl Acad Sci. (2015) 112:15898–903. doi: 10.1073/pnas.1508380112, PMID: 26578815
Porta-Pardo E Ruiz-Serra V Valentini S Valencia A. The structural coverage of the human proteome before and after AlphaFold. PloS Comput Biol. (2022) 18:e1009818. doi: 10.1371/journal.pcbi.1009818, PMID: 35073311
Beveridge R Migas LG Das RK Pappu RV Kriwacki RW Barran PE. Ion mobility mass spectrometry uncovers the impact of the patterning of oppositely charged residues on the conformational distributions of intrinsically disordered proteins. J Am Chem Soc. (2019) 141:4908–18. doi: 10.1021/jacs.8b13483, PMID: 30823702
Zheng W Dignon G Brown M Kim YC Mittal J. Hydropathy patterning complements charge patterning to describe conformational preferences of disordered proteins. J Phys Chem Lett. (2020) 11:3408–15. doi: 10.1021/acs.jpclett.0c00288, PMID: 32227994
Zeng X Ruff KM Pappu RV. Competing interactions give rise to two-state behavior and switch-like transitions in charge-rich intrinsically disordered proteins. Proc Natl Acad Sci. (2022), 119:e2200559119. doi: 10.1073/pnas.2200559119, PMID: 35512095
Holehouse AS Garai K Lyle N Vitalis A Pappu RV. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus side chain groups to chain expansion via chemical denaturation. J Am Chem Soc. (2015) 137:2984–95. doi: 10.1021/ja512062h, PMID: 25664638
Jephthah S Pesce F Lindorff-Larsen K Skepo M. Force field effects in simulations of flexible peptides with varying polyproline II propensity. J Chem Theory Comput. (2021) 17:6634–46. doi: 10.1021/acs.jctc.1c00408, PMID: 34524800
Bakker MJ Sørensen HV Skepo M. Exploring the role of globular domain locations on an intrinsically disordered region of p53: A molecular dynamics investigation. J Chem Theory Comput. (2024) 20:1423–33. doi: 10.1021/acs.jctc.3c00971, PMID: 38230670
Eden JS Sharpe LJ White PA Brown AJ. Norovirus RNA-dependent RNA polymerase is phosphorylated by an important survival kinase, Akt. J Virol. (2011) 85:10894–8. doi: 10.1128/JVI.05562-11, PMID: 21849454
Hu J Zhang L Liu X. Role of post-translational modifications in influenza A virus life cycle and host innate immune response. Front Microbiol. (2020) 11:517461. doi: 10.3389/fmicb.2020.517461, PMID: 33013775
Liu L Madhugiri R Saul VV Bacher S Kracht M Pleschka S et al. Phosphorylation of the PA subunit of influenza polymerase at Y393 prevents binding of the 5’-termini of RNA and polymerase function. Sci Rep. (2023) 13:7042. doi: 10.1038/s41598-023-34285-7, PMID: 37120635
Narunsky A Kessel A Solan R Alva V Kolodny R Ben-Tal N. On the evolution of protein–adenine binding. Proc Natl Acad Sci. (2020) 117:4701–9. doi: 10.1073/pnas.1911349117, PMID: 32079721
Ramasamy P Turan D Tichshenko N Hulstaert N Vandermarliere E Vranken W et al. Scop3P: a comprehensive resource of human phosphosites within their full context. J Proteome Res. (2020) 19:3478–86. doi: 10.1021/acs.jproteome.0c00306, PMID: 32508104
Bludau I Willems S Zeng WF Strauss MT Hansen FM Tanzer MC et al. The structural context of posttranslational modifications at a proteome-wide scale. PloS Biol. (2022) 20:e3001636. doi: 10.1371/journal.pbio.3001636, PMID: 35576205
Nagar N Tubiana J Loewenthal G Wolfson HJ Tal NB Pupko T. EvoRator2: predicting site-specific amino acid substitutions based on protein structural information using deep learning. J Mol Biol. (2023) 435:168155. doi: 10.1016/j.jmb.2023.168155, PMID: 37356902
Ragonis-Bachar P Axel G Blau S Ben-Tal N Kolodny R Landau M. What can AlphaFold do for antimicrobial amyloids? Proteins: Structure Function Bioinf. (2024) 92:265–81. doi: 10.1002/prot.26618, PMID: 37855235
Almog G Olabode AS Poon AFY. Tuning intrinsic disorder predictors for virus proteins. Virus Evol. (2021) 7:veaa106. doi: 10.1093/ve/veaa106, PMID: 33614158